• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases

    2022-08-31 09:59:36TianyuanSong宋天源DongliZhang張冬利MingxiangWang王明湘andQiShan單奇
    Chinese Physics B 2022年8期
    關(guān)鍵詞:王明

    Tianyuan Song(宋天源) Dongli Zhang(張冬利) Mingxiang Wang(王明湘) and Qi Shan(單奇)

    1School of Electronic and Information Engineering,Soochow University,Suzhou 215006,China

    2Visionox Technology Co.,Ltd,Suzhou 215006,China

    Keywords: a-IGZO,thin-film transistors,hot-carrier effects

    1. Introduction

    Amorphous InGaZnO (a-IGZO) thin-film transistors(TFTs)are a promising technology for large-size active-matrix displays owing to their low processing temperature,low leakage current, high uniformity, and relatively high mobility.[1]However, as a switch in the actual work scenario, TFTs are turned on by a gate bias,and then the storage capacitors connected in series will be charged up when a drain bias is applied.The frequent charging processes make the TFTs subjected to a continuous large voltage stress, and the resulting degradation of electrical characteristics of the switch TFTs will seriously affect the quality of the display. Therefore, research on reliability issues of a-IGZO TFTs under simultaneous bias stress appears extremely important.

    Previous studies on the reliability of a-IGZO TFTs under bias stress include positive gate bias stress(PBS)and negative gate bias stress (NBS). The positive shift of the characteristic transfer curves of a-IGZO TFTs under PBS has been attributed to carrier trapping in the bulk active layer or at the active layer/gate insulator interface.[2,3]NBS in dark conditions has a negligible effect, but when combined with light illumination (NBIS), large negative threshold voltage shifts are induced,and NBIS has been attributed to defect creation and/or hole trapping at the active-layer/gate-insulator interface.[4–6]In most situations,however,a drain bias is also applied simultaneously with the gate bias. If the gate and drain biases are large,a high current may flow through the TFT and result into joule heating of the TFT’s active layer.[7–10]

    In this study, the reliability of a-IGZO TFTs under simultaneous gate and drain bias stress is systematically investigated. The degradation mechanism is proposed to be hot electrons trapping in the etching-stop layer (ESL), while the self-heating effect is negligible. The maximum degradation occurs under the bias stress condition in which both the electric field and electron concentration are relatively high at the same time. A larger drain voltage can significantly reduce the potential barrier formed by electrons trapped in the ESL and make the a-IGZO TFT function properly.

    2. Experiments

    The cross-sectional view of the a-IGZO TFTs used in this study is shown in Fig.1. A 150-nm-thick molybdenum(Mo)was first deposited and patterned to form the gate. Then,100-nm-thick SiO2was deposited at 300?C via plasma-enhanced chemical vapor deposition(PECVD)as the gate dielectric. A 50-nm a-IGZO was deposited at 150?C by sputtering with Ar mixed with 6% O2and annealed in dry air at 350?C for 1 hour. After the a-IGZO was patterned into active islands,50-nm PECVD SiO2was deposited at 150?C and patterned as the ESL.A 150-nm-thick Mo was deposited and etched to form source/drain electrodes. After the electrodes were defined,a passivation layer of 300-nm SiO2was deposited. The source/drain electrodes extending over the ESL formed the extended source electrode (ESE) and the extended drain electrode(EDE)regions,as labeled in Fig.1,where the length of ESE(LESE)and the length of EDE(LEDE)are the same.

    For the default bias stress condition, a DC bias of 25 V is applied to the gate, and a simultaneous bias stress of 30 V is applied to the drain with the source grounded. The channel width-to-length ratio of a-IGZO TFTs is 10 μm/20 μm. Device degradation is characterized by the change of the turn-on voltage(Von)and threshold voltages(Vth)from their respective initial values, whereVonis defined as the gate voltage corresponding toID=10?10A,Vth1andVth2are extracted by the linear extrapolation method from the first and second linear regions of the transfer curve on a linear scale,which is measured withVdsof 0.1 V.

    Fig.1. Schematic cross-sectional diagram of the a-IGZO TFT.

    3. Results and discussion

    Figure 2 shows the evolution of the transfer curve of the a-IGZO TFT under the stress condition withVgs=25 V andVds=30 V, where current distortion appears when the drain current transients from the subthreshold region to the on-state region and the subthreshold current exhibits a parallel positive shift without a change in the subthreshold swing, indicating that trap state generation is negligible and the degradation is caused by electron trapping.[3]Correspondingly, the on-state current shows a two-slope dependence on the gate bias in addition to the positive shift of the on-state current. ?Von,?Vth1,and ?Vth2of the a-IGZO TFT after the stress are compared in Fig. 3. Note that ?Vonis almost equal to ?Vth1and larger than ?Vth2. For example,after 3000 s stress time,?Von,?Vth1,and ?Vth2are 15.2 V, 15.3 V, and 14.0 V, respectively. The difference in the degradation of the subthreshold current and the on-state current indicates that electron injection occurs in a local region in the gate oxide or the ESL. The logarithmic relationship between the variations inVon,Vth1, andVth2and stress time indicates that a similar degradation mechanism is involved.

    Fig. 2. Evolutions of the transfer curve measured at Vds =0.1 V for the a-IGZO TFTs on (a) logarithmic scale and (b) linear scale under the stress conditions of Vgs=25 V and Vds=30 V.

    Fig.3. Comparison of ?Von,?Vth1,and ?Vth2 of the a-IGZO TFT under bias stresses of Vgs =25 V and Vds =30 V and ?Von under gate bias stresses of Vgs =25 V and Vds =0 V.The fitting lines for the dependence of the variations in Von,Vth1,and Vth2 on stress time are added.

    After fitting the initial transfer curves of the a-IGZO TFT with the Silvaco Atlas,density of states(DOS)in the channel a-IGZO is extracted and summarized in Table 1. Distributions of the vertical electric field (Evert) and electron concentration(ne)in the a-IGZO withVgs=25 V andVds=30 V were then extracted. As shown in Fig. 4(a), the vertical electric field is strong at the back channel interface below the EDE region and at the front channel interface outside the EDE region, where the electric fields are 1.85×105V/cm and 1.19×105V/cm,respectively. For the distribution of electrons, as figure 4(b)shows,electrons also accumulate both at the back channel under the EDE region and at the front channel outside the EDE region,where the electron concentrations are 9.6×1018cm?3and 3.7×1018cm?3, respectively. Therefore, electron trapping during the bias stress could occur at both the back channel under the EDE region and the front channel outside the EDE region.

    Fig.4. Distributions of(a)vertical electric field and(b)electrons in a fresh a-IGZO TFT when Vgs=25 V and Vds=30 V.

    However, when a positive gate bias stress withVgsof 25 V and grounded source/drain was applied,which produces the same electron concentration and electric field in the front channel as those outside the EDE region underVgs=25 V andVds=30 V,?Vonis smaller than 0.96 V,as shown in Fig.3,indicating that electron trapping in the gate oxide is minimal,probably due to the good quality of the gate oxide, which limits the tunneling of electrons into the gate oxide.[11]Thus,the observed degradation under the simultaneous DC gate and drain biases is attributed to that occurring at the back channel under the EDE region.

    To further clarify the degradation mechanism, the gate bias during the bias stress is decreased. As shown in Fig.5(a),?Vonincreases first and then decreases with the decrease of the gate bias, reaching a peak value atVgsof 7 V.The maximum degradation of the a-IGZO TFT occurs whenVgsis relatively small rather than when bothVgsandVdsare relatively large at the same time,indicating that the degradation is not dominated by the self-heating effect due to the Joule heat generated by the drain current and drain voltage.[12]

    The increased temperature(?T)in the a-IGZO TFT during the bias stress withVgs=25 V andVds=30 V is estimated through the following formula

    whereLis 350 nm, which is the sum of the thickness of the ESL and passivation layer;λis 1.3, which is the coefficient of the thermal conductivity of SiO2;andSis the heat dissipation area and is estimated by the product ofW(10 μm) andL(20 μm).Pheatis estimated as 1.88 mW by the production of the drain voltage and the drain current of one fresh TFT.The increase in the temperature of the a-IGZO channel during bias stress is as small as 2.4?C. Therefore, the effect of the heat generation during the bias stress on the degradation of a-IGZO TFTs is negligible.

    Table 1. Parameters for the distribution of trap states for the simulation of the initial transfer curve of a-IGZO TFT.

    From the simulation results in Fig.5(b),the electron concentration at the back channel surface under the EDE region first increases quickly and then gradually asVgsincreases.In contrast, the vertical electric field is continuously reduced whenVgsincreases. Under stresses ofVgs=25 V andVds=30 V,there is a high electron concentration but a low vertical electric field. In contrast, there is a small electron concentration but a high vertical electric field whenVgsis 0 V and 3 V.The gate bias of 7 V,which is slightly higher than the threshold voltage,provides both a relatively high electron concentration and electric field at the same time and induces maximum degradation of the a-IGZO TFT, which is a typical condition under which hot-carrier effects occur.

    The ?Vonafter bias stresses with differentVdsare compared in Fig.6,and a logarithmic time dependence is observed.The relationship between ?Vonand stress time was fitted with?Von=rdlog(t/τ0),[13]whererdis a function of the tunneling constant andτ0is the characteristic time. The logarithmic dependence on stress time indicates that the electrons were tunneled into and trapped in the ESL near the interface and did not redistribute further after being trapped.[13–16]The dependence of ?Vthon stress time in Fig. 3 can also be fitted with the logarithmic relationship,indicating that the same degradation mechanism is involved for the subthreshold current and on-state current.

    Fig. 5. (a) Effects of Vgs during bias stress with Vds of 30 V on ?Von after 3000-s stress time; (b)simulated Evert and ne at back channel surface under EDE region when bias stresses with different Vgs are applied.

    Fig.6. Comparison of ?Von under bias stress condition with Vgs of 25 V but different Vds.

    Figure 7 shows the transfer curves measured at different drain biases after the a-IGZO TFT was stressed for 3000 s underVgs=25 V andVds=30 V. Obviously, it can be seen that the drain bias during the measurement of the transfer curve affects the amount of the positive shift of the transfer curve. The electron trapped in the ESL under the EDE region induces a potential barrier with a height of 3.55 eV whenVds=0.1 V, as shown in Fig. 8, where electrons with a density of 2.15×1018cm?3are added in 10-nm regions in the ESL under the EDE region to account for the positive shift of the transfer curve. The potential barrier hinders the current flowing to the drain through the back surface of the a-IGZO under the EDE region. However,it is effectively lowered by a drain voltage higher than 10 V,and the current in the a-IGZO channel can flow freely from the source region to the drain region through the back surface of the a-IGZO under the EDE region, as in the fresh TFT, so the observed degradation,i.e.,the positive shift of the transfer curve,becomes minimal.

    Figure 9 compares the output curves for the a-IGZO TFT before and after a bias stress ofVgs=25 V andVds=30 V.Current crowding appeared after the stress,and the current started to increase only whenVdswas larger than 5 V, which means that electrons could not drift freely from the source electrode to the drain electrode in the degraded TFT.[17]This is consistent with the potential barrier formed under the EDE region at the drain side owing to electron trapping after bias stress,which cannot be lowered under a small drain voltage and hinders the flow of electrons in the channel to the drain electrode.As shown in Fig. 9(a), current crowding also appeared in the output curves whenVdswas close to 0 V for a fresh TFT,which can also be explained by the same mechanism as electron trapping in the ESL under the EDE region during the measurement of the output characteristic curves.

    Fig. 7. Comparison of the transfer curves measured at different drain biases for the a-IGZO TFTs after 3000-s stress time under Vgs =25 V and Vds=30 V.

    Fig. 8. Comparison of the conduction band at the back a-IGZO surface at different Vds for the a-IGZO TFT after 3000-s stress time under Vgs =25 V and Vds=30 V.

    As shown in Fig. 10(a), electrons can accumulate in the front channel outside the EDE region with a smallVgsof 5 V after 100-s stress time under the default stress condition.However,the channel and accumulated electrons at the back channel under the EDE region disappeared when electrons with a density of 1.6×1018cm?3are added to the 10-nm regions in the ESL under the EDE region to account for the positive shift of the transfer curve after 100 s under the default stress condition. The trapped electrons in the ESL under the EDE region increase the potential barrier of the a-IGZO channel under the EDE region, thereby increasing the threshold voltage of the parasitic TFT in the drain electrode region. In Fig.10(b),one can notice that electrons can flow to the drain only when the gate bias is high enough to accumulate electrons in the front channel under the EDE and form the conduction path. Thus,the current crowding phenomena in the output curves starts at a smaller drain bias at a higher gate bias as shown in the Fig. 9. Therefore, the subthreshold current in Fig. 2(a) and the first linear dependence of the drain current on the gate bias in Fig. 2(b) are due to channel formation and current flow in the a-IGZO region outside the EDE region,where the channel length is long. The second linear dependence of the drain current on the gate bias in Fig.2(b)is dominated by conduction in the channel formed under the EDE region when the gate bias is high enough,where the channel length is short.

    Fig.9. Evolutions of the output curves for the a-IGZO TFTs(a)before and(b)after bias stresses of Vgs=25 V and Vds=30 V.

    Fig. 10. Distribution of electrons in the a-IGZO at (a) Vds = 0.1 V and Vgs =5 V and (b) Vds =0.1 V and Vgs =25 V, which is extracted for the TFTs after the default stress for 100 s.

    As the tunneling of electrons into the ESL is the critical process during the degradation of the a-IGZO TFTs under the simultaneous DC gate and drain bias stress,the stability of the a-IGZO TFT can be enhanced by reducing the electric filed in the ESL under the EDE region,which can be achieved by either make the a-IGZO under the EDE region conductive[18]or increase the thickness of the ESL.

    4. Conclusion

    The a-IGZO TFTs with an ESL structure exhibit a positive shift of the transfer curve and two-slope dependence of the drain current on the gate bias after a simultaneous DC gate and drain bias stress. The degradation is proven to be a hot-carrier effect degradation and occurs locally in the back channel under the EDE region. Electron trapping in the ESL under the EDE region and the corresponding potential barrier formed in the back surface of channel a-IGZO successfully explained the observed degradation phenomena in both the transfer and output curves.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61971299 and 61974101), the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201201),the Fund from Suzhou Science and Technology Bureau (Grant No. SYG201933), and the Fund from the State Key Laboratory of ASIC and System, Fudan University,(Grant No.2021KF005).

    猜你喜歡
    王明
    The(1+1)-dimensional nonlinear ion acoustic waves in multicomponent plasma containing kappa electrons
    Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
    Higher Derivative Estimates for a Linear Elliptic Equation
    Degradation and its fast recovery in a-IGZO thin-film transistors under negative gate bias stress*
    走過318
    北方音樂(2019年10期)2019-07-10 19:13:36
    追問高原
    北方音樂(2019年10期)2019-07-10 19:13:36
    “看不見”的王明華
    海峽姐妹(2019年3期)2019-06-18 10:37:22
    SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH A GRADIENT?
    龍門這邊(47)
    棋藝(2014年1期)2014-05-20 02:07:43
    Optimization of Two-species Whole-cell Immobilization System Constructed with Marine-derived Fungi and Its BiologicalDegradation Ability*
    bbb黄色大片| 国产不卡一卡二| 天天躁夜夜躁狠狠躁躁| 久久婷婷人人爽人人干人人爱| 99国产精品一区二区三区| 熟女电影av网| 99国产精品99久久久久| 国产亚洲精品一区二区www| 欧美国产精品va在线观看不卡| 久久香蕉精品热| 日韩欧美 国产精品| 男人舔奶头视频| 在线永久观看黄色视频| 亚洲人成77777在线视频| 亚洲精品美女久久久久99蜜臀| 中文字幕人妻丝袜一区二区| 国产一区二区在线av高清观看| 欧美日韩亚洲综合一区二区三区_| 国产精品久久视频播放| 两个人视频免费观看高清| 青草久久国产| 国产成人欧美在线观看| 久久久久免费精品人妻一区二区 | 国产aⅴ精品一区二区三区波| 亚洲天堂国产精品一区在线| www.熟女人妻精品国产| 99久久99久久久精品蜜桃| 曰老女人黄片| 99re在线观看精品视频| 亚洲熟妇熟女久久| 精品久久久久久久末码| 黄色丝袜av网址大全| 国产激情偷乱视频一区二区| 窝窝影院91人妻| 在线十欧美十亚洲十日本专区| 久久久久久久久中文| 日日夜夜操网爽| 高潮久久久久久久久久久不卡| 国产亚洲精品综合一区在线观看 | 国产一区在线观看成人免费| 女性生殖器流出的白浆| 两性夫妻黄色片| 少妇的丰满在线观看| 亚洲第一欧美日韩一区二区三区| 99国产精品99久久久久| ponron亚洲| 久久亚洲精品不卡| 亚洲激情在线av| 欧美在线一区亚洲| 女人被狂操c到高潮| 日本一本二区三区精品| 国产精品98久久久久久宅男小说| 在线视频色国产色| 日韩av在线大香蕉| 亚洲成国产人片在线观看| 欧美久久黑人一区二区| 欧美精品亚洲一区二区| 久久国产精品男人的天堂亚洲| 亚洲第一青青草原| 国产伦人伦偷精品视频| 婷婷丁香在线五月| 久久精品亚洲精品国产色婷小说| 欧美+亚洲+日韩+国产| 久久婷婷人人爽人人干人人爱| 免费女性裸体啪啪无遮挡网站| 男女做爰动态图高潮gif福利片| 波多野结衣高清无吗| 国产一区在线观看成人免费| 人人妻,人人澡人人爽秒播| 黑人巨大精品欧美一区二区mp4| 中文字幕av电影在线播放| 一本大道久久a久久精品| 999久久久精品免费观看国产| 国产精品久久久av美女十八| 亚洲九九香蕉| 国产区一区二久久| 国产精品野战在线观看| 国产97色在线日韩免费| 免费在线观看黄色视频的| 成年人黄色毛片网站| 少妇裸体淫交视频免费看高清 | 欧美成人一区二区免费高清观看 | or卡值多少钱| 久久狼人影院| 老司机福利观看| 91麻豆av在线| 香蕉国产在线看| 欧美黑人欧美精品刺激| 男女午夜视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久久久免费视频| 成人手机av| 最近最新中文字幕大全免费视频| 色综合站精品国产| 夜夜看夜夜爽夜夜摸| 国产精品亚洲美女久久久| 国产片内射在线| 免费看日本二区| 少妇的丰满在线观看| 啦啦啦韩国在线观看视频| 国产精品综合久久久久久久免费| 国产精品一区二区三区四区久久 | 亚洲avbb在线观看| 亚洲最大成人中文| 亚洲av成人不卡在线观看播放网| 精品国产美女av久久久久小说| 一区福利在线观看| 欧美在线一区亚洲| 性欧美人与动物交配| 91在线观看av| 国产精品久久久av美女十八| 精品久久久久久久毛片微露脸| 国产亚洲av嫩草精品影院| 亚洲欧美日韩高清在线视频| 免费在线观看影片大全网站| 中文字幕人妻丝袜一区二区| 亚洲免费av在线视频| 麻豆一二三区av精品| 一进一出抽搐gif免费好疼| 国产亚洲欧美在线一区二区| 无人区码免费观看不卡| 波多野结衣巨乳人妻| 人人妻,人人澡人人爽秒播| 国产午夜精品久久久久久| 两性夫妻黄色片| 亚洲欧美精品综合久久99| 美女国产高潮福利片在线看| av在线播放免费不卡| 亚洲一码二码三码区别大吗| 亚洲成人久久爱视频| 欧美最黄视频在线播放免费| 国产高清视频在线播放一区| 黄色视频不卡| 97超级碰碰碰精品色视频在线观看| 黄色毛片三级朝国网站| 成人国产一区最新在线观看| 亚洲av电影在线进入| 成人国语在线视频| 超碰成人久久| 欧美在线黄色| a在线观看视频网站| 精品久久久久久久久久久久久 | 免费电影在线观看免费观看| 满18在线观看网站| 观看免费一级毛片| 国产一级毛片七仙女欲春2 | 看免费av毛片| 丝袜在线中文字幕| 91成年电影在线观看| 午夜福利视频1000在线观看| 国产激情欧美一区二区| 老汉色∧v一级毛片| 日韩欧美三级三区| 欧美日韩一级在线毛片| 精品国产国语对白av| 日本免费一区二区三区高清不卡| 视频区欧美日本亚洲| 欧美成人一区二区免费高清观看 | 亚洲av美国av| 国内揄拍国产精品人妻在线 | 2021天堂中文幕一二区在线观 | АⅤ资源中文在线天堂| 欧美黑人欧美精品刺激| 国产高清有码在线观看视频 | 美国免费a级毛片| 国产爱豆传媒在线观看 | 不卡一级毛片| 在线观看www视频免费| 制服人妻中文乱码| 人人妻人人看人人澡| www.精华液| 黄色毛片三级朝国网站| 韩国av一区二区三区四区| 精品国产亚洲在线| 美女免费视频网站| 精品人妻1区二区| 黄色女人牲交| 久久久国产精品麻豆| 欧美成人一区二区免费高清观看 | 成在线人永久免费视频| 中国美女看黄片| 在线看三级毛片| 高潮久久久久久久久久久不卡| 国产黄片美女视频| 91字幕亚洲| 久久人人精品亚洲av| 麻豆成人午夜福利视频| 欧美性猛交黑人性爽| 99国产综合亚洲精品| 一本久久中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看成人毛片| 国产亚洲欧美精品永久| 又大又爽又粗| 91国产中文字幕| av在线天堂中文字幕| 搡老妇女老女人老熟妇| 操出白浆在线播放| 成熟少妇高潮喷水视频| 桃色一区二区三区在线观看| 桃色一区二区三区在线观看| 韩国av一区二区三区四区| 国产一级毛片七仙女欲春2 | 女警被强在线播放| 日本三级黄在线观看| 久久 成人 亚洲| 国产精品1区2区在线观看.| 免费在线观看影片大全网站| 国产野战对白在线观看| 国产男靠女视频免费网站| 国产野战对白在线观看| 国产成人系列免费观看| 无遮挡黄片免费观看| avwww免费| 亚洲成人国产一区在线观看| 啦啦啦 在线观看视频| 久热这里只有精品99| 一级a爱片免费观看的视频| 午夜影院日韩av| 变态另类丝袜制服| 一级片免费观看大全| 日韩欧美在线二视频| 午夜激情av网站| 国产精品免费一区二区三区在线| 免费观看人在逋| 精品第一国产精品| ponron亚洲| 国产伦人伦偷精品视频| 精品久久久久久成人av| 每晚都被弄得嗷嗷叫到高潮| 国产成年人精品一区二区| 久久久国产成人免费| 日日爽夜夜爽网站| 免费在线观看影片大全网站| 日本精品一区二区三区蜜桃| 国产国语露脸激情在线看| 欧美大码av| av免费在线观看网站| 久久精品91蜜桃| 一边摸一边做爽爽视频免费| 免费无遮挡裸体视频| 国产黄片美女视频| 亚洲一区二区三区不卡视频| 男男h啪啪无遮挡| 精品卡一卡二卡四卡免费| 丁香六月欧美| 亚洲国产精品久久男人天堂| 亚洲免费av在线视频| 久久中文字幕人妻熟女| 丝袜美腿诱惑在线| 亚洲av美国av| 99久久精品国产亚洲精品| 亚洲中文日韩欧美视频| 国产又爽黄色视频| 亚洲精华国产精华精| 亚洲avbb在线观看| 一级黄色大片毛片| 亚洲第一青青草原| 真人一进一出gif抽搐免费| 怎么达到女性高潮| 日韩免费av在线播放| 欧美日韩中文字幕国产精品一区二区三区| 91麻豆av在线| 久热爱精品视频在线9| 国产精品二区激情视频| 欧美日韩福利视频一区二区| 黄色毛片三级朝国网站| 伊人久久大香线蕉亚洲五| 国产精品精品国产色婷婷| 国内精品久久久久久久电影| 国产精品电影一区二区三区| ponron亚洲| 1024香蕉在线观看| 日韩有码中文字幕| 国产精品乱码一区二三区的特点| 国产精品久久久久久精品电影 | 淫妇啪啪啪对白视频| 亚洲一区二区三区色噜噜| 在线观看一区二区三区| 一区二区三区精品91| 日日夜夜操网爽| 成人国产一区最新在线观看| 国产精品av久久久久免费| 欧美黄色淫秽网站| 老司机在亚洲福利影院| 国产私拍福利视频在线观看| tocl精华| 热re99久久国产66热| 欧美又色又爽又黄视频| 午夜亚洲福利在线播放| 亚洲第一电影网av| 欧美三级亚洲精品| 欧美日韩中文字幕国产精品一区二区三区| 国产精品亚洲av一区麻豆| 亚洲色图av天堂| 黄色女人牲交| 99热6这里只有精品| 香蕉久久夜色| 亚洲第一av免费看| 亚洲七黄色美女视频| 国内久久婷婷六月综合欲色啪| 国产高清videossex| 99久久久亚洲精品蜜臀av| 精品久久久久久久毛片微露脸| 成人国语在线视频| 精品福利观看| 丰满的人妻完整版| 国内毛片毛片毛片毛片毛片| 男女之事视频高清在线观看| 麻豆成人午夜福利视频| 国产亚洲精品综合一区在线观看 | 成人亚洲精品av一区二区| 日韩 欧美 亚洲 中文字幕| 村上凉子中文字幕在线| 91九色精品人成在线观看| 亚洲中文字幕日韩| 亚洲精品国产区一区二| 亚洲人成网站在线播放欧美日韩| 一进一出抽搐gif免费好疼| 亚洲精品国产精品久久久不卡| 亚洲aⅴ乱码一区二区在线播放 | 香蕉av资源在线| 1024视频免费在线观看| 脱女人内裤的视频| 男人舔女人的私密视频| videosex国产| www国产在线视频色| 欧美精品亚洲一区二区| 国产熟女午夜一区二区三区| 欧美国产日韩亚洲一区| 悠悠久久av| 免费看美女性在线毛片视频| 国产片内射在线| 亚洲国产精品sss在线观看| 精品久久久久久久毛片微露脸| e午夜精品久久久久久久| 无限看片的www在线观看| 久久人人精品亚洲av| 听说在线观看完整版免费高清| 亚洲免费av在线视频| 国产av一区在线观看免费| 亚洲av五月六月丁香网| 99re在线观看精品视频| 亚洲一码二码三码区别大吗| 无人区码免费观看不卡| 夜夜躁狠狠躁天天躁| 久久 成人 亚洲| 一本综合久久免费| 国产精品98久久久久久宅男小说| av中文乱码字幕在线| 国产精品二区激情视频| 久久人妻福利社区极品人妻图片| 久久天躁狠狠躁夜夜2o2o| 中文字幕精品亚洲无线码一区 | 久久天躁狠狠躁夜夜2o2o| 国产成人一区二区三区免费视频网站| 一本精品99久久精品77| 久久热在线av| 国产久久久一区二区三区| 黄色 视频免费看| 亚洲aⅴ乱码一区二区在线播放 | 少妇的丰满在线观看| 日韩精品中文字幕看吧| 亚洲av日韩精品久久久久久密| av片东京热男人的天堂| 欧美乱色亚洲激情| 神马国产精品三级电影在线观看 | 欧美潮喷喷水| 成人毛片a级毛片在线播放| 天美传媒精品一区二区| 亚洲av成人精品一区久久| 久久热精品热| 一个人观看的视频www高清免费观看| 亚洲最大成人中文| 国产精品精品国产色婷婷| 欧美一级a爱片免费观看看| av国产免费在线观看| 成人无遮挡网站| 直男gayav资源| 国产精品福利在线免费观看| 午夜精品在线福利| 99视频精品全部免费 在线| 久久精品影院6| 男人的好看免费观看在线视频| 国产精品久久久久久av不卡| 成人二区视频| 天天躁夜夜躁狠狠久久av| 男女下面进入的视频免费午夜| 欧美成人精品欧美一级黄| 国产精品乱码一区二三区的特点| 日韩欧美精品v在线| 亚洲熟妇中文字幕五十中出| 欧美性猛交黑人性爽| 美女内射精品一级片tv| 精品久久久久久久末码| 亚洲人成网站在线播| 精品福利观看| 麻豆久久精品国产亚洲av| 色吧在线观看| 性色avwww在线观看| 校园春色视频在线观看| 少妇熟女aⅴ在线视频| 久久亚洲精品不卡| 久久久精品欧美日韩精品| 最近的中文字幕免费完整| 成年av动漫网址| 亚洲国产精品合色在线| 免费电影在线观看免费观看| 91久久精品国产一区二区三区| 色在线成人网| 亚洲欧美日韩卡通动漫| 国产成人aa在线观看| 午夜精品一区二区三区免费看| 小说图片视频综合网站| 男女做爰动态图高潮gif福利片| 我要搜黄色片| 亚洲图色成人| ponron亚洲| 国模一区二区三区四区视频| 97碰自拍视频| 久久国内精品自在自线图片| 久久久久国产精品人妻aⅴ院| 国产私拍福利视频在线观看| av女优亚洲男人天堂| 夜夜爽天天搞| 99热这里只有是精品50| 老熟妇仑乱视频hdxx| 香蕉av资源在线| 俺也久久电影网| 中文字幕人妻熟人妻熟丝袜美| 小蜜桃在线观看免费完整版高清| 欧美日本亚洲视频在线播放| a级毛片a级免费在线| 人妻久久中文字幕网| av.在线天堂| 国产一区二区亚洲精品在线观看| a级毛色黄片| 又黄又爽又免费观看的视频| 免费电影在线观看免费观看| 国产麻豆成人av免费视频| 黄色配什么色好看| 国产一区亚洲一区在线观看| 老女人水多毛片| 亚洲欧美日韩无卡精品| 精品欧美国产一区二区三| 全区人妻精品视频| 18禁裸乳无遮挡免费网站照片| 国语自产精品视频在线第100页| 一进一出好大好爽视频| 午夜福利视频1000在线观看| 免费在线观看影片大全网站| 精品一区二区三区视频在线| 悠悠久久av| 国产成人影院久久av| 国产亚洲精品av在线| 亚洲av一区综合| 久久久欧美国产精品| 国产av不卡久久| 亚洲在线自拍视频| 一进一出好大好爽视频| 成人鲁丝片一二三区免费| 色在线成人网| 男人狂女人下面高潮的视频| 国产精品免费一区二区三区在线| 欧美另类亚洲清纯唯美| 男女做爰动态图高潮gif福利片| 亚洲美女搞黄在线观看 | 免费大片18禁| 久久久久免费精品人妻一区二区| 91久久精品国产一区二区成人| 亚洲无线观看免费| 日韩欧美免费精品| 精品福利观看| 国产精品久久视频播放| 中文字幕av成人在线电影| 听说在线观看完整版免费高清| 亚洲av五月六月丁香网| 亚洲av免费高清在线观看| 欧美三级亚洲精品| 午夜激情福利司机影院| 人人妻人人澡欧美一区二区| 最近2019中文字幕mv第一页| 欧美bdsm另类| 欧洲精品卡2卡3卡4卡5卡区| 久久久国产成人精品二区| 久久久久免费精品人妻一区二区| 亚洲最大成人av| 国产精品久久电影中文字幕| 日本 av在线| 国产av一区在线观看免费| 一区二区三区高清视频在线| 午夜爱爱视频在线播放| 男人舔奶头视频| 韩国av在线不卡| av天堂在线播放| 亚洲国产色片| 午夜福利在线观看免费完整高清在 | 99久久精品热视频| av在线老鸭窝| 久久精品影院6| 国产精品电影一区二区三区| 97在线视频观看| 人人妻人人看人人澡| 激情 狠狠 欧美| 亚洲无线观看免费| 亚洲av第一区精品v没综合| 成人高潮视频无遮挡免费网站| av在线播放精品| 天天一区二区日本电影三级| 69av精品久久久久久| 网址你懂的国产日韩在线| 亚洲五月天丁香| 在线a可以看的网站| 久久午夜福利片| 成年女人看的毛片在线观看| 精品一区二区三区视频在线| 又粗又爽又猛毛片免费看| 成人av在线播放网站| 免费在线观看影片大全网站| 亚洲欧美日韩高清专用| 中文字幕av在线有码专区| 99热只有精品国产| 亚洲人成网站高清观看| 国产精品一及| 别揉我奶头 嗯啊视频| avwww免费| 麻豆乱淫一区二区| av天堂在线播放| 亚洲成a人片在线一区二区| 亚洲自拍偷在线| 毛片一级片免费看久久久久| 五月玫瑰六月丁香| 午夜福利视频1000在线观看| 永久网站在线| 国产麻豆成人av免费视频| 日韩人妻高清精品专区| 美女 人体艺术 gogo| 日韩人妻高清精品专区| 美女 人体艺术 gogo| 久久久久国产网址| 99riav亚洲国产免费| 成人亚洲欧美一区二区av| 久久天躁狠狠躁夜夜2o2o| 欧美日韩综合久久久久久| 女人十人毛片免费观看3o分钟| 亚洲欧美日韩高清在线视频| 变态另类丝袜制服| 美女被艹到高潮喷水动态| 九色成人免费人妻av| 免费人成在线观看视频色| 亚州av有码| 人妻丰满熟妇av一区二区三区| 色哟哟·www| 日韩大尺度精品在线看网址| 综合色av麻豆| 亚洲精品456在线播放app| 久久中文看片网| 国产精品电影一区二区三区| 精品99又大又爽又粗少妇毛片| 国产成人91sexporn| 久久久久精品国产欧美久久久| 亚洲欧美日韩无卡精品| 精品一区二区三区av网在线观看| 岛国在线免费视频观看| 12—13女人毛片做爰片一| 国产一区二区亚洲精品在线观看| 午夜日韩欧美国产| 男人的好看免费观看在线视频| 午夜福利18| 大又大粗又爽又黄少妇毛片口| 丝袜美腿在线中文| 此物有八面人人有两片| 国产综合懂色| 男女之事视频高清在线观看| 日韩欧美 国产精品| 校园春色视频在线观看| 露出奶头的视频| 在线观看免费视频日本深夜| 日本撒尿小便嘘嘘汇集6| 国产一区亚洲一区在线观看| 黄色一级大片看看| 美女 人体艺术 gogo| 亚洲一级一片aⅴ在线观看| 国产伦一二天堂av在线观看| 久久国内精品自在自线图片| 色噜噜av男人的天堂激情| 看黄色毛片网站| 18禁在线无遮挡免费观看视频 | 能在线免费观看的黄片| 国产蜜桃级精品一区二区三区| 亚洲无线观看免费| 欧美色视频一区免费| 男女做爰动态图高潮gif福利片| 久久亚洲国产成人精品v| 一本一本综合久久| 日本 av在线| 搡老熟女国产l中国老女人| 欧美色视频一区免费| 久久婷婷人人爽人人干人人爱| 91狼人影院| 简卡轻食公司| 99久久精品热视频| 特级一级黄色大片| 可以在线观看的亚洲视频| 99热网站在线观看| 日韩,欧美,国产一区二区三区 | 99久国产av精品国产电影| 日本色播在线视频| 国产精品野战在线观看| 俺也久久电影网| 色噜噜av男人的天堂激情| 国产亚洲精品av在线| 国产欧美日韩一区二区精品| 国产蜜桃级精品一区二区三区| 国产免费男女视频|