• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress

    2022-12-28 09:55:14DongliZhang張冬利MingxiangWang王明湘andHuaishengWang王槐生
    Chinese Physics B 2022年12期
    關(guān)鍵詞:王明

    Dongli Zhang(張冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生)

    School of Electronic and Information Engineering,Soochow University,Suzhou 215006,China

    Keywords: negative bias stress,poly-Si,thin-film transistor,grain boundary

    1. Introduction

    Polycrystalline silicon (poly-Si) thin-film transistors(TFTs)are widely used in pixel circuits and peripheral driver circuits of small-size and high-resolution active-matrix flatpanel displays. However,due to the polycrystalline nature and the existence of grain boundaries(GBs)in the poly-Si film,the electrical characteristics of poly-Si TFTs may be deteriorated depending on the location of the GBs.[1–3]On the contrary,the GB in scaled TFTs is reported to be able to improve the offstate current and the subthreshold swing of poly-Si TFTs.[4]

    In addition to the electrical performance of the asfabricated poly-Si TFTs, degradation behavior and the corresponding degradation mechanisms under various kinds of bias stress should be well understood before the optimal design of poly-Si TFTs and TFT-based circuits. Stress conditions,such as positive gate bias stress, negative gate bias stress (NBS),and hot-carrier (HC) effect, could all result into degradation in TFTs’electrical characteristics,but the typical degradation phenomena obviously differ, exhibiting positive[5]and negative shift of the transfer curves[6–8]and decreased on-state current (Ion) with unaffected subthreshold characteristics,[9]respectively.

    GB-related HC degradation in poly-Si TFT has been reported,[10]whereas the effects of GB on other kinds of stress-induced degradation are not yet clarified. In the present paper,NBS degradation in poly-Si TFTs with a defective GB in the channel is investigated. Typical NBS degradation with negative shift of the transfer curves is found to be absent. Instead,reduced on-state current,unaffected subthreshold characteristics and suppressed gate-induced drain leakage(GIDL)current are observed. The corresponding mechanisms for the observed degradation phenomena are proposed in this paper.

    2. Experiments

    TFTs with a defective GB in the channel were fabricated on the basis of metal-induced lateral crystallization (MILC)technology.[11]A 100-nm-amorphous silicon was firstly deposited by the low-pressure chemical vapor deposition on silicon wafers covered with 500-nm thermal oxide. It was then patterned into the active islands before the deposition of 300-nm low-temperature oxide(LTO).After the definition of metal-introducing windows (MIWs) and the following deposition of 10-nm Ni by electron-beam evaporation,MILC heattreatment was carried out in nitrogen atmosphere at 550?C for 24 hrs. Further 24 hrs of post-annealing at 550?C was performed to improve the quality of the poly-Si after removing the unreacted nickel.[12]The TFTs were fabricated on the bilaterally crystallized poly-Si regions, where MIWs were opened on the two ends of the active island and crystallization proceeded from the MIWs towards the center of the active island,as schematically shown in Fig. 1. The two MILC fronts met and formed the defective MILC/MILC GB in the channel region of the TFT, which was perpendicular to the direction of the current flow in the channel.

    After the 300-nm covering LTO was removed, the 100-nm LTO was deposited as the gate dielectric and 300-nm poly-Si was deposited and patterned to form the gate, followed by self-aligned phosphorus implantation at a dosage of 4×1015cm?2and an implantation energy of 120 keV.Dopants were activated at 620?C for 3 hrs. A 500-nm LTO was then deposited,through which contact holes were opened,followed by deposition and patterning of 500-nm Al–1%Si into electrode pads. Finally, forming-gas annealing was performed at 420?C for 30 min.

    During the application of NBS to the poly-Si TFTs at the room temperature,a constant negative gate bias of?35 V was applied to the gate electrode with the source and drain electrodes grounded. The TFTs’ transfer curves before and after NBS were measured with the semiconductor parameter analyzer Agilent 4156C. The default channel width-tolength ratio of the poly-Si TFTs used in this paper isW/L=10μm/30μm.pendence on drain bias at small drain bias voltages and good saturation phenomenon at high drain bias voltages.

    Fig.2. (a)Transfer curves and(b)output curves of the fabricated poly-Si TFTs.

    Fig. 1. (a) Cross-sectional diagram and (b) plane-view picture of the TFT with bilaterally crystallized poly-Si channel and one MILC/MILC grain boundary in the channel.

    3. Results and discussion

    The electrical performance of the fabricated poly-Si TFTs were firstly characterized. Figure 2 shows the representative transfer curves and output curves. From the transfer curve measured withVdsof 0.1 V, the field-effect mobility (μFE),extracted from the maximum transconductance, and threshold voltage(Vth),extracted by the linear extrapolation method,were 85.1 cm2/V·s and 6.5 V, respectively. With an off-sate leakage current (Ioff) of 2.1×10?11A defined as the minimum drain current atVdsof 5.0 V,and on-state current(Ion)of 3.0×10?5A defined as the drain current atVdsof 5.0 V andVgsof 15.0 V,Ion/Ioffis estimated to be 1.43×106. The gate voltage difference characterizing the drain-induced barrier lowing effect(VDIBL)for the same drain current of 1×10?9A atVdsof 0.1 V and 5.0 V is 1.6 V and the subthreshold swing (SS)is 1.45 V/decade. The output curves exhibit good linear de-

    Fig.3. Comparison of the transfer curves measured before and after NBS for 7200 s with(a)Vds=5.0 V and(b)Vds=0.1 V.

    Figure 3 compares the transfer curves of one poly-Si TFT before and after NBS for 7200 s. The negative shift of the transfer curves frequently observed for poly-Si TFTs under NBS is absent. Instead,the TFT after NBS exhibits decreasedIon, unaffected subthreshold characteristics, and suppressed GIDL current at aVdsof 5.0 V (Fig. 3(a)). These degradation phenomena are quite similar to the typical HC stressinduced degradation phenomena at the first sight. However,the reverse-mode characteristics of the TFT behave almost the same as the forward-mode characteristics (Fig. 4), where the reverse-mode characteristics are measured with the source and drain exchanged from the configurations in forward-mode measurements. While the on-state current degrades more under reverse mode than under forward mode in HC-induced degradation.[13]

    Fig.4. Comparison of the transfer curves measured in forward mode and reverse mode for poly-Si TFT under NBS for 7200 s with(a)Vds=0.1 V and(b)Vds=5.0 V.

    Fig. 5. Simulated transfer characteristic curves for poly-Si TFTs with different nTA values in the grain boundary.

    The decreased on-state current after NBS indicates the trap state generation and the unaffected subthreshold characteristics imply that the trap states are not produced uniformly in the channel region.[14,15]Further considering the existence of weak Si–Si bonds and Si–H bonds in the GB,the trap states are most probably locally generated in the MILC/MILC GB.The hypothesis that the locally increased trap states in the GB result into the decreased on-state current were verified by simulation with Silvaco Atlas,[16]where the GB region was set to be 1 μm wide and the concentration of the acceptor-like tail states (nTA) was increased after fitting the initial transfer curves. The parameters, including the distribution of trap states in the poly-Si outside the GB and in the GB, are summarized in Tables 1 and 2,respectively.

    As shown in Fig. 5, the on-state current dose decreases with the increase innTA. The energy barrier in the conduction band formed at the GB in the on-state withVgsof 15 V increases with the increase innTA(Fig. 6) which couldhinder the current flow and suppress the on-state current. Furthermore, when thenTAin the GB region is increased to 4.2×1020cm?3·eV?1and thenGA,the peak value of acceptorlike deep states, is increased to 1.2×1018cm?3·eV?1, the measured subthreshold and on-sate characteristics after NBS for 7200 s could be well fitted by the simulated results(Fig.7),thereby confirming the validity of the proposed mechanism.

    Table 1. Parameters for the poly-Si outside the GB region.

    Table 2. Parameters for the poly-Si in the GB region.

    Fig.6. Comparison of the energy barrier for electrons in the conduction band formed at the grain boundary with different nTa,where Vgs is 15 V and Vds=0 V.

    Fig.7. Comparison of the transfer curve measured with Vds=5.0 V after NBS for 7200 s and that simulated with nTA=4.2×1020 cm?3·eV?1 and nGA=1.2×1018 cm?3·eV?1 in the grain boundary.

    In the NBS degradation mechanism, the holes available in the active layer are important factors to trigger the reactions in the NBS degradation and generation of positive charges in the gate oxide.[17–19]So, the 2D distribution contour of hole concentration in the active layer under the stress gate bias of?35 V was simulated. As shown in Fig.8,high-concentration holes appear at the front surface in the GB and outside the GB regions.

    Vertical distributions of the holes in the GB and those outside the GB were firstly extracted and compared (Fig. 9).At the top surface, the hole concentration is as high as 1.0×1019cm?3and 5.8×1018cm?3for the poly-Si outside the GB and in the GB regions, respectively. For a position far from the surface and at the same depth,the hole concentration in the GB is also much smaller than that outside the GB due to the higher trap state density in the GB.The lateral distribution of the holes in the channel at a depth of 80 nm from the top surface of the active island was also extracted,as shown in Fig.10. The hole’s concentration shows a peak value near the source/drain junctions and the peak concentration is surprisingly found to be more than two orders of magnitude higher than that in the active layer far from the source/drain junctions.

    Fig. 8. Simulated 2D distribution contour of holes in cross-section of the active layer with a gate bias of ?35 V.

    Fig.9. Depth distribution of holes in the GB and outside the GB region with a gate bias of ?35 V.

    Fig.10. Simulated lateral distribution of holes in the active island at a depth position of 80 nm with a gate bias of ?35 V.

    During NBS,the potential of the channel is coupled to be negative in respect to the grounded n+source and drain. Thus,reversely biased pn junctions are formed. The generated carriers in the depletion region of the source/drain pn junctions are separated by the electric field and holes drift into the channel of the TFT.In the neutral channel region,the holes diffuse towards the channel center from the source and drain sides,accompanied by recombination in the channel simultaneously.Then,a non-uniform distribution of holes in the channel could be observed.[20]

    The validity of the proposed explanation on the nonuniform distribution of holes in the active layer was further verified,where the lifetime of holes was varied. As shown in Figs.11(b)and 11(c),the peak concentration and the distribution range of the peak for holes near the source/drain decrease as the lifetime of holes decreases. When the carrier generation in the source/drain depletion region through trap-assisted tunneling is further excluded, which is accounted for the fitting of the GIDL current during the simulation of initial transfer curves, the holes distribute uniformly in the channel and the concentration is as low as 1.5×1010cm?3[Fig.11(d)],which is also reasonable as the thermal generation of holes in the active layer is uniform.

    Fig.11.Comparison of the simulated lateral distribution of the hole at a depth position of 80 nm in the active island with(a)default parameters,(b)lifetime reduced by one order of magnitude, (c) lifetime reduced by two orders of magnitude,and(d)carrier tunneling model excluded during simulation.

    Considering the higher-concentration holes in the channel near the source and drain under NBS,typical NBS degradation still takes place with positive charges(Qox)formed locally in the gate oxide near the source and drain. The locally distributed positive changes screen the electric field from the gate in the off-state and reduce the GIDL current, such that the dependence of leakage current on gate bias atVdsof 5.0 V is greatly reduced, as observed in Fig. 3(a).[21]As shown in Fig.12,the suppression effect of the GIDL current after NBS could be achieved by adding positive charges in the gate oxide in 0.5-μm-long regions from the gate edges,and the suppression effect is more effective with the increase in locally distributed positive charges in the gate oxide. For example,with aQoxof 4.0×1017cm?3, the GIDL current is suppressed to a current level of 5.8×10?11A, which is very close to the measured current of 6.5×10?11A after NBS.

    Figure 3(b)shows that the leakage current atVdsof 0.1 V,which is initially thermal generation dominated and gate-bias independent,significantly increases and becomes gate-bias dependent after NBS. Figure 13 compares the drain current,source current (Is), and gate leakage current (Ig) in the offstate atVdsof 0.1 V after NBS for 7200 s. The drain current and the source current show gate-bias dependence, and the dependence trend is similar to that for the gate leakage current. The sum of drain current and source current equals to the gate leakage current in the off-state. Thus,after NBS,the drain current atVdsof 0.1 V is clearly dominated by the gate leakage current. Considering that the gate leakage current before NBS shows gate-bias independence and as low as 0.1 pA(Fig.13),the defect-related conduction path in the gate oxide could be concluded to be introduced during NBS,such that the gate leakage becomes larger than the generation current at the drain junction and dominates the drain current at smallVds.

    Fig. 12. Suppressed GIDL current in the simulated transfer curves with different Qox values added in the gate oxide near the source and drain.

    Fig. 13. Comparison of the drain current, source current, and gate leakage current after NBS.The initial gate leakage current before NBS is also shown as a reference.

    4. Conclusion

    NBS degradation phenomena featured with reduced onstate and GIDL but increased gate bias dependence of the leakage current atVdsof 0.1 V are observed for poly-Si TFTs with a defective GB in the channel. Trap state generation in the GB, local generation of positive charge in the gate oxide near the source/drain,and trap state generation in the gate oxide are proposed to be the respective causes for the observed phenomena. The high-concentration holes in the bulk of the active island near the source/drain junctions are responsible for the local generation of positive charges in the gate oxide which suppresses the GIDL current.Meanwhile,the low concentration of holes in the bulk of the active island far from the source/drain junctions is proposed to the reason for the absence of the shift of the transfer curve after NBS.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61971299 and 61974101), the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201201),the Fund from Suzhou Science and Technology Bureau (Grant No. SYG201933), and the Fund from the State Key Laboratory of ASIC and System, Fudan University(Grant No.2021KF005).

    猜你喜歡
    王明
    The(1+1)-dimensional nonlinear ion acoustic waves in multicomponent plasma containing kappa electrons
    Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
    Higher Derivative Estimates for a Linear Elliptic Equation
    Degradation and its fast recovery in a-IGZO thin-film transistors under negative gate bias stress*
    追問高原
    北方音樂(2019年10期)2019-07-10 19:13:36
    走過318
    北方音樂(2019年10期)2019-07-10 19:13:36
    “看不見”的王明華
    海峽姐妹(2019年3期)2019-06-18 10:37:22
    王明輝:創(chuàng)造國(guó)藥秘方的新傳奇
    金色年華(2017年2期)2017-06-15 20:28:30
    SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH A GRADIENT?
    龍門這邊(47)
    棋藝(2014年1期)2014-05-20 02:07:43
    www.色视频.com| 亚洲国产欧美在线一区| 性插视频无遮挡在线免费观看| 国产美女午夜福利| 国产色婷婷99| 精品熟女少妇av免费看| 精品午夜福利在线看| 国产成人a∨麻豆精品| 国产麻豆成人av免费视频| 久久久久久久久久久丰满| 日韩成人伦理影院| 亚洲第一区二区三区不卡| 一区福利在线观看| 成人午夜高清在线视频| 国产精品久久久久久久久免| 搞女人的毛片| 国产极品天堂在线| 有码 亚洲区| 色播亚洲综合网| 国产真实乱freesex| 又爽又黄a免费视频| 国内精品一区二区在线观看| 国产一区二区三区av在线 | 特大巨黑吊av在线直播| 少妇熟女aⅴ在线视频| 男人舔奶头视频| 长腿黑丝高跟| 成人av在线播放网站| 国产av一区在线观看免费| 国产激情偷乱视频一区二区| 国产午夜精品论理片| 久久久欧美国产精品| 内射极品少妇av片p| 99久久九九国产精品国产免费| 一本一本综合久久| 毛片女人毛片| 毛片女人毛片| 午夜激情欧美在线| 久久99热6这里只有精品| 国产精品久久久久久久久免| 国产又黄又爽又无遮挡在线| 高清在线视频一区二区三区 | 欧美xxxx黑人xx丫x性爽| 最近手机中文字幕大全| 国产精品久久久久久精品电影小说 | av免费观看日本| 听说在线观看完整版免费高清| 国产精品美女特级片免费视频播放器| 午夜免费男女啪啪视频观看| 2022亚洲国产成人精品| or卡值多少钱| 最近的中文字幕免费完整| 国内精品久久久久精免费| av.在线天堂| 亚洲av.av天堂| 午夜老司机福利剧场| 一卡2卡三卡四卡精品乱码亚洲| 国产成人一区二区在线| 国产 一区精品| 中国国产av一级| 99热6这里只有精品| 亚洲丝袜综合中文字幕| 国产成人精品久久久久久| 色吧在线观看| 久久久久九九精品影院| 又爽又黄a免费视频| 欧美日韩综合久久久久久| 99热网站在线观看| 男人和女人高潮做爰伦理| 国产在视频线在精品| 国产黄片美女视频| 日韩欧美三级三区| 能在线免费观看的黄片| av免费观看日本| 欧美性猛交黑人性爽| 日韩 亚洲 欧美在线| 国产成人精品一,二区 | 国产精品久久电影中文字幕| 小说图片视频综合网站| 久久人人爽人人爽人人片va| 国产中年淑女户外野战色| 18+在线观看网站| 欧美+亚洲+日韩+国产| 床上黄色一级片| 亚洲欧美中文字幕日韩二区| 亚洲欧美成人精品一区二区| eeuss影院久久| av视频在线观看入口| 国产精品伦人一区二区| 免费av不卡在线播放| 免费av毛片视频| 欧美成人一区二区免费高清观看| 又爽又黄a免费视频| 亚洲成人av在线免费| 日韩制服骚丝袜av| 久久久久九九精品影院| 最近最新中文字幕大全电影3| 亚洲中文字幕日韩| 深夜精品福利| 美女 人体艺术 gogo| 麻豆一二三区av精品| 久久精品人妻少妇| 欧美性猛交黑人性爽| 99热全是精品| 国产在线精品亚洲第一网站| 不卡视频在线观看欧美| 男的添女的下面高潮视频| 久久亚洲精品不卡| 97在线视频观看| 好男人在线观看高清免费视频| 久久精品国产99精品国产亚洲性色| 丝袜喷水一区| 一个人看视频在线观看www免费| 九九在线视频观看精品| 久久精品91蜜桃| 国产一区二区三区av在线 | 亚洲成a人片在线一区二区| 欧美一级a爱片免费观看看| 在线国产一区二区在线| 日韩,欧美,国产一区二区三区 | 国产精品一区二区性色av| 12—13女人毛片做爰片一| 国产极品天堂在线| eeuss影院久久| 国产精品三级大全| 国产成人a∨麻豆精品| 麻豆乱淫一区二区| 亚洲人成网站高清观看| 黄色配什么色好看| 久久久久久九九精品二区国产| 亚洲欧美精品专区久久| 一边亲一边摸免费视频| 欧美性猛交╳xxx乱大交人| 性色avwww在线观看| 中出人妻视频一区二区| 大又大粗又爽又黄少妇毛片口| 12—13女人毛片做爰片一| 亚洲无线在线观看| 成年av动漫网址| 在线观看免费视频日本深夜| 亚洲精品国产成人久久av| 日本黄色片子视频| 成人亚洲欧美一区二区av| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩在线观看h| 在线观看一区二区三区| av免费在线看不卡| 亚洲18禁久久av| 狠狠狠狠99中文字幕| 在线免费观看不下载黄p国产| 乱码一卡2卡4卡精品| 国产午夜精品论理片| 两个人的视频大全免费| avwww免费| 免费大片18禁| 最近2019中文字幕mv第一页| 国产亚洲av片在线观看秒播厂 | 99九九线精品视频在线观看视频| 男人和女人高潮做爰伦理| 看片在线看免费视频| 免费看a级黄色片| 岛国在线免费视频观看| 日韩视频在线欧美| 国产一区二区三区av在线 | 12—13女人毛片做爰片一| 中文字幕熟女人妻在线| 国产v大片淫在线免费观看| 国产高清不卡午夜福利| 国产成年人精品一区二区| 精品人妻熟女av久视频| .国产精品久久| 久久精品影院6| 韩国av在线不卡| 日本熟妇午夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美日韩综合久久久久久| 天堂√8在线中文| 国产精品一二三区在线看| 国产探花极品一区二区| 深夜精品福利| a级毛色黄片| 一个人看的www免费观看视频| 深夜精品福利| 在线免费观看不下载黄p国产| 国内精品一区二区在线观看| a级毛片免费高清观看在线播放| 中出人妻视频一区二区| 99视频精品全部免费 在线| av免费在线看不卡| 免费看av在线观看网站| 久久精品91蜜桃| 国产黄a三级三级三级人| 桃色一区二区三区在线观看| 免费av不卡在线播放| 一边亲一边摸免费视频| 中文字幕制服av| 国产午夜福利久久久久久| 18禁裸乳无遮挡免费网站照片| 精品国内亚洲2022精品成人| 看非洲黑人一级黄片| 午夜福利视频1000在线观看| 看黄色毛片网站| 91av网一区二区| 亚洲高清免费不卡视频| a级一级毛片免费在线观看| 少妇人妻一区二区三区视频| 禁无遮挡网站| 熟妇人妻久久中文字幕3abv| 美女国产视频在线观看| 成人鲁丝片一二三区免费| 波野结衣二区三区在线| 久久精品综合一区二区三区| 亚洲精品乱码久久久v下载方式| 色哟哟哟哟哟哟| 一级毛片久久久久久久久女| 成人综合一区亚洲| 日韩中字成人| 精品一区二区三区视频在线| 国产白丝娇喘喷水9色精品| 国产精品一区二区三区四区久久| 亚洲av不卡在线观看| 熟女电影av网| 99九九线精品视频在线观看视频| 日韩大尺度精品在线看网址| 久久婷婷人人爽人人干人人爱| 国产老妇伦熟女老妇高清| 欧美变态另类bdsm刘玥| 美女黄网站色视频| 99久国产av精品| 你懂的网址亚洲精品在线观看 | 久久人人爽人人片av| 免费无遮挡裸体视频| 国产一区亚洲一区在线观看| 老司机福利观看| 日本黄色视频三级网站网址| 欧美zozozo另类| 精品国内亚洲2022精品成人| www.色视频.com| 午夜激情福利司机影院| 美女脱内裤让男人舔精品视频 | 一级毛片aaaaaa免费看小| 免费观看a级毛片全部| 午夜福利视频1000在线观看| 亚洲在久久综合| 亚洲一级一片aⅴ在线观看| 人妻系列 视频| 亚洲经典国产精华液单| 一级毛片久久久久久久久女| 成人一区二区视频在线观看| www.色视频.com| 欧美色欧美亚洲另类二区| 国产高清不卡午夜福利| 听说在线观看完整版免费高清| 高清在线视频一区二区三区 | 美女国产视频在线观看| 老司机福利观看| 一区二区三区高清视频在线| 欧美成人一区二区免费高清观看| 欧美日韩国产亚洲二区| 成年女人永久免费观看视频| 国产亚洲av片在线观看秒播厂 | 熟妇人妻久久中文字幕3abv| 久久久久久国产a免费观看| 内地一区二区视频在线| 亚洲精品乱码久久久久久按摩| 99国产精品一区二区蜜桃av| 亚洲精华国产精华液的使用体验 | 成人午夜精彩视频在线观看| 久久婷婷人人爽人人干人人爱| 最近的中文字幕免费完整| 黄色日韩在线| 超碰av人人做人人爽久久| 男女那种视频在线观看| 午夜a级毛片| 国产中年淑女户外野战色| 人体艺术视频欧美日本| 超碰av人人做人人爽久久| 成人综合一区亚洲| 久久中文看片网| 青春草国产在线视频 | 久久午夜福利片| 亚洲无线观看免费| 成人特级av手机在线观看| 高清在线视频一区二区三区 | 99久久中文字幕三级久久日本| 国产精华一区二区三区| 欧美一级a爱片免费观看看| 婷婷精品国产亚洲av| 久久亚洲精品不卡| 51国产日韩欧美| 欧美最新免费一区二区三区| 日日干狠狠操夜夜爽| 国产av麻豆久久久久久久| 国产精品av视频在线免费观看| 成年免费大片在线观看| 亚洲精品乱码久久久久久按摩| 男插女下体视频免费在线播放| 亚洲欧美成人精品一区二区| 日日撸夜夜添| 99久久人妻综合| 久久99精品国语久久久| 亚洲人与动物交配视频| ponron亚洲| 午夜老司机福利剧场| 日韩,欧美,国产一区二区三区 | 国产日本99.免费观看| 身体一侧抽搐| 禁无遮挡网站| 九九在线视频观看精品| 好男人视频免费观看在线| 特级一级黄色大片| 舔av片在线| 国产精品麻豆人妻色哟哟久久 | 久久精品人妻少妇| 熟女人妻精品中文字幕| 日韩欧美 国产精品| 午夜老司机福利剧场| 九草在线视频观看| 91在线精品国自产拍蜜月| 亚洲精华国产精华液的使用体验 | 国产免费男女视频| 偷拍熟女少妇极品色| 中文字幕久久专区| 亚洲自偷自拍三级| 国产亚洲av片在线观看秒播厂 | 人人妻人人澡人人爽人人夜夜 | 久久这里只有精品中国| 国产91av在线免费观看| 日韩中字成人| 中文字幕免费在线视频6| av在线观看视频网站免费| 男人和女人高潮做爰伦理| 精品不卡国产一区二区三区| 亚洲高清免费不卡视频| .国产精品久久| av视频在线观看入口| 麻豆成人av视频| 中国国产av一级| 国产在线男女| 97在线视频观看| 欧美最黄视频在线播放免费| 精品久久国产蜜桃| 联通29元200g的流量卡| 久久精品影院6| 久久久久久久亚洲中文字幕| 国产亚洲91精品色在线| 99热这里只有是精品50| 长腿黑丝高跟| 欧美一级a爱片免费观看看| 免费不卡的大黄色大毛片视频在线观看 | 99热这里只有是精品50| 在线免费观看的www视频| 精品久久久久久久久久久久久| 亚洲欧美日韩无卡精品| 精品日产1卡2卡| 91aial.com中文字幕在线观看| 午夜激情福利司机影院| 人人妻人人澡欧美一区二区| 成人二区视频| 自拍偷自拍亚洲精品老妇| 1024手机看黄色片| 国产午夜福利久久久久久| 插阴视频在线观看视频| 国产一级毛片七仙女欲春2| 成人无遮挡网站| 婷婷精品国产亚洲av| 我要看日韩黄色一级片| 亚洲欧美成人精品一区二区| 久久精品综合一区二区三区| 国产精品人妻久久久久久| 国产精品三级大全| 人人妻人人看人人澡| 国国产精品蜜臀av免费| 小蜜桃在线观看免费完整版高清| 色综合站精品国产| 日韩成人伦理影院| 国产黄片视频在线免费观看| 三级经典国产精品| 亚洲va在线va天堂va国产| 在线天堂最新版资源| 插阴视频在线观看视频| 人妻夜夜爽99麻豆av| 国产精品嫩草影院av在线观看| 日本黄色视频三级网站网址| av女优亚洲男人天堂| 亚洲国产高清在线一区二区三| 日本一二三区视频观看| 成人毛片a级毛片在线播放| 亚洲欧美中文字幕日韩二区| 久久欧美精品欧美久久欧美| 又爽又黄无遮挡网站| 成人三级黄色视频| 亚洲国产精品久久男人天堂| 日韩欧美三级三区| 欧美高清性xxxxhd video| 婷婷色综合大香蕉| 亚洲不卡免费看| 久久这里只有精品中国| 最近最新中文字幕大全电影3| 黑人高潮一二区| 黄色欧美视频在线观看| 亚洲国产欧美人成| 亚洲,欧美,日韩| 日本av手机在线免费观看| 欧美激情久久久久久爽电影| 99riav亚洲国产免费| 日本黄色视频三级网站网址| 亚洲成人久久爱视频| 欧美又色又爽又黄视频| 极品教师在线视频| 婷婷六月久久综合丁香| 国产成人a区在线观看| 亚洲熟妇中文字幕五十中出| 看黄色毛片网站| 国产精品女同一区二区软件| 成年版毛片免费区| 中国美女看黄片| 九九在线视频观看精品| 99在线视频只有这里精品首页| 国产女主播在线喷水免费视频网站 | 亚州av有码| 国产色婷婷99| 嫩草影院精品99| 久久精品国产亚洲av涩爱 | 亚洲第一区二区三区不卡| 国产片特级美女逼逼视频| 在线观看av片永久免费下载| 久久久国产成人精品二区| 欧美bdsm另类| 天堂影院成人在线观看| 亚洲精品粉嫩美女一区| 麻豆成人av视频| 女人十人毛片免费观看3o分钟| h日本视频在线播放| 男人的好看免费观看在线视频| 成人毛片60女人毛片免费| 中文字幕精品亚洲无线码一区| 亚洲真实伦在线观看| 国产精品久久久久久久久免| 丰满的人妻完整版| 大又大粗又爽又黄少妇毛片口| 色综合站精品国产| 不卡视频在线观看欧美| 成人无遮挡网站| 麻豆久久精品国产亚洲av| 精品人妻熟女av久视频| 国产爱豆传媒在线观看| 成人鲁丝片一二三区免费| 一区福利在线观看| 午夜精品一区二区三区免费看| 男女边吃奶边做爰视频| 久久久久久久久久成人| 一区二区三区四区激情视频 | 最近2019中文字幕mv第一页| 亚洲精品日韩av片在线观看| 中文在线观看免费www的网站| 久久精品影院6| 可以在线观看毛片的网站| 高清在线视频一区二区三区 | 日产精品乱码卡一卡2卡三| 最近手机中文字幕大全| 欧美+日韩+精品| 日日撸夜夜添| 亚洲欧美成人综合另类久久久 | 成人无遮挡网站| 免费看光身美女| 美女xxoo啪啪120秒动态图| 午夜视频国产福利| 国产高清视频在线观看网站| 午夜久久久久精精品| 国产不卡一卡二| 国产单亲对白刺激| 人人妻人人澡欧美一区二区| 国产麻豆成人av免费视频| 一区二区三区高清视频在线| 春色校园在线视频观看| 一级黄色大片毛片| 99久久无色码亚洲精品果冻| 久久鲁丝午夜福利片| 校园人妻丝袜中文字幕| 成人永久免费在线观看视频| 嫩草影院精品99| 日韩欧美在线乱码| 综合色av麻豆| 欧美高清成人免费视频www| 综合色av麻豆| 亚洲成av人片在线播放无| or卡值多少钱| 国产精品99久久久久久久久| 亚洲av第一区精品v没综合| 日韩,欧美,国产一区二区三区 | 一边摸一边抽搐一进一小说| 在线a可以看的网站| 高清毛片免费观看视频网站| 99视频精品全部免费 在线| 美女cb高潮喷水在线观看| 欧美区成人在线视频| 亚洲va在线va天堂va国产| 夫妻性生交免费视频一级片| 日韩欧美精品免费久久| 你懂的网址亚洲精品在线观看 | 亚洲国产色片| 日韩av不卡免费在线播放| 欧美xxxx性猛交bbbb| 国产爱豆传媒在线观看| 麻豆成人午夜福利视频| 亚洲第一区二区三区不卡| 午夜免费激情av| 九九在线视频观看精品| 中国美女看黄片| 国产精品1区2区在线观看.| 免费搜索国产男女视频| 精品少妇黑人巨大在线播放 | 91久久精品国产一区二区三区| 成人午夜精彩视频在线观看| av在线播放精品| 国产老妇女一区| 国产人妻一区二区三区在| 深夜a级毛片| 精品久久久久久久久久久久久| 亚洲精品粉嫩美女一区| 少妇熟女aⅴ在线视频| 春色校园在线视频观看| 国产av在哪里看| 嘟嘟电影网在线观看| 美女黄网站色视频| 人人妻人人看人人澡| 久久韩国三级中文字幕| 99久久久亚洲精品蜜臀av| 久久99热6这里只有精品| 九九久久精品国产亚洲av麻豆| 黄色欧美视频在线观看| 日韩成人av中文字幕在线观看| 久久6这里有精品| 高清午夜精品一区二区三区 | 哪个播放器可以免费观看大片| 中文在线观看免费www的网站| 一级毛片电影观看 | 少妇熟女aⅴ在线视频| 男插女下体视频免费在线播放| 2022亚洲国产成人精品| 内地一区二区视频在线| 欧美精品国产亚洲| 亚洲成av人片在线播放无| 亚洲五月天丁香| 在线观看av片永久免费下载| 中文字幕免费在线视频6| 亚洲国产欧美在线一区| 搞女人的毛片| 一本久久精品| 国产极品天堂在线| 又爽又黄a免费视频| 激情 狠狠 欧美| .国产精品久久| 熟女人妻精品中文字幕| 日韩精品有码人妻一区| 久久这里有精品视频免费| 国产黄色小视频在线观看| 成人特级黄色片久久久久久久| 99热6这里只有精品| 亚洲美女视频黄频| av专区在线播放| 色播亚洲综合网| 午夜福利高清视频| 91精品国产九色| 亚洲av免费在线观看| 国产亚洲精品av在线| 性色avwww在线观看| 国产av在哪里看| 老师上课跳d突然被开到最大视频| 久久久精品欧美日韩精品| 成人特级黄色片久久久久久久| 一级av片app| 变态另类丝袜制服| 欧美最新免费一区二区三区| 久久99热6这里只有精品| 国产一区亚洲一区在线观看| 久久久久国产网址| 最近的中文字幕免费完整| 国产精品久久久久久精品电影| av在线亚洲专区| 1024手机看黄色片| 国产高清激情床上av| 久久久欧美国产精品| 欧美xxxx黑人xx丫x性爽| 黄片无遮挡物在线观看| 欧美一级a爱片免费观看看| 日韩av在线大香蕉| 亚洲精品自拍成人| 又黄又爽又刺激的免费视频.| 国产高清有码在线观看视频| 大型黄色视频在线免费观看| 乱码一卡2卡4卡精品| 国产黄片视频在线免费观看| 天天躁夜夜躁狠狠久久av| 精品久久久久久久久久久久久| 超碰av人人做人人爽久久| 一区二区三区高清视频在线| 国产av一区在线观看免费| 校园人妻丝袜中文字幕| 久久热精品热| 国产久久久一区二区三区| 国产精品精品国产色婷婷| 午夜福利在线观看免费完整高清在 | 午夜福利高清视频| 一本精品99久久精品77| 岛国在线免费视频观看| 欧美又色又爽又黄视频| 成人美女网站在线观看视频| 毛片一级片免费看久久久久| 日日啪夜夜撸| 精品久久久噜噜| 亚洲婷婷狠狠爱综合网| 亚洲国产精品sss在线观看| a级一级毛片免费在线观看|