• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases

    2022-08-31 09:59:36TianyuanSong宋天源DongliZhang張冬利MingxiangWang王明湘andQiShan單奇
    Chinese Physics B 2022年8期
    關(guān)鍵詞:王明

    Tianyuan Song(宋天源) Dongli Zhang(張冬利) Mingxiang Wang(王明湘) and Qi Shan(單奇)

    1School of Electronic and Information Engineering,Soochow University,Suzhou 215006,China

    2Visionox Technology Co.,Ltd,Suzhou 215006,China

    Keywords: a-IGZO,thin-film transistors,hot-carrier effects

    1. Introduction

    Amorphous InGaZnO (a-IGZO) thin-film transistors(TFTs)are a promising technology for large-size active-matrix displays owing to their low processing temperature,low leakage current, high uniformity, and relatively high mobility.[1]However, as a switch in the actual work scenario, TFTs are turned on by a gate bias,and then the storage capacitors connected in series will be charged up when a drain bias is applied.The frequent charging processes make the TFTs subjected to a continuous large voltage stress, and the resulting degradation of electrical characteristics of the switch TFTs will seriously affect the quality of the display. Therefore, research on reliability issues of a-IGZO TFTs under simultaneous bias stress appears extremely important.

    Previous studies on the reliability of a-IGZO TFTs under bias stress include positive gate bias stress(PBS)and negative gate bias stress (NBS). The positive shift of the characteristic transfer curves of a-IGZO TFTs under PBS has been attributed to carrier trapping in the bulk active layer or at the active layer/gate insulator interface.[2,3]NBS in dark conditions has a negligible effect, but when combined with light illumination (NBIS), large negative threshold voltage shifts are induced,and NBIS has been attributed to defect creation and/or hole trapping at the active-layer/gate-insulator interface.[4–6]In most situations,however,a drain bias is also applied simultaneously with the gate bias. If the gate and drain biases are large,a high current may flow through the TFT and result into joule heating of the TFT’s active layer.[7–10]

    In this study, the reliability of a-IGZO TFTs under simultaneous gate and drain bias stress is systematically investigated. The degradation mechanism is proposed to be hot electrons trapping in the etching-stop layer (ESL), while the self-heating effect is negligible. The maximum degradation occurs under the bias stress condition in which both the electric field and electron concentration are relatively high at the same time. A larger drain voltage can significantly reduce the potential barrier formed by electrons trapped in the ESL and make the a-IGZO TFT function properly.

    2. Experiments

    The cross-sectional view of the a-IGZO TFTs used in this study is shown in Fig.1. A 150-nm-thick molybdenum(Mo)was first deposited and patterned to form the gate. Then,100-nm-thick SiO2was deposited at 300?C via plasma-enhanced chemical vapor deposition(PECVD)as the gate dielectric. A 50-nm a-IGZO was deposited at 150?C by sputtering with Ar mixed with 6% O2and annealed in dry air at 350?C for 1 hour. After the a-IGZO was patterned into active islands,50-nm PECVD SiO2was deposited at 150?C and patterned as the ESL.A 150-nm-thick Mo was deposited and etched to form source/drain electrodes. After the electrodes were defined,a passivation layer of 300-nm SiO2was deposited. The source/drain electrodes extending over the ESL formed the extended source electrode (ESE) and the extended drain electrode(EDE)regions,as labeled in Fig.1,where the length of ESE(LESE)and the length of EDE(LEDE)are the same.

    For the default bias stress condition, a DC bias of 25 V is applied to the gate, and a simultaneous bias stress of 30 V is applied to the drain with the source grounded. The channel width-to-length ratio of a-IGZO TFTs is 10 μm/20 μm. Device degradation is characterized by the change of the turn-on voltage(Von)and threshold voltages(Vth)from their respective initial values, whereVonis defined as the gate voltage corresponding toID=10?10A,Vth1andVth2are extracted by the linear extrapolation method from the first and second linear regions of the transfer curve on a linear scale,which is measured withVdsof 0.1 V.

    Fig.1. Schematic cross-sectional diagram of the a-IGZO TFT.

    3. Results and discussion

    Figure 2 shows the evolution of the transfer curve of the a-IGZO TFT under the stress condition withVgs=25 V andVds=30 V, where current distortion appears when the drain current transients from the subthreshold region to the on-state region and the subthreshold current exhibits a parallel positive shift without a change in the subthreshold swing, indicating that trap state generation is negligible and the degradation is caused by electron trapping.[3]Correspondingly, the on-state current shows a two-slope dependence on the gate bias in addition to the positive shift of the on-state current. ?Von,?Vth1,and ?Vth2of the a-IGZO TFT after the stress are compared in Fig. 3. Note that ?Vonis almost equal to ?Vth1and larger than ?Vth2. For example,after 3000 s stress time,?Von,?Vth1,and ?Vth2are 15.2 V, 15.3 V, and 14.0 V, respectively. The difference in the degradation of the subthreshold current and the on-state current indicates that electron injection occurs in a local region in the gate oxide or the ESL. The logarithmic relationship between the variations inVon,Vth1, andVth2and stress time indicates that a similar degradation mechanism is involved.

    Fig. 2. Evolutions of the transfer curve measured at Vds =0.1 V for the a-IGZO TFTs on (a) logarithmic scale and (b) linear scale under the stress conditions of Vgs=25 V and Vds=30 V.

    Fig.3. Comparison of ?Von,?Vth1,and ?Vth2 of the a-IGZO TFT under bias stresses of Vgs =25 V and Vds =30 V and ?Von under gate bias stresses of Vgs =25 V and Vds =0 V.The fitting lines for the dependence of the variations in Von,Vth1,and Vth2 on stress time are added.

    After fitting the initial transfer curves of the a-IGZO TFT with the Silvaco Atlas,density of states(DOS)in the channel a-IGZO is extracted and summarized in Table 1. Distributions of the vertical electric field (Evert) and electron concentration(ne)in the a-IGZO withVgs=25 V andVds=30 V were then extracted. As shown in Fig. 4(a), the vertical electric field is strong at the back channel interface below the EDE region and at the front channel interface outside the EDE region, where the electric fields are 1.85×105V/cm and 1.19×105V/cm,respectively. For the distribution of electrons, as figure 4(b)shows,electrons also accumulate both at the back channel under the EDE region and at the front channel outside the EDE region,where the electron concentrations are 9.6×1018cm?3and 3.7×1018cm?3, respectively. Therefore, electron trapping during the bias stress could occur at both the back channel under the EDE region and the front channel outside the EDE region.

    Fig.4. Distributions of(a)vertical electric field and(b)electrons in a fresh a-IGZO TFT when Vgs=25 V and Vds=30 V.

    However, when a positive gate bias stress withVgsof 25 V and grounded source/drain was applied,which produces the same electron concentration and electric field in the front channel as those outside the EDE region underVgs=25 V andVds=30 V,?Vonis smaller than 0.96 V,as shown in Fig.3,indicating that electron trapping in the gate oxide is minimal,probably due to the good quality of the gate oxide, which limits the tunneling of electrons into the gate oxide.[11]Thus,the observed degradation under the simultaneous DC gate and drain biases is attributed to that occurring at the back channel under the EDE region.

    To further clarify the degradation mechanism, the gate bias during the bias stress is decreased. As shown in Fig.5(a),?Vonincreases first and then decreases with the decrease of the gate bias, reaching a peak value atVgsof 7 V.The maximum degradation of the a-IGZO TFT occurs whenVgsis relatively small rather than when bothVgsandVdsare relatively large at the same time,indicating that the degradation is not dominated by the self-heating effect due to the Joule heat generated by the drain current and drain voltage.[12]

    The increased temperature(?T)in the a-IGZO TFT during the bias stress withVgs=25 V andVds=30 V is estimated through the following formula

    whereLis 350 nm, which is the sum of the thickness of the ESL and passivation layer;λis 1.3, which is the coefficient of the thermal conductivity of SiO2;andSis the heat dissipation area and is estimated by the product ofW(10 μm) andL(20 μm).Pheatis estimated as 1.88 mW by the production of the drain voltage and the drain current of one fresh TFT.The increase in the temperature of the a-IGZO channel during bias stress is as small as 2.4?C. Therefore, the effect of the heat generation during the bias stress on the degradation of a-IGZO TFTs is negligible.

    Table 1. Parameters for the distribution of trap states for the simulation of the initial transfer curve of a-IGZO TFT.

    From the simulation results in Fig.5(b),the electron concentration at the back channel surface under the EDE region first increases quickly and then gradually asVgsincreases.In contrast, the vertical electric field is continuously reduced whenVgsincreases. Under stresses ofVgs=25 V andVds=30 V,there is a high electron concentration but a low vertical electric field. In contrast, there is a small electron concentration but a high vertical electric field whenVgsis 0 V and 3 V.The gate bias of 7 V,which is slightly higher than the threshold voltage,provides both a relatively high electron concentration and electric field at the same time and induces maximum degradation of the a-IGZO TFT, which is a typical condition under which hot-carrier effects occur.

    The ?Vonafter bias stresses with differentVdsare compared in Fig.6,and a logarithmic time dependence is observed.The relationship between ?Vonand stress time was fitted with?Von=rdlog(t/τ0),[13]whererdis a function of the tunneling constant andτ0is the characteristic time. The logarithmic dependence on stress time indicates that the electrons were tunneled into and trapped in the ESL near the interface and did not redistribute further after being trapped.[13–16]The dependence of ?Vthon stress time in Fig. 3 can also be fitted with the logarithmic relationship,indicating that the same degradation mechanism is involved for the subthreshold current and on-state current.

    Fig. 5. (a) Effects of Vgs during bias stress with Vds of 30 V on ?Von after 3000-s stress time; (b)simulated Evert and ne at back channel surface under EDE region when bias stresses with different Vgs are applied.

    Fig.6. Comparison of ?Von under bias stress condition with Vgs of 25 V but different Vds.

    Figure 7 shows the transfer curves measured at different drain biases after the a-IGZO TFT was stressed for 3000 s underVgs=25 V andVds=30 V. Obviously, it can be seen that the drain bias during the measurement of the transfer curve affects the amount of the positive shift of the transfer curve. The electron trapped in the ESL under the EDE region induces a potential barrier with a height of 3.55 eV whenVds=0.1 V, as shown in Fig. 8, where electrons with a density of 2.15×1018cm?3are added in 10-nm regions in the ESL under the EDE region to account for the positive shift of the transfer curve. The potential barrier hinders the current flowing to the drain through the back surface of the a-IGZO under the EDE region. However,it is effectively lowered by a drain voltage higher than 10 V,and the current in the a-IGZO channel can flow freely from the source region to the drain region through the back surface of the a-IGZO under the EDE region, as in the fresh TFT, so the observed degradation,i.e.,the positive shift of the transfer curve,becomes minimal.

    Figure 9 compares the output curves for the a-IGZO TFT before and after a bias stress ofVgs=25 V andVds=30 V.Current crowding appeared after the stress,and the current started to increase only whenVdswas larger than 5 V, which means that electrons could not drift freely from the source electrode to the drain electrode in the degraded TFT.[17]This is consistent with the potential barrier formed under the EDE region at the drain side owing to electron trapping after bias stress,which cannot be lowered under a small drain voltage and hinders the flow of electrons in the channel to the drain electrode.As shown in Fig. 9(a), current crowding also appeared in the output curves whenVdswas close to 0 V for a fresh TFT,which can also be explained by the same mechanism as electron trapping in the ESL under the EDE region during the measurement of the output characteristic curves.

    Fig. 7. Comparison of the transfer curves measured at different drain biases for the a-IGZO TFTs after 3000-s stress time under Vgs =25 V and Vds=30 V.

    Fig. 8. Comparison of the conduction band at the back a-IGZO surface at different Vds for the a-IGZO TFT after 3000-s stress time under Vgs =25 V and Vds=30 V.

    As shown in Fig. 10(a), electrons can accumulate in the front channel outside the EDE region with a smallVgsof 5 V after 100-s stress time under the default stress condition.However,the channel and accumulated electrons at the back channel under the EDE region disappeared when electrons with a density of 1.6×1018cm?3are added to the 10-nm regions in the ESL under the EDE region to account for the positive shift of the transfer curve after 100 s under the default stress condition. The trapped electrons in the ESL under the EDE region increase the potential barrier of the a-IGZO channel under the EDE region, thereby increasing the threshold voltage of the parasitic TFT in the drain electrode region. In Fig.10(b),one can notice that electrons can flow to the drain only when the gate bias is high enough to accumulate electrons in the front channel under the EDE and form the conduction path. Thus,the current crowding phenomena in the output curves starts at a smaller drain bias at a higher gate bias as shown in the Fig. 9. Therefore, the subthreshold current in Fig. 2(a) and the first linear dependence of the drain current on the gate bias in Fig. 2(b) are due to channel formation and current flow in the a-IGZO region outside the EDE region,where the channel length is long. The second linear dependence of the drain current on the gate bias in Fig.2(b)is dominated by conduction in the channel formed under the EDE region when the gate bias is high enough,where the channel length is short.

    Fig.9. Evolutions of the output curves for the a-IGZO TFTs(a)before and(b)after bias stresses of Vgs=25 V and Vds=30 V.

    Fig. 10. Distribution of electrons in the a-IGZO at (a) Vds = 0.1 V and Vgs =5 V and (b) Vds =0.1 V and Vgs =25 V, which is extracted for the TFTs after the default stress for 100 s.

    As the tunneling of electrons into the ESL is the critical process during the degradation of the a-IGZO TFTs under the simultaneous DC gate and drain bias stress,the stability of the a-IGZO TFT can be enhanced by reducing the electric filed in the ESL under the EDE region,which can be achieved by either make the a-IGZO under the EDE region conductive[18]or increase the thickness of the ESL.

    4. Conclusion

    The a-IGZO TFTs with an ESL structure exhibit a positive shift of the transfer curve and two-slope dependence of the drain current on the gate bias after a simultaneous DC gate and drain bias stress. The degradation is proven to be a hot-carrier effect degradation and occurs locally in the back channel under the EDE region. Electron trapping in the ESL under the EDE region and the corresponding potential barrier formed in the back surface of channel a-IGZO successfully explained the observed degradation phenomena in both the transfer and output curves.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61971299 and 61974101), the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201201),the Fund from Suzhou Science and Technology Bureau (Grant No. SYG201933), and the Fund from the State Key Laboratory of ASIC and System, Fudan University,(Grant No.2021KF005).

    猜你喜歡
    王明
    The(1+1)-dimensional nonlinear ion acoustic waves in multicomponent plasma containing kappa electrons
    Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
    Higher Derivative Estimates for a Linear Elliptic Equation
    Degradation and its fast recovery in a-IGZO thin-film transistors under negative gate bias stress*
    走過318
    北方音樂(2019年10期)2019-07-10 19:13:36
    追問高原
    北方音樂(2019年10期)2019-07-10 19:13:36
    “看不見”的王明華
    海峽姐妹(2019年3期)2019-06-18 10:37:22
    SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH A GRADIENT?
    龍門這邊(47)
    棋藝(2014年1期)2014-05-20 02:07:43
    Optimization of Two-species Whole-cell Immobilization System Constructed with Marine-derived Fungi and Its BiologicalDegradation Ability*
    黄片小视频在线播放| 亚洲精品在线观看二区| 亚洲国产精品sss在线观看 | 欧美av亚洲av综合av国产av| 大陆偷拍与自拍| 青草久久国产| 免费在线观看日本一区| 女人被躁到高潮嗷嗷叫费观| 少妇被粗大的猛进出69影院| 天堂√8在线中文| 99精品欧美一区二区三区四区| 欧美精品高潮呻吟av久久| 好男人电影高清在线观看| 女同久久另类99精品国产91| 亚洲中文字幕日韩| 韩国精品一区二区三区| 乱人伦中国视频| 丰满的人妻完整版| 国产精品九九99| 免费看十八禁软件| 午夜老司机福利片| 人妻久久中文字幕网| 热re99久久国产66热| 麻豆成人av在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲精品在线观看二区| 新久久久久国产一级毛片| 天天躁夜夜躁狠狠躁躁| 中文字幕人妻丝袜一区二区| 99精国产麻豆久久婷婷| 成人手机av| 99热网站在线观看| www.精华液| 久久久久精品国产欧美久久久| 黑人欧美特级aaaaaa片| 国产1区2区3区精品| 水蜜桃什么品种好| 国产亚洲精品第一综合不卡| 亚洲视频免费观看视频| 国产一区二区激情短视频| 亚洲人成电影观看| 欧美一级毛片孕妇| 精品少妇久久久久久888优播| 欧美性长视频在线观看| 中文字幕制服av| 自线自在国产av| 久久国产精品影院| 一级毛片女人18水好多| 国产免费男女视频| 精品国产亚洲在线| 国产日韩欧美亚洲二区| 日韩三级视频一区二区三区| 在线观看午夜福利视频| 精品一区二区三区四区五区乱码| 国产男女内射视频| 亚洲精品国产一区二区精华液| 黄色怎么调成土黄色| 9热在线视频观看99| 乱人伦中国视频| 1024香蕉在线观看| 国产有黄有色有爽视频| av福利片在线| 黄色a级毛片大全视频| 免费日韩欧美在线观看| 无限看片的www在线观看| 九色亚洲精品在线播放| 下体分泌物呈黄色| 国产精品免费视频内射| 好男人电影高清在线观看| 亚洲第一av免费看| 亚洲成av片中文字幕在线观看| 欧美日本中文国产一区发布| 久久人妻熟女aⅴ| 国产黄色免费在线视频| 69精品国产乱码久久久| 免费不卡黄色视频| 午夜成年电影在线免费观看| xxxhd国产人妻xxx| av不卡在线播放| 欧美日韩精品网址| 久久久久久久国产电影| 精品久久久久久,| 男女床上黄色一级片免费看| 亚洲七黄色美女视频| 精品无人区乱码1区二区| 王馨瑶露胸无遮挡在线观看| 亚洲精品久久成人aⅴ小说| 色精品久久人妻99蜜桃| 最近最新中文字幕大全电影3 | 日韩视频一区二区在线观看| 国产成人啪精品午夜网站| 久热爱精品视频在线9| 18禁国产床啪视频网站| 操出白浆在线播放| 欧美性长视频在线观看| 欧美黄色片欧美黄色片| 国产欧美日韩一区二区精品| 香蕉久久夜色| av视频免费观看在线观看| 99riav亚洲国产免费| 制服人妻中文乱码| 国产深夜福利视频在线观看| 精品国产乱码久久久久久男人| 亚洲人成伊人成综合网2020| 久久久久精品国产欧美久久久| 少妇猛男粗大的猛烈进出视频| 亚洲熟女毛片儿| 国产又色又爽无遮挡免费看| 国产精品av久久久久免费| 在线观看日韩欧美| 国产高清videossex| 啦啦啦视频在线资源免费观看| 老熟女久久久| 午夜视频精品福利| 亚洲第一av免费看| 老汉色av国产亚洲站长工具| 51午夜福利影视在线观看| 亚洲熟女精品中文字幕| 国产精品免费大片| 亚洲色图综合在线观看| 成年人午夜在线观看视频| 中文字幕制服av| 国产一卡二卡三卡精品| 香蕉丝袜av| 女警被强在线播放| 午夜成年电影在线免费观看| 一区二区三区国产精品乱码| 又黄又爽又免费观看的视频| 999久久久国产精品视频| 两个人免费观看高清视频| 黄色视频不卡| 亚洲精华国产精华精| bbb黄色大片| 欧美日本中文国产一区发布| 国产一区二区三区在线臀色熟女 | 亚洲一码二码三码区别大吗| 中文字幕人妻熟女乱码| 高清在线国产一区| av电影中文网址| 嫩草影视91久久| 欧美日韩亚洲综合一区二区三区_| 老司机福利观看| 麻豆成人av在线观看| 天堂√8在线中文| aaaaa片日本免费| www日本在线高清视频| 国产免费av片在线观看野外av| 亚洲色图 男人天堂 中文字幕| 一区二区三区国产精品乱码| 精品国产美女av久久久久小说| 午夜精品在线福利| 亚洲成人手机| 国产精品免费一区二区三区在线 | 麻豆乱淫一区二区| 国产av精品麻豆| 国产亚洲欧美精品永久| ponron亚洲| 国产亚洲精品久久久久5区| 国产精品 欧美亚洲| 夜夜躁狠狠躁天天躁| 欧美 日韩 精品 国产| 99精国产麻豆久久婷婷| 黑人猛操日本美女一级片| 黄色 视频免费看| 久久人妻福利社区极品人妻图片| 精品久久久久久久久久免费视频 | 欧美av亚洲av综合av国产av| 亚洲熟女精品中文字幕| 下体分泌物呈黄色| 国产一区二区三区在线臀色熟女 | 亚洲专区国产一区二区| 久久国产精品大桥未久av| 美女扒开内裤让男人捅视频| 国产深夜福利视频在线观看| 欧美日韩成人在线一区二区| 高清欧美精品videossex| 精品国产美女av久久久久小说| 操出白浆在线播放| 麻豆乱淫一区二区| 亚洲av第一区精品v没综合| 男女高潮啪啪啪动态图| 新久久久久国产一级毛片| 久久精品成人免费网站| 好看av亚洲va欧美ⅴa在| 亚洲片人在线观看| 99久久精品国产亚洲精品| 一二三四在线观看免费中文在| 在线天堂中文资源库| 中出人妻视频一区二区| 久久久久久久国产电影| 嫁个100分男人电影在线观看| 中文字幕高清在线视频| 亚洲,欧美精品.| 久久这里只有精品19| 国产精品1区2区在线观看. | 免费一级毛片在线播放高清视频 | 美女午夜性视频免费| 国产成人精品无人区| 91老司机精品| 国产精品香港三级国产av潘金莲| 亚洲色图 男人天堂 中文字幕| 一本大道久久a久久精品| 亚洲,欧美精品.| 国产区一区二久久| 日本黄色视频三级网站网址 | 九色亚洲精品在线播放| 免费观看人在逋| xxx96com| 一区二区日韩欧美中文字幕| e午夜精品久久久久久久| 亚洲五月色婷婷综合| 免费高清在线观看日韩| 看免费av毛片| 国产又爽黄色视频| 大香蕉久久成人网| 国产精品电影一区二区三区 | 婷婷精品国产亚洲av在线 | 国产午夜精品久久久久久| 啪啪无遮挡十八禁网站| 中文字幕色久视频| www日本在线高清视频| 久久国产精品男人的天堂亚洲| 亚洲av电影在线进入| 美女 人体艺术 gogo| 亚洲情色 制服丝袜| 在线观看免费视频日本深夜| 一进一出好大好爽视频| 1024视频免费在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美性长视频在线观看| 波多野结衣av一区二区av| 欧美日韩亚洲综合一区二区三区_| 亚洲人成伊人成综合网2020| 午夜91福利影院| 人人妻,人人澡人人爽秒播| 欧美激情极品国产一区二区三区| 精品国产一区二区久久| 高清欧美精品videossex| 国产精品久久久人人做人人爽| 亚洲人成伊人成综合网2020| 一进一出抽搐gif免费好疼 | 欧美精品av麻豆av| 国产又色又爽无遮挡免费看| 欧美丝袜亚洲另类 | 日韩中文字幕欧美一区二区| a级毛片在线看网站| 欧美日韩国产mv在线观看视频| 18禁国产床啪视频网站| 亚洲avbb在线观看| 国产精品久久久av美女十八| av片东京热男人的天堂| 日韩免费av在线播放| 麻豆av在线久日| 欧美乱色亚洲激情| 久久国产精品大桥未久av| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品一二三| 中出人妻视频一区二区| 极品少妇高潮喷水抽搐| 国产成人一区二区三区免费视频网站| 激情视频va一区二区三区| 男女下面插进去视频免费观看| 热re99久久国产66热| 美女高潮喷水抽搐中文字幕| 亚洲avbb在线观看| 午夜影院日韩av| 国产熟女午夜一区二区三区| 国产亚洲一区二区精品| 国产精品久久久久久人妻精品电影| 99久久99久久久精品蜜桃| 欧美黑人欧美精品刺激| 国产人伦9x9x在线观看| 国产蜜桃级精品一区二区三区 | 国产不卡av网站在线观看| 欧美黄色淫秽网站| videos熟女内射| 别揉我奶头~嗯~啊~动态视频| 国产乱人伦免费视频| 国产精品自产拍在线观看55亚洲 | 免费观看人在逋| 看片在线看免费视频| 国产91精品成人一区二区三区| 大码成人一级视频| 在线视频色国产色| 女警被强在线播放| 天天躁夜夜躁狠狠躁躁| 欧美精品一区二区免费开放| 黄网站色视频无遮挡免费观看| cao死你这个sao货| 亚洲国产精品合色在线| 最近最新中文字幕大全免费视频| 欧美性长视频在线观看| 性色av乱码一区二区三区2| 真人做人爱边吃奶动态| 国产三级黄色录像| av国产精品久久久久影院| 精品国产美女av久久久久小说| 色综合欧美亚洲国产小说| 极品少妇高潮喷水抽搐| aaaaa片日本免费| 国产精品综合久久久久久久免费 | www.999成人在线观看| 成人18禁在线播放| 亚洲一区二区三区欧美精品| 手机成人av网站| 久久中文字幕人妻熟女| 久久国产亚洲av麻豆专区| 精品国产一区二区三区四区第35| 久久九九热精品免费| 三级毛片av免费| 国内久久婷婷六月综合欲色啪| 国产精品99久久99久久久不卡| 国产无遮挡羞羞视频在线观看| 国产淫语在线视频| 超色免费av| 婷婷丁香在线五月| 免费在线观看视频国产中文字幕亚洲| 国产精品免费一区二区三区在线 | 精品一区二区三区四区五区乱码| 欧美日韩瑟瑟在线播放| 人妻一区二区av| 国产成人欧美在线观看 | 国产成人影院久久av| 在线国产一区二区在线| 精品人妻在线不人妻| 日韩一卡2卡3卡4卡2021年| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品偷伦视频观看了| 色尼玛亚洲综合影院| 成人特级黄色片久久久久久久| 天堂中文最新版在线下载| 久久精品国产99精品国产亚洲性色 | 日本黄色视频三级网站网址 | 人人妻人人添人人爽欧美一区卜| 久久久久久人人人人人| 亚洲一码二码三码区别大吗| 男男h啪啪无遮挡| 成年动漫av网址| 制服诱惑二区| 欧美国产精品va在线观看不卡| 80岁老熟妇乱子伦牲交| 亚洲欧美激情综合另类| 国产精品99久久99久久久不卡| 天堂动漫精品| 99久久精品国产亚洲精品| 手机成人av网站| 天堂√8在线中文| 人人妻人人澡人人看| 久久精品亚洲熟妇少妇任你| 国产蜜桃级精品一区二区三区 | 国产成人欧美| 久久国产精品大桥未久av| 久久久久精品国产欧美久久久| 国产成人欧美| 男女免费视频国产| 久久国产精品人妻蜜桃| 精品电影一区二区在线| 色精品久久人妻99蜜桃| 亚洲欧美日韩高清在线视频| 亚洲精品在线美女| 午夜两性在线视频| 黄片小视频在线播放| 操美女的视频在线观看| av免费在线观看网站| www.999成人在线观看| 亚洲成a人片在线一区二区| 久久香蕉精品热| 国产免费现黄频在线看| 亚洲第一欧美日韩一区二区三区| 黑人巨大精品欧美一区二区mp4| 日韩熟女老妇一区二区性免费视频| 国产成人欧美在线观看 | 露出奶头的视频| 高清在线国产一区| 免费看a级黄色片| av网站免费在线观看视频| 日日夜夜操网爽| av视频免费观看在线观看| 亚洲免费av在线视频| 男女午夜视频在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲精品久久成人aⅴ小说| 欧洲精品卡2卡3卡4卡5卡区| a级片在线免费高清观看视频| 国产aⅴ精品一区二区三区波| 欧美激情 高清一区二区三区| 久久国产精品人妻蜜桃| 在线天堂中文资源库| 少妇猛男粗大的猛烈进出视频| 亚洲av电影在线进入| 91九色精品人成在线观看| 国产有黄有色有爽视频| 手机成人av网站| 亚洲精品自拍成人| 国产亚洲精品久久久久久毛片 | 国产亚洲精品第一综合不卡| 大码成人一级视频| 国产精品久久久人人做人人爽| 国产高清国产精品国产三级| 一二三四社区在线视频社区8| 亚洲色图综合在线观看| 俄罗斯特黄特色一大片| 曰老女人黄片| 麻豆av在线久日| 丰满饥渴人妻一区二区三| 香蕉国产在线看| 一进一出抽搐gif免费好疼 | 不卡av一区二区三区| 最近最新中文字幕大全免费视频| 侵犯人妻中文字幕一二三四区| 大香蕉久久成人网| 18禁观看日本| 少妇的丰满在线观看| av在线播放免费不卡| 法律面前人人平等表现在哪些方面| 国产欧美日韩一区二区三| 最近最新中文字幕大全电影3 | 一级作爱视频免费观看| 国产成人一区二区三区免费视频网站| 黄色毛片三级朝国网站| 一进一出好大好爽视频| 国产欧美日韩综合在线一区二区| 韩国av一区二区三区四区| 另类亚洲欧美激情| 首页视频小说图片口味搜索| ponron亚洲| 在线观看免费日韩欧美大片| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人欧美在线观看 | 身体一侧抽搐| 亚洲av欧美aⅴ国产| 超碰成人久久| 成在线人永久免费视频| 国产99久久九九免费精品| 99re在线观看精品视频| 美女 人体艺术 gogo| 丝袜在线中文字幕| 大香蕉久久成人网| 中文亚洲av片在线观看爽 | 黄色成人免费大全| 性色av乱码一区二区三区2| 99精品在免费线老司机午夜| 国产精品国产av在线观看| 色综合欧美亚洲国产小说| 欧美最黄视频在线播放免费 | 乱人伦中国视频| 99香蕉大伊视频| 又紧又爽又黄一区二区| 亚洲aⅴ乱码一区二区在线播放 | 免费看a级黄色片| 又大又爽又粗| 美女国产高潮福利片在线看| 69av精品久久久久久| 一本大道久久a久久精品| 中文字幕另类日韩欧美亚洲嫩草| 黄片播放在线免费| a级片在线免费高清观看视频| 久久ye,这里只有精品| 精品视频人人做人人爽| 99久久国产精品久久久| 亚洲精品中文字幕在线视频| 最新的欧美精品一区二区| 国产精品久久久久成人av| 久久精品人人爽人人爽视色| 搡老乐熟女国产| 国产一区在线观看成人免费| 老司机午夜十八禁免费视频| 悠悠久久av| 嫁个100分男人电影在线观看| 欧美精品亚洲一区二区| 男女免费视频国产| 国产亚洲精品一区二区www | 一级毛片精品| 少妇被粗大的猛进出69影院| 亚洲综合色网址| tube8黄色片| 十分钟在线观看高清视频www| 黑人巨大精品欧美一区二区蜜桃| 中文字幕人妻熟女乱码| 精品一区二区三区视频在线观看免费 | ponron亚洲| 国产熟女午夜一区二区三区| 亚洲精品中文字幕在线视频| 久久久久国内视频| 中文亚洲av片在线观看爽 | 亚洲精品中文字幕在线视频| 欧美色视频一区免费| ponron亚洲| 国产精品秋霞免费鲁丝片| 99国产极品粉嫩在线观看| 国产成人免费观看mmmm| tube8黄色片| 人妻久久中文字幕网| 美女午夜性视频免费| 制服诱惑二区| 悠悠久久av| 三级毛片av免费| 午夜福利视频在线观看免费| 亚洲avbb在线观看| 欧美黑人精品巨大| 法律面前人人平等表现在哪些方面| 日韩精品免费视频一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 欧美午夜高清在线| 看免费av毛片| 午夜福利免费观看在线| 在线观看舔阴道视频| 男女之事视频高清在线观看| 亚洲午夜精品一区,二区,三区| 母亲3免费完整高清在线观看| 在线观看免费视频日本深夜| 欧美乱妇无乱码| 妹子高潮喷水视频| 在线观看日韩欧美| 好男人电影高清在线观看| 日本vs欧美在线观看视频| 天天影视国产精品| 美女扒开内裤让男人捅视频| 80岁老熟妇乱子伦牲交| 99久久精品国产亚洲精品| 免费看a级黄色片| 狂野欧美激情性xxxx| 巨乳人妻的诱惑在线观看| 老司机午夜福利在线观看视频| 久久国产乱子伦精品免费另类| 国产成人免费观看mmmm| 18禁观看日本| 国产精品美女特级片免费视频播放器 | 最新在线观看一区二区三区| 国产亚洲精品第一综合不卡| 久久精品国产99精品国产亚洲性色 | 欧美日韩亚洲综合一区二区三区_| 欧美日韩国产mv在线观看视频| 免费在线观看完整版高清| 国产成人av激情在线播放| 五月开心婷婷网| av电影中文网址| 一级片免费观看大全| 欧美日韩黄片免| 欧美日韩一级在线毛片| 丝瓜视频免费看黄片| 久久久精品国产亚洲av高清涩受| 国产深夜福利视频在线观看| 久久久国产成人精品二区 | 人人妻,人人澡人人爽秒播| 十分钟在线观看高清视频www| 国产一区有黄有色的免费视频| 国产男女内射视频| 欧美午夜高清在线| 高潮久久久久久久久久久不卡| 亚洲av成人av| 亚洲中文日韩欧美视频| 久久人妻福利社区极品人妻图片| 色婷婷久久久亚洲欧美| 中亚洲国语对白在线视频| 麻豆乱淫一区二区| 99精品久久久久人妻精品| 午夜免费成人在线视频| 成年女人毛片免费观看观看9 | 国产色视频综合| 三上悠亚av全集在线观看| e午夜精品久久久久久久| 一区福利在线观看| 91大片在线观看| 国产欧美亚洲国产| 亚洲欧美一区二区三区久久| 狠狠狠狠99中文字幕| 少妇 在线观看| 成人黄色视频免费在线看| 人人妻,人人澡人人爽秒播| 欧美一级毛片孕妇| 午夜福利一区二区在线看| 午夜免费鲁丝| 黄色视频,在线免费观看| 国产精品国产高清国产av | 18禁观看日本| 搡老乐熟女国产| 国产伦人伦偷精品视频| 午夜视频精品福利| 黄色丝袜av网址大全| 中文字幕另类日韩欧美亚洲嫩草| 每晚都被弄得嗷嗷叫到高潮| 午夜成年电影在线免费观看| 99精国产麻豆久久婷婷| 久久婷婷成人综合色麻豆| 亚洲人成伊人成综合网2020| 午夜福利乱码中文字幕| 国产日韩一区二区三区精品不卡| videosex国产| 波多野结衣一区麻豆| 亚洲中文字幕日韩| 亚洲一卡2卡3卡4卡5卡精品中文| av天堂在线播放| 欧美成人免费av一区二区三区 | 99国产精品免费福利视频| 99精品在免费线老司机午夜| 国产精品自产拍在线观看55亚洲 | 69av精品久久久久久| 女人爽到高潮嗷嗷叫在线视频| 精品国产一区二区三区久久久樱花| 在线观看免费午夜福利视频| 激情视频va一区二区三区| 黄色片一级片一级黄色片| 亚洲精品在线美女| 日本撒尿小便嘘嘘汇集6| 少妇被粗大的猛进出69影院| 中文字幕高清在线视频| av网站免费在线观看视频| 欧美 日韩 精品 国产| 精品午夜福利视频在线观看一区| 亚洲男人天堂网一区| netflix在线观看网站| 亚洲一区二区三区欧美精品| 天堂俺去俺来也www色官网| 欧美人与性动交α欧美精品济南到|