• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress

    2022-12-28 09:55:14DongliZhang張冬利MingxiangWang王明湘andHuaishengWang王槐生
    Chinese Physics B 2022年12期
    關(guān)鍵詞:王明

    Dongli Zhang(張冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生)

    School of Electronic and Information Engineering,Soochow University,Suzhou 215006,China

    Keywords: negative bias stress,poly-Si,thin-film transistor,grain boundary

    1. Introduction

    Polycrystalline silicon (poly-Si) thin-film transistors(TFTs)are widely used in pixel circuits and peripheral driver circuits of small-size and high-resolution active-matrix flatpanel displays. However,due to the polycrystalline nature and the existence of grain boundaries(GBs)in the poly-Si film,the electrical characteristics of poly-Si TFTs may be deteriorated depending on the location of the GBs.[1–3]On the contrary,the GB in scaled TFTs is reported to be able to improve the offstate current and the subthreshold swing of poly-Si TFTs.[4]

    In addition to the electrical performance of the asfabricated poly-Si TFTs, degradation behavior and the corresponding degradation mechanisms under various kinds of bias stress should be well understood before the optimal design of poly-Si TFTs and TFT-based circuits. Stress conditions,such as positive gate bias stress, negative gate bias stress (NBS),and hot-carrier (HC) effect, could all result into degradation in TFTs’electrical characteristics,but the typical degradation phenomena obviously differ, exhibiting positive[5]and negative shift of the transfer curves[6–8]and decreased on-state current (Ion) with unaffected subthreshold characteristics,[9]respectively.

    GB-related HC degradation in poly-Si TFT has been reported,[10]whereas the effects of GB on other kinds of stress-induced degradation are not yet clarified. In the present paper,NBS degradation in poly-Si TFTs with a defective GB in the channel is investigated. Typical NBS degradation with negative shift of the transfer curves is found to be absent. Instead,reduced on-state current,unaffected subthreshold characteristics and suppressed gate-induced drain leakage(GIDL)current are observed. The corresponding mechanisms for the observed degradation phenomena are proposed in this paper.

    2. Experiments

    TFTs with a defective GB in the channel were fabricated on the basis of metal-induced lateral crystallization (MILC)technology.[11]A 100-nm-amorphous silicon was firstly deposited by the low-pressure chemical vapor deposition on silicon wafers covered with 500-nm thermal oxide. It was then patterned into the active islands before the deposition of 300-nm low-temperature oxide(LTO).After the definition of metal-introducing windows (MIWs) and the following deposition of 10-nm Ni by electron-beam evaporation,MILC heattreatment was carried out in nitrogen atmosphere at 550?C for 24 hrs. Further 24 hrs of post-annealing at 550?C was performed to improve the quality of the poly-Si after removing the unreacted nickel.[12]The TFTs were fabricated on the bilaterally crystallized poly-Si regions, where MIWs were opened on the two ends of the active island and crystallization proceeded from the MIWs towards the center of the active island,as schematically shown in Fig. 1. The two MILC fronts met and formed the defective MILC/MILC GB in the channel region of the TFT, which was perpendicular to the direction of the current flow in the channel.

    After the 300-nm covering LTO was removed, the 100-nm LTO was deposited as the gate dielectric and 300-nm poly-Si was deposited and patterned to form the gate, followed by self-aligned phosphorus implantation at a dosage of 4×1015cm?2and an implantation energy of 120 keV.Dopants were activated at 620?C for 3 hrs. A 500-nm LTO was then deposited,through which contact holes were opened,followed by deposition and patterning of 500-nm Al–1%Si into electrode pads. Finally, forming-gas annealing was performed at 420?C for 30 min.

    During the application of NBS to the poly-Si TFTs at the room temperature,a constant negative gate bias of?35 V was applied to the gate electrode with the source and drain electrodes grounded. The TFTs’ transfer curves before and after NBS were measured with the semiconductor parameter analyzer Agilent 4156C. The default channel width-tolength ratio of the poly-Si TFTs used in this paper isW/L=10μm/30μm.pendence on drain bias at small drain bias voltages and good saturation phenomenon at high drain bias voltages.

    Fig.2. (a)Transfer curves and(b)output curves of the fabricated poly-Si TFTs.

    Fig. 1. (a) Cross-sectional diagram and (b) plane-view picture of the TFT with bilaterally crystallized poly-Si channel and one MILC/MILC grain boundary in the channel.

    3. Results and discussion

    The electrical performance of the fabricated poly-Si TFTs were firstly characterized. Figure 2 shows the representative transfer curves and output curves. From the transfer curve measured withVdsof 0.1 V, the field-effect mobility (μFE),extracted from the maximum transconductance, and threshold voltage(Vth),extracted by the linear extrapolation method,were 85.1 cm2/V·s and 6.5 V, respectively. With an off-sate leakage current (Ioff) of 2.1×10?11A defined as the minimum drain current atVdsof 5.0 V,and on-state current(Ion)of 3.0×10?5A defined as the drain current atVdsof 5.0 V andVgsof 15.0 V,Ion/Ioffis estimated to be 1.43×106. The gate voltage difference characterizing the drain-induced barrier lowing effect(VDIBL)for the same drain current of 1×10?9A atVdsof 0.1 V and 5.0 V is 1.6 V and the subthreshold swing (SS)is 1.45 V/decade. The output curves exhibit good linear de-

    Fig.3. Comparison of the transfer curves measured before and after NBS for 7200 s with(a)Vds=5.0 V and(b)Vds=0.1 V.

    Figure 3 compares the transfer curves of one poly-Si TFT before and after NBS for 7200 s. The negative shift of the transfer curves frequently observed for poly-Si TFTs under NBS is absent. Instead,the TFT after NBS exhibits decreasedIon, unaffected subthreshold characteristics, and suppressed GIDL current at aVdsof 5.0 V (Fig. 3(a)). These degradation phenomena are quite similar to the typical HC stressinduced degradation phenomena at the first sight. However,the reverse-mode characteristics of the TFT behave almost the same as the forward-mode characteristics (Fig. 4), where the reverse-mode characteristics are measured with the source and drain exchanged from the configurations in forward-mode measurements. While the on-state current degrades more under reverse mode than under forward mode in HC-induced degradation.[13]

    Fig.4. Comparison of the transfer curves measured in forward mode and reverse mode for poly-Si TFT under NBS for 7200 s with(a)Vds=0.1 V and(b)Vds=5.0 V.

    Fig. 5. Simulated transfer characteristic curves for poly-Si TFTs with different nTA values in the grain boundary.

    The decreased on-state current after NBS indicates the trap state generation and the unaffected subthreshold characteristics imply that the trap states are not produced uniformly in the channel region.[14,15]Further considering the existence of weak Si–Si bonds and Si–H bonds in the GB,the trap states are most probably locally generated in the MILC/MILC GB.The hypothesis that the locally increased trap states in the GB result into the decreased on-state current were verified by simulation with Silvaco Atlas,[16]where the GB region was set to be 1 μm wide and the concentration of the acceptor-like tail states (nTA) was increased after fitting the initial transfer curves. The parameters, including the distribution of trap states in the poly-Si outside the GB and in the GB, are summarized in Tables 1 and 2,respectively.

    As shown in Fig. 5, the on-state current dose decreases with the increase innTA. The energy barrier in the conduction band formed at the GB in the on-state withVgsof 15 V increases with the increase innTA(Fig. 6) which couldhinder the current flow and suppress the on-state current. Furthermore, when thenTAin the GB region is increased to 4.2×1020cm?3·eV?1and thenGA,the peak value of acceptorlike deep states, is increased to 1.2×1018cm?3·eV?1, the measured subthreshold and on-sate characteristics after NBS for 7200 s could be well fitted by the simulated results(Fig.7),thereby confirming the validity of the proposed mechanism.

    Table 1. Parameters for the poly-Si outside the GB region.

    Table 2. Parameters for the poly-Si in the GB region.

    Fig.6. Comparison of the energy barrier for electrons in the conduction band formed at the grain boundary with different nTa,where Vgs is 15 V and Vds=0 V.

    Fig.7. Comparison of the transfer curve measured with Vds=5.0 V after NBS for 7200 s and that simulated with nTA=4.2×1020 cm?3·eV?1 and nGA=1.2×1018 cm?3·eV?1 in the grain boundary.

    In the NBS degradation mechanism, the holes available in the active layer are important factors to trigger the reactions in the NBS degradation and generation of positive charges in the gate oxide.[17–19]So, the 2D distribution contour of hole concentration in the active layer under the stress gate bias of?35 V was simulated. As shown in Fig.8,high-concentration holes appear at the front surface in the GB and outside the GB regions.

    Vertical distributions of the holes in the GB and those outside the GB were firstly extracted and compared (Fig. 9).At the top surface, the hole concentration is as high as 1.0×1019cm?3and 5.8×1018cm?3for the poly-Si outside the GB and in the GB regions, respectively. For a position far from the surface and at the same depth,the hole concentration in the GB is also much smaller than that outside the GB due to the higher trap state density in the GB.The lateral distribution of the holes in the channel at a depth of 80 nm from the top surface of the active island was also extracted,as shown in Fig.10. The hole’s concentration shows a peak value near the source/drain junctions and the peak concentration is surprisingly found to be more than two orders of magnitude higher than that in the active layer far from the source/drain junctions.

    Fig. 8. Simulated 2D distribution contour of holes in cross-section of the active layer with a gate bias of ?35 V.

    Fig.9. Depth distribution of holes in the GB and outside the GB region with a gate bias of ?35 V.

    Fig.10. Simulated lateral distribution of holes in the active island at a depth position of 80 nm with a gate bias of ?35 V.

    During NBS,the potential of the channel is coupled to be negative in respect to the grounded n+source and drain. Thus,reversely biased pn junctions are formed. The generated carriers in the depletion region of the source/drain pn junctions are separated by the electric field and holes drift into the channel of the TFT.In the neutral channel region,the holes diffuse towards the channel center from the source and drain sides,accompanied by recombination in the channel simultaneously.Then,a non-uniform distribution of holes in the channel could be observed.[20]

    The validity of the proposed explanation on the nonuniform distribution of holes in the active layer was further verified,where the lifetime of holes was varied. As shown in Figs.11(b)and 11(c),the peak concentration and the distribution range of the peak for holes near the source/drain decrease as the lifetime of holes decreases. When the carrier generation in the source/drain depletion region through trap-assisted tunneling is further excluded, which is accounted for the fitting of the GIDL current during the simulation of initial transfer curves, the holes distribute uniformly in the channel and the concentration is as low as 1.5×1010cm?3[Fig.11(d)],which is also reasonable as the thermal generation of holes in the active layer is uniform.

    Fig.11.Comparison of the simulated lateral distribution of the hole at a depth position of 80 nm in the active island with(a)default parameters,(b)lifetime reduced by one order of magnitude, (c) lifetime reduced by two orders of magnitude,and(d)carrier tunneling model excluded during simulation.

    Considering the higher-concentration holes in the channel near the source and drain under NBS,typical NBS degradation still takes place with positive charges(Qox)formed locally in the gate oxide near the source and drain. The locally distributed positive changes screen the electric field from the gate in the off-state and reduce the GIDL current, such that the dependence of leakage current on gate bias atVdsof 5.0 V is greatly reduced, as observed in Fig. 3(a).[21]As shown in Fig.12,the suppression effect of the GIDL current after NBS could be achieved by adding positive charges in the gate oxide in 0.5-μm-long regions from the gate edges,and the suppression effect is more effective with the increase in locally distributed positive charges in the gate oxide. For example,with aQoxof 4.0×1017cm?3, the GIDL current is suppressed to a current level of 5.8×10?11A, which is very close to the measured current of 6.5×10?11A after NBS.

    Figure 3(b)shows that the leakage current atVdsof 0.1 V,which is initially thermal generation dominated and gate-bias independent,significantly increases and becomes gate-bias dependent after NBS. Figure 13 compares the drain current,source current (Is), and gate leakage current (Ig) in the offstate atVdsof 0.1 V after NBS for 7200 s. The drain current and the source current show gate-bias dependence, and the dependence trend is similar to that for the gate leakage current. The sum of drain current and source current equals to the gate leakage current in the off-state. Thus,after NBS,the drain current atVdsof 0.1 V is clearly dominated by the gate leakage current. Considering that the gate leakage current before NBS shows gate-bias independence and as low as 0.1 pA(Fig.13),the defect-related conduction path in the gate oxide could be concluded to be introduced during NBS,such that the gate leakage becomes larger than the generation current at the drain junction and dominates the drain current at smallVds.

    Fig. 12. Suppressed GIDL current in the simulated transfer curves with different Qox values added in the gate oxide near the source and drain.

    Fig. 13. Comparison of the drain current, source current, and gate leakage current after NBS.The initial gate leakage current before NBS is also shown as a reference.

    4. Conclusion

    NBS degradation phenomena featured with reduced onstate and GIDL but increased gate bias dependence of the leakage current atVdsof 0.1 V are observed for poly-Si TFTs with a defective GB in the channel. Trap state generation in the GB, local generation of positive charge in the gate oxide near the source/drain,and trap state generation in the gate oxide are proposed to be the respective causes for the observed phenomena. The high-concentration holes in the bulk of the active island near the source/drain junctions are responsible for the local generation of positive charges in the gate oxide which suppresses the GIDL current.Meanwhile,the low concentration of holes in the bulk of the active island far from the source/drain junctions is proposed to the reason for the absence of the shift of the transfer curve after NBS.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61971299 and 61974101), the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201201),the Fund from Suzhou Science and Technology Bureau (Grant No. SYG201933), and the Fund from the State Key Laboratory of ASIC and System, Fudan University(Grant No.2021KF005).

    猜你喜歡
    王明
    The(1+1)-dimensional nonlinear ion acoustic waves in multicomponent plasma containing kappa electrons
    Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
    Higher Derivative Estimates for a Linear Elliptic Equation
    Degradation and its fast recovery in a-IGZO thin-film transistors under negative gate bias stress*
    追問高原
    北方音樂(2019年10期)2019-07-10 19:13:36
    走過318
    北方音樂(2019年10期)2019-07-10 19:13:36
    “看不見”的王明華
    海峽姐妹(2019年3期)2019-06-18 10:37:22
    王明輝:創(chuàng)造國(guó)藥秘方的新傳奇
    金色年華(2017年2期)2017-06-15 20:28:30
    SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH A GRADIENT?
    龍門這邊(47)
    棋藝(2014年1期)2014-05-20 02:07:43
    黄网站色视频无遮挡免费观看| 91在线观看av| e午夜精品久久久久久久| 精品久久蜜臀av无| 欧美一级毛片孕妇| 国产精品乱码一区二三区的特点 | 满18在线观看网站| 欧美黄色淫秽网站| 国产精品亚洲美女久久久| 大型黄色视频在线免费观看| 90打野战视频偷拍视频| 97超级碰碰碰精品色视频在线观看| 日日夜夜操网爽| 在线观看www视频免费| 两个人免费观看高清视频| 天天添夜夜摸| 99久久国产精品久久久| 国产亚洲精品av在线| 999久久久国产精品视频| 免费在线观看完整版高清| 亚洲欧美一区二区三区黑人| 老司机福利观看| 午夜福利影视在线免费观看| 日本欧美视频一区| 人成视频在线观看免费观看| 高清在线国产一区| 老司机在亚洲福利影院| 久久精品国产清高在天天线| 涩涩av久久男人的天堂| 天天添夜夜摸| 国产麻豆成人av免费视频| 怎么达到女性高潮| 成人av一区二区三区在线看| 亚洲av日韩精品久久久久久密| 成人手机av| 中文字幕最新亚洲高清| 亚洲专区国产一区二区| 国产免费av片在线观看野外av| 大型av网站在线播放| 中文字幕色久视频| 欧美精品亚洲一区二区| 宅男免费午夜| 午夜免费激情av| 国产高清videossex| 777久久人妻少妇嫩草av网站| 午夜福利欧美成人| 在线观看午夜福利视频| 国内精品久久久久精免费| 精品国产亚洲在线| 国产黄a三级三级三级人| 欧美色视频一区免费| 淫妇啪啪啪对白视频| 亚洲熟女毛片儿| 亚洲激情在线av| 国产精品久久视频播放| 亚洲在线自拍视频| www.自偷自拍.com| 欧美日韩乱码在线| 法律面前人人平等表现在哪些方面| 亚洲一区中文字幕在线| 精品国产一区二区三区四区第35| 久久久久国内视频| 精品国内亚洲2022精品成人| 午夜免费成人在线视频| 最近最新中文字幕大全免费视频| 天堂影院成人在线观看| 午夜视频精品福利| 叶爱在线成人免费视频播放| 精品日产1卡2卡| 在线十欧美十亚洲十日本专区| 欧美av亚洲av综合av国产av| 亚洲精华国产精华精| 国产av一区在线观看免费| 一级a爱视频在线免费观看| 久久精品国产亚洲av香蕉五月| 亚洲国产精品成人综合色| 欧美另类亚洲清纯唯美| 亚洲成人免费电影在线观看| 男女床上黄色一级片免费看| 国产成人一区二区三区免费视频网站| 欧美绝顶高潮抽搐喷水| 男女做爰动态图高潮gif福利片 | 757午夜福利合集在线观看| 日本欧美视频一区| 在线观看免费日韩欧美大片| 国产激情欧美一区二区| 日韩免费av在线播放| 女性生殖器流出的白浆| 亚洲欧美精品综合久久99| 久久久久国产精品人妻aⅴ院| 在线观看一区二区三区| 久久精品91无色码中文字幕| 脱女人内裤的视频| 亚洲成人精品中文字幕电影| 最近最新免费中文字幕在线| 我的亚洲天堂| 午夜福利高清视频| 亚洲中文av在线| 精品无人区乱码1区二区| 精品久久久精品久久久| 丰满的人妻完整版| 日韩有码中文字幕| 国产精品乱码一区二三区的特点 | 免费观看精品视频网站| 国产精品综合久久久久久久免费 | 国产在线精品亚洲第一网站| 不卡一级毛片| 黄色视频不卡| 精品一区二区三区四区五区乱码| av电影中文网址| 日本欧美视频一区| 久久精品91无色码中文字幕| 欧美久久黑人一区二区| 色哟哟哟哟哟哟| 亚洲熟妇熟女久久| 国产成人一区二区三区免费视频网站| 香蕉久久夜色| 国产xxxxx性猛交| 国产精品 国内视频| 午夜久久久久精精品| 麻豆久久精品国产亚洲av| av有码第一页| 日本撒尿小便嘘嘘汇集6| 国产免费男女视频| av欧美777| a在线观看视频网站| 怎么达到女性高潮| 亚洲av成人不卡在线观看播放网| 香蕉丝袜av| 一卡2卡三卡四卡精品乱码亚洲| 97人妻天天添夜夜摸| 宅男免费午夜| 欧美日韩一级在线毛片| 黑人操中国人逼视频| 国产一区在线观看成人免费| 麻豆av在线久日| 亚洲在线自拍视频| 黑人巨大精品欧美一区二区蜜桃| 91av网站免费观看| √禁漫天堂资源中文www| 日韩中文字幕欧美一区二区| 黄色视频不卡| 国产97色在线日韩免费| 午夜激情av网站| 人人妻人人爽人人添夜夜欢视频| 三级毛片av免费| 不卡av一区二区三区| 男女做爰动态图高潮gif福利片 | av免费在线观看网站| www.999成人在线观看| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频| 久久亚洲精品不卡| 两性夫妻黄色片| 男男h啪啪无遮挡| 在线视频色国产色| 老鸭窝网址在线观看| 欧美久久黑人一区二区| www.自偷自拍.com| 欧美成人性av电影在线观看| 正在播放国产对白刺激| 99久久久亚洲精品蜜臀av| 大陆偷拍与自拍| 欧美黄色淫秽网站| 黑人操中国人逼视频| 身体一侧抽搐| 国产97色在线日韩免费| 精品久久久久久久久久免费视频| 成人国产综合亚洲| www.自偷自拍.com| 国产三级黄色录像| 国产精华一区二区三区| 国产激情久久老熟女| 亚洲va日本ⅴa欧美va伊人久久| 97碰自拍视频| 日韩三级视频一区二区三区| 青草久久国产| 伦理电影免费视频| 国产精品一区二区精品视频观看| 中文字幕人成人乱码亚洲影| 精品国产乱码久久久久久男人| 午夜老司机福利片| 色播在线永久视频| 亚洲 国产 在线| 国产精品爽爽va在线观看网站 | cao死你这个sao货| 亚洲欧洲精品一区二区精品久久久| ponron亚洲| 18禁美女被吸乳视频| 国产日韩一区二区三区精品不卡| 人人妻,人人澡人人爽秒播| 免费人成视频x8x8入口观看| 91老司机精品| 91成人精品电影| 中国美女看黄片| 亚洲中文日韩欧美视频| 99re在线观看精品视频| 青草久久国产| 成人永久免费在线观看视频| 国产一卡二卡三卡精品| 午夜老司机福利片| 一二三四在线观看免费中文在| 欧美激情极品国产一区二区三区| 午夜福利成人在线免费观看| 成人av一区二区三区在线看| 免费高清在线观看日韩| 久久久国产成人免费| 国产熟女xx| 国产精品影院久久| 俄罗斯特黄特色一大片| 天堂影院成人在线观看| av中文乱码字幕在线| 这个男人来自地球电影免费观看| 亚洲中文日韩欧美视频| av视频免费观看在线观看| 无人区码免费观看不卡| 欧美日韩精品网址| 欧美激情极品国产一区二区三区| 亚洲精品国产一区二区精华液| 免费在线观看影片大全网站| 久久久久久久精品吃奶| 可以在线观看毛片的网站| 亚洲国产看品久久| 一级作爱视频免费观看| 欧美不卡视频在线免费观看 | 日韩欧美三级三区| 性欧美人与动物交配| 不卡一级毛片| 亚洲一码二码三码区别大吗| 精品国内亚洲2022精品成人| 男女下面进入的视频免费午夜 | 美女扒开内裤让男人捅视频| 日本免费一区二区三区高清不卡 | 老熟妇仑乱视频hdxx| 男女下面插进去视频免费观看| 日日爽夜夜爽网站| 亚洲精品久久成人aⅴ小说| 国产成人一区二区三区免费视频网站| 亚洲欧美日韩另类电影网站| 亚洲av电影在线进入| 中文字幕最新亚洲高清| 色在线成人网| 91国产中文字幕| 日韩国内少妇激情av| 十八禁网站免费在线| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人欧美| 亚洲黑人精品在线| 国产亚洲精品综合一区在线观看 | 日韩欧美一区视频在线观看| 日韩有码中文字幕| 麻豆成人av在线观看| 国产av精品麻豆| 久久久久久久久免费视频了| 99re在线观看精品视频| 午夜老司机福利片| 亚洲电影在线观看av| 一夜夜www| 日日夜夜操网爽| 精品国产美女av久久久久小说| 国产97色在线日韩免费| 老汉色∧v一级毛片| 日韩av在线大香蕉| 色播在线永久视频| 99精品欧美一区二区三区四区| 人妻久久中文字幕网| 伊人久久大香线蕉亚洲五| 最近最新免费中文字幕在线| 成人永久免费在线观看视频| 在线天堂中文资源库| 亚洲欧美精品综合久久99| 久久人人97超碰香蕉20202| 亚洲人成电影观看| 亚洲最大成人中文| 淫秽高清视频在线观看| 国产在线精品亚洲第一网站| 亚洲片人在线观看| 成人国语在线视频| 99久久久亚洲精品蜜臀av| 欧美精品啪啪一区二区三区| 在线免费观看的www视频| 成人亚洲精品av一区二区| 搡老熟女国产l中国老女人| av视频免费观看在线观看| 十分钟在线观看高清视频www| 每晚都被弄得嗷嗷叫到高潮| 1024视频免费在线观看| 欧美 亚洲 国产 日韩一| 女生性感内裤真人,穿戴方法视频| 国产av一区在线观看免费| 亚洲国产精品999在线| av福利片在线| 亚洲 欧美 日韩 在线 免费| 69av精品久久久久久| 91在线观看av| 久久精品影院6| 日本在线视频免费播放| 一级a爱片免费观看的视频| 国产精品美女特级片免费视频播放器 | 午夜福利欧美成人| av片东京热男人的天堂| 午夜福利高清视频| tocl精华| 午夜两性在线视频| 亚洲五月天丁香| 熟妇人妻久久中文字幕3abv| 欧美日本中文国产一区发布| 两个人看的免费小视频| 亚洲精品久久成人aⅴ小说| 亚洲成国产人片在线观看| 精品不卡国产一区二区三区| 久久久久久久精品吃奶| 一本大道久久a久久精品| 久久久久久国产a免费观看| 国产成人av激情在线播放| 两个人免费观看高清视频| 精品欧美一区二区三区在线| 人人妻人人澡欧美一区二区 | 亚洲第一av免费看| 性少妇av在线| 97碰自拍视频| 99香蕉大伊视频| 动漫黄色视频在线观看| 色精品久久人妻99蜜桃| 欧美国产精品va在线观看不卡| 亚洲av电影在线进入| 久久 成人 亚洲| 99国产精品免费福利视频| 成人18禁高潮啪啪吃奶动态图| 婷婷六月久久综合丁香| 欧美成人免费av一区二区三区| 午夜福利18| 人人妻人人澡人人看| 一区二区三区高清视频在线| 国产av又大| 亚洲 欧美 日韩 在线 免费| 丝袜人妻中文字幕| 变态另类成人亚洲欧美熟女 | 超碰成人久久| 天天添夜夜摸| 亚洲av片天天在线观看| 色综合站精品国产| 窝窝影院91人妻| 中文字幕人妻丝袜一区二区| 欧美久久黑人一区二区| 亚洲第一青青草原| 久久久久精品国产欧美久久久| 国产精品影院久久| 久久久久国内视频| 日韩精品免费视频一区二区三区| 男女下面插进去视频免费观看| 高清在线国产一区| 日本免费一区二区三区高清不卡 | 久久草成人影院| 丝袜在线中文字幕| 日本 欧美在线| 高潮久久久久久久久久久不卡| 无遮挡黄片免费观看| 高清黄色对白视频在线免费看| 一级毛片精品| 国产免费av片在线观看野外av| 操美女的视频在线观看| 999久久久精品免费观看国产| 天天添夜夜摸| 亚洲情色 制服丝袜| 国产野战对白在线观看| 中亚洲国语对白在线视频| 91在线观看av| 在线免费观看的www视频| 欧美日韩福利视频一区二区| 黑人巨大精品欧美一区二区mp4| 黄色视频,在线免费观看| 午夜久久久久精精品| 丁香欧美五月| bbb黄色大片| 欧美激情久久久久久爽电影 | 国产日韩一区二区三区精品不卡| 国产精品影院久久| 欧美成狂野欧美在线观看| 国产伦一二天堂av在线观看| 久久精品国产清高在天天线| 性少妇av在线| 侵犯人妻中文字幕一二三四区| 亚洲精品粉嫩美女一区| 人妻久久中文字幕网| 老司机靠b影院| 亚洲aⅴ乱码一区二区在线播放 | 色精品久久人妻99蜜桃| 中文字幕高清在线视频| 日韩欧美一区二区三区在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲国产高清在线一区二区三 | 午夜福利,免费看| 国产精品亚洲av一区麻豆| 国产视频一区二区在线看| 欧美日韩乱码在线| 免费一级毛片在线播放高清视频 | 久久热在线av| 亚洲国产看品久久| 免费在线观看亚洲国产| 精品人妻1区二区| 国产亚洲欧美98| 国产av在哪里看| 女人精品久久久久毛片| 色在线成人网| 成人亚洲精品av一区二区| 久久精品aⅴ一区二区三区四区| www.熟女人妻精品国产| 亚洲,欧美精品.| 91老司机精品| 国产精品九九99| 精品久久久久久久人妻蜜臀av | 国产人伦9x9x在线观看| 亚洲精品一区av在线观看| 精品欧美国产一区二区三| 久久久久久久久中文| 两个人免费观看高清视频| aaaaa片日本免费| 悠悠久久av| 大香蕉久久成人网| 中文字幕精品免费在线观看视频| 免费少妇av软件| 欧美人与性动交α欧美精品济南到| 国产成+人综合+亚洲专区| 国产主播在线观看一区二区| 欧美丝袜亚洲另类 | 亚洲国产欧美网| 久久中文看片网| 国产单亲对白刺激| 亚洲一区二区三区色噜噜| 精品国产乱码久久久久久男人| 脱女人内裤的视频| 一进一出好大好爽视频| 精品久久蜜臀av无| 999久久久国产精品视频| 国产精品久久久久久人妻精品电影| 99久久99久久久精品蜜桃| АⅤ资源中文在线天堂| 淫妇啪啪啪对白视频| 亚洲激情在线av| 精品久久久久久成人av| 日本五十路高清| 一级片免费观看大全| 岛国在线观看网站| 琪琪午夜伦伦电影理论片6080| 久久人妻av系列| 久久婷婷人人爽人人干人人爱 | 日韩成人在线观看一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 美国免费a级毛片| 国产一区二区在线av高清观看| 精品久久久久久久久久免费视频| 亚洲一区二区三区不卡视频| 欧美av亚洲av综合av国产av| 久久久精品国产亚洲av高清涩受| 国产成人欧美| 久久久久国内视频| www日本在线高清视频| 免费看美女性在线毛片视频| 黄色毛片三级朝国网站| 欧美日本中文国产一区发布| 亚洲欧美日韩高清在线视频| 黄片小视频在线播放| 黄色丝袜av网址大全| 在线观看免费视频网站a站| 久久精品国产99精品国产亚洲性色 | 欧美成人午夜精品| 国产伦人伦偷精品视频| 亚洲av片天天在线观看| 美女高潮到喷水免费观看| 黑人欧美特级aaaaaa片| 久久婷婷人人爽人人干人人爱 | 97碰自拍视频| 国产av又大| 美女国产高潮福利片在线看| 极品教师在线免费播放| 国产成人免费无遮挡视频| 色综合亚洲欧美另类图片| 亚洲avbb在线观看| 波多野结衣av一区二区av| 99久久精品国产亚洲精品| 97碰自拍视频| 国产精品美女特级片免费视频播放器 | 国产精品亚洲美女久久久| 视频区欧美日本亚洲| 50天的宝宝边吃奶边哭怎么回事| 欧美午夜高清在线| svipshipincom国产片| 一区福利在线观看| 国产精品久久电影中文字幕| 亚洲国产看品久久| 老司机福利观看| 久热这里只有精品99| 精品久久蜜臀av无| 国产在线观看jvid| 中出人妻视频一区二区| 搡老岳熟女国产| 可以免费在线观看a视频的电影网站| 日韩成人在线观看一区二区三区| 最新在线观看一区二区三区| 精品久久久久久,| 日本vs欧美在线观看视频| 久久久久亚洲av毛片大全| 日韩一卡2卡3卡4卡2021年| 涩涩av久久男人的天堂| 中文字幕色久视频| 午夜福利一区二区在线看| 精品不卡国产一区二区三区| 69精品国产乱码久久久| 一级a爱片免费观看的视频| 久久人人爽av亚洲精品天堂| 99国产综合亚洲精品| 国产精品免费视频内射| 久久久精品国产亚洲av高清涩受| 久热这里只有精品99| 黄色毛片三级朝国网站| av网站免费在线观看视频| 悠悠久久av| 婷婷丁香在线五月| 久久久水蜜桃国产精品网| 久久精品亚洲熟妇少妇任你| 欧美成狂野欧美在线观看| 色在线成人网| 91老司机精品| 51午夜福利影视在线观看| 亚洲电影在线观看av| 夜夜夜夜夜久久久久| 国产一卡二卡三卡精品| 女人爽到高潮嗷嗷叫在线视频| 久久久久国内视频| 最好的美女福利视频网| 午夜久久久久精精品| 国产精品精品国产色婷婷| 亚洲人成网站在线播放欧美日韩| av片东京热男人的天堂| 午夜福利,免费看| 成人永久免费在线观看视频| 成人手机av| 亚洲国产精品999在线| 精品一区二区三区av网在线观看| 欧美激情高清一区二区三区| 999久久久精品免费观看国产| 欧美中文日本在线观看视频| 国产精品二区激情视频| 免费在线观看视频国产中文字幕亚洲| 亚洲色图 男人天堂 中文字幕| 国产在线观看jvid| 99精品在免费线老司机午夜| av网站免费在线观看视频| 自线自在国产av| 伦理电影免费视频| 香蕉丝袜av| 亚洲精品中文字幕在线视频| 色av中文字幕| 欧美激情极品国产一区二区三区| 97人妻天天添夜夜摸| 非洲黑人性xxxx精品又粗又长| 国产欧美日韩一区二区三| 亚洲av片天天在线观看| 男女之事视频高清在线观看| 777久久人妻少妇嫩草av网站| 最近最新免费中文字幕在线| 国产视频一区二区在线看| 欧美成狂野欧美在线观看| 女人被躁到高潮嗷嗷叫费观| x7x7x7水蜜桃| 久久人人精品亚洲av| 中出人妻视频一区二区| 美女免费视频网站| 亚洲男人的天堂狠狠| 久久精品国产亚洲av香蕉五月| 亚洲精品国产色婷婷电影| 日韩欧美三级三区| 亚洲色图综合在线观看| 在线天堂中文资源库| 精品高清国产在线一区| 香蕉丝袜av| 97人妻天天添夜夜摸| 91国产中文字幕| 欧美+亚洲+日韩+国产| 欧美中文日本在线观看视频| 久久亚洲精品不卡| 亚洲在线自拍视频| 国产成人精品在线电影| 国产精品乱码一区二三区的特点 | 免费在线观看视频国产中文字幕亚洲| 人成视频在线观看免费观看| 亚洲中文字幕日韩| 欧美色视频一区免费| 成人国产一区最新在线观看| 性少妇av在线| 国产真人三级小视频在线观看| 国产高清videossex| 欧美日本中文国产一区发布| 咕卡用的链子| av超薄肉色丝袜交足视频| 国产99白浆流出| 性少妇av在线| 男女做爰动态图高潮gif福利片 | 大型黄色视频在线免费观看| 老司机午夜福利在线观看视频| 一区二区日韩欧美中文字幕| 看免费av毛片| 亚洲人成77777在线视频| 亚洲国产欧美网| 午夜福利高清视频| 欧美色视频一区免费| 午夜影院日韩av| 亚洲精品国产一区二区精华液| 亚洲,欧美精品.| 麻豆一二三区av精品| 搡老妇女老女人老熟妇| 国产精品99久久99久久久不卡| 麻豆国产av国片精品| 人人妻,人人澡人人爽秒播|