• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reciprocal transformations of the space–time shifted nonlocal short pulse equations

    2022-12-28 09:52:12JingWang王靜HuaWu吳華andDaJunZhang張大軍
    Chinese Physics B 2022年12期
    關(guān)鍵詞:王靜大軍

    Jing Wang(王靜), Hua Wu(吳華), and Da-Jun Zhang(張大軍)

    Department of Mathematics,Shanghai University,Shanghai 200444,China

    Keywords: reciprocal transformation, space–time shifted nonlocal short pulse equation, covariance of variable,solution

    1. Introduction

    Reciprocal transformation is a technique used to transform nonlinear partial differential equations into other partial differential equations. It consists of interchanging the dependent and independent variables. In particular, when the achieved equation is linear, the transformation is known as a hodograph transformation. Reciprocal transformations play useful roles in the research of nonlinear partial differential equations. One apparent advantage of reciprocal transformations is that in many cases these transformations give rise to a procedure of relating allegedly new equations to the rest of their equivalent integrable sisters. Thus, the objective equations can be studied by studying the integrable equations linked via reciprocal transformations. For more details about the introduction of reciprocal transformations and their application examples, one can refer to Ref. [1] and the references therein. Some remarkable integrable equations that are investigated by means of reciprocal transformations are the Camassa–Holm equation,[2]the Vakhnenko equation,[3]the (ultra-)short pulse equation,[4]the constant astigmatism equation,[5]etc. The short pulse(SP)equation,SP equation (1) allows both physical and mathematical twocomponent extension.[16–19]In this paper,the two-component form of our interest is[17,18]

    whereλz=λy= 0. The system (2) allows various reductions. For example,byu=δvit yields the SP equation(1);byu=δv?it yields a complex version of Eq.(1)(cf. Ref.[20]).It also allows nonlocal reductionsu(z,y) =δv(?z,?y) andu(z,y)=δv?(?z,?y), whereδ=±1 and?stands for complex conjugate.

    Note that nonlocal reduction was first systematically introduced by Ablowitz and Mussilimani in 2013[21]and soon after nonlocal integrable systems received intensive attention from various aspects,e.g., Refs. [22–25]. More recently,Ablowitz and Mussilimani introduced space–time shifted nonlocal reductions.[56]For the SP system(2),via two space–time shifted nonlocal reductions

    one can, respectively, obtain two nonlocal SP equations with space–time shifts:

    provides a model to describe propagation of ultra-short pulses in nonlinear media with more accurate approximation.[4–6]Before the work,[4]this equation has been derived by Rabelo in 1987 as a pseudospherical-type equation.[7–9]It is integrable,characterized by theWadati–Konno–Ichikawa[10](WKI)spectral problem,[8,11]and related to the sine-Gordon equation or its non-potential form (known also as finite-amplitude baroclinic wave equations[12]or coupled integrable dispersionless equations[13])via reciprocal transformations.[11,14,15]The

    where ?u=u(z0?z,y0?y), (z,y) are real coordinates, andz0,y0are real numbers.

    Since reciprocal transformations mix dependent and independent variables and to recover the independent variables of the investigated equation one needs to make use of integration,the research will become complicated once a reverse space?xis involved. In a recent paper,[41]covariance of dependent and independent variables in the reciprocal transformation of the nonlocal vector SP system was discussed. It can be imagined that the reciprocal transformation will be more complicated when space–time shifts are involved in nonlocal cases.

    In this paper, with Ref. [41] as a pre-research, we will focus on the following:to elaborate the reciprocal transformations and the covariance of variables for the space–time shifted nonlocal SP equations(6)and(7);to present solutions in double Wronskian form for these two equations; and to present conditions that guarantee the realness of (z,y) in the reciprocal transformations.

    This paper is organized as follows. In Section 2,we elaborate reciprocal transformation for the space–time shifted nonlocal SP equations and the covariance of variables involved in the transformation. Then in Section 3 we present double Wronskian solutions to the the space–time shifted nonlocal SP equations,and investigate the realness of independent variablez. As examples,dynamics of two obtained solutions are illustrated. Finally,conclusions are given in Section 4.

    2. Nonlocal reciprocal transformation and covariance of variables

    Let us consider the negative order Ablowitz–Kaup–Newell–Segur(AKNS)equation(AKNS(?1)for short)[57]Then, it can be verified that the first two equations in Eq.(9)are converted to the coupled SP system(2).

    The AKNS(?1)system(8)allows two space–time shifted nonlocal reductions,

    and then from Eq.(16)we can verify that

    In other words, the space–time shifted nonlocal reduction(4)holds, which means the reciprocal transformation (10) together with Eq.(16)does convert the space–time shifted nonlocal AKNS(?1) equation (14) into the space–time shifted nonlocal SP equation(6).

    For the complex reduction(13),one has

    and the covariant correspondence(19)as well,from which the relation(5)holds and equation(15)is converted to Eq.(7).

    Note thatzandydefined by Eq.(17)must be real. This will be elaborated in the next section after we present explicit solutions of the nonlocal equations(14)and(15).

    3. Solutions

    In this section, we first begin with by presenting double Wronskian solutions for the unreduced AKNS(?1)system(8)as well as for the coupled SP system (2). Next, by means of a reduction technique,solutions of the reduced equations(14)and (15) will be derived. After that, we will check the realness of the independent variablez(x,t) defined in Eq. (17).Then, solutions to the reduced SP equations (6) and (7) will be achieved via Eqs. (11) and (17). Finally, as examples, we will also give explicit one-soliton solution and breather solution with illustrations for the space–time shifted nonlocal SP equation(6).

    3.1. Solutions to the unreduced AKNS(?1)system(8)and SP system(2)

    The AKNS(?1)system(8)admits bilinear forms[57]

    It is notable that matrixAand any matrix similar to it lead to the sameqandr. Then, with the transformation (21) and Wronskians(22),and in light of the reciprocal transformations between the AKNS(?1) system (8) and the coupled SP system (2) that we have described in the previous section, one can find that the unreduced SP system(2)admits solutions

    3.2. Solutions to the reduced SP equations(6)and(7)

    Note that the reduction technique based on bilinear form and double Wronskians was first developed in Refs. [32,33]and has proved effective in deriving solutions for nonlocal integrable equations,[34,41,42,51,60–63]including the discrete[34]and space–time shifted nonlocal cases[63]as well. The main idea of this technique is to impose certain constraints on matrixAand column vectorψin double Wronskian solution of the unreduced system,such that the defined functionsqandr(oruandv)satisfy desired reductions. In the following,let us directly present solutions for the reduced equations.

    Theorem 1 Assume

    which indicates the reduction (13) holds. One can refer to Ref.[63]which contains similar details.

    Note that nonlocal equations with shifted space and time have also been studied based on Hirota’s bilinear forms and low order soliton (e.g., 1-soliton and 2-soliton) solutions can be explicitly presented in terms of exponential polynomials.[64]

    3.3. Explicit form of solutions and realness of z(x,t)

    For the sake of consistency of reduction,the independent variablezdefined in Eq.(25b)must be real. In the following,we present explicit form of?andψwith which we can clarify the realness ofz.

    Following the treatment in Ref.[32], we considerTandAof the following block matrix form

    and list out solutions of Eqs.(27b)and(28b)in Table 1,whereTiandKiare(N+1)×(N+1)matrices,IN+1is the identity matrix of orderN+1 and i2=?1.

    Table 1. T and A for constraints(27b)and(28b).

    The realness ofzdefined by Eq. (25b) can be guaranteed byf=ε f?,whereε=±1.

    whereci,ki ∈C,η(k)=?kx?t/4k;whenKN+1=JN+1(k),?takes the form

    wherec,k ∈C.

    Note that there can be more choices for case(27)to have a realz. For example,one may takeA=Diag(k1,k2,h1,h2)wherek1,k2∈R andh1=h?2∈C.

    3.4. Examples

    As an example we investigate dynamics of the space–time shifted nonlocal SP equation(6)withδ=?1,i.e.,wherek1,h1∈R ork1=h?1∈C. Consider a special case where takingk1=?h1∈R,and then we have

    Fig. 1. (a) Profile of 1-antiloop soliton solution u given by Eq. (36) for k1=?1,x0=?1,t0=?1. (b)Profile of 1-loop soliton solution u given by Eq.(36)for k1=1,x0=?1,t0=?1.

    One can see thatucontains two different phasesθ1andθ2,of which the former governs the envelope of the breather while the latter characterizes the internal oscillation, as depicted in Fig.2.

    Fig. 2. Profile of 1-breather solution u given in Eq. (37) for a = 0.4,b=?0.8,x0=1,t0=1.

    4. Conclusions

    In this paper we have elaborated the reciprocal transformations that convert the space–time shifted AKNS(?1)equations(14)and(15)to the space–time shifted nonlocal SP equations(6)and(7),explained covariance of variables,presented double Wronskian solutions,clarified realness of the independent variablez, and illustrated some obtained solutions. Because the nonlocal integrable systems introduced by Ablowitz and Musslimani[22]have drawn intensive attention, the SPtype equations are a special type of integrable systems,and in nonlocal case reciprocal transformations become more complicated,thus the investigation of this paper is significant.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.11875040 and 12171308).

    猜你喜歡
    王靜大軍
    The Management Methods And Thinking Of Personnel Files
    客聯(lián)(2021年9期)2021-11-07 19:21:33
    作弊
    The Development of Contemporary Oil Painting Art
    青年生活(2019年16期)2019-10-21 01:46:49
    王靜博士簡(jiǎn)介
    Income Inequality in Developing Countries
    商情(2017年17期)2017-06-10 12:27:58
    Let it Go隨它吧
    RIGIDITY OF COMPACT SURFACES IN HOMOGENEOUS 3-MANIFOLDS WITH CONSTANT MEAN CURVATURE?
    人體免疫大軍之神經(jīng)元
    人體免疫大軍之皮膚
    人體免疫大軍之淋巴結(jié)
    国产av一区在线观看免费| 亚洲精品在线观看二区| 91精品三级在线观看| 男女之事视频高清在线观看| 操美女的视频在线观看| 黄色毛片三级朝国网站| 91字幕亚洲| 岛国视频午夜一区免费看| 一个人观看的视频www高清免费观看 | 给我免费播放毛片高清在线观看| 两性夫妻黄色片| av网站免费在线观看视频| 欧美乱色亚洲激情| 久久香蕉精品热| 精品人妻1区二区| 日韩 欧美 亚洲 中文字幕| 成人三级黄色视频| 国产又爽黄色视频| 日韩欧美三级三区| 女生性感内裤真人,穿戴方法视频| 淫秽高清视频在线观看| 亚洲七黄色美女视频| 国产伦人伦偷精品视频| or卡值多少钱| 日本a在线网址| 亚洲av第一区精品v没综合| 夜夜爽天天搞| 18美女黄网站色大片免费观看| 日韩大码丰满熟妇| 午夜免费激情av| av福利片在线| 国产欧美日韩综合在线一区二区| 久久久精品国产亚洲av高清涩受| 麻豆国产av国片精品| 女同久久另类99精品国产91| 曰老女人黄片| 黄色a级毛片大全视频| 黄色片一级片一级黄色片| 日本免费a在线| 欧美日韩乱码在线| 大陆偷拍与自拍| 88av欧美| 男女做爰动态图高潮gif福利片 | 亚洲激情在线av| 亚洲熟妇熟女久久| 美女高潮到喷水免费观看| 村上凉子中文字幕在线| 亚洲精品在线观看二区| 午夜福利一区二区在线看| 十八禁网站免费在线| 搡老妇女老女人老熟妇| 18禁裸乳无遮挡免费网站照片 | 国产免费男女视频| 一边摸一边抽搐一进一出视频| 国产精品综合久久久久久久免费 | 亚洲欧美精品综合久久99| 国产免费男女视频| 久久精品国产亚洲av香蕉五月| cao死你这个sao货| 精品第一国产精品| 老熟妇仑乱视频hdxx| 欧美老熟妇乱子伦牲交| 国产黄a三级三级三级人| 91国产中文字幕| 日本三级黄在线观看| 亚洲色图av天堂| 午夜a级毛片| 久久久久久久久久久久大奶| 制服人妻中文乱码| ponron亚洲| 久久久久久久午夜电影| 99在线视频只有这里精品首页| 久久久久久久久免费视频了| 男人舔女人的私密视频| 日韩欧美免费精品| 午夜成年电影在线免费观看| 女同久久另类99精品国产91| 国产三级黄色录像| 一进一出抽搐动态| 亚洲国产精品合色在线| 精品国产一区二区三区四区第35| 亚洲欧美一区二区三区黑人| 亚洲天堂国产精品一区在线| 天天躁夜夜躁狠狠躁躁| 国产av精品麻豆| 亚洲一区高清亚洲精品| 岛国在线观看网站| 久久狼人影院| 丝袜人妻中文字幕| 黄片播放在线免费| 婷婷精品国产亚洲av在线| 成在线人永久免费视频| www.精华液| 国产精品免费视频内射| 岛国视频午夜一区免费看| 麻豆国产av国片精品| 真人做人爱边吃奶动态| 99re在线观看精品视频| 大香蕉久久成人网| 中文字幕高清在线视频| 男人舔女人下体高潮全视频| 日本 欧美在线| 亚洲欧洲精品一区二区精品久久久| 亚洲 欧美 日韩 在线 免费| 91成年电影在线观看| 日本vs欧美在线观看视频| 欧美乱色亚洲激情| 黄片小视频在线播放| 久久九九热精品免费| 亚洲色图综合在线观看| 亚洲第一av免费看| 视频在线观看一区二区三区| 脱女人内裤的视频| 啦啦啦免费观看视频1| 欧美在线一区亚洲| 亚洲 欧美一区二区三区| 自线自在国产av| 中文字幕另类日韩欧美亚洲嫩草| 正在播放国产对白刺激| 嫩草影视91久久| 免费观看人在逋| 成熟少妇高潮喷水视频| 久久久久久免费高清国产稀缺| 长腿黑丝高跟| 97超级碰碰碰精品色视频在线观看| 国产免费男女视频| 国产蜜桃级精品一区二区三区| 亚洲人成电影观看| 成人精品一区二区免费| 午夜福利一区二区在线看| 如日韩欧美国产精品一区二区三区| 成人欧美大片| 在线观看一区二区三区| 免费在线观看黄色视频的| 黑人操中国人逼视频| 亚洲第一av免费看| 国产成人影院久久av| 怎么达到女性高潮| 亚洲国产看品久久| 好男人在线观看高清免费视频 | www.自偷自拍.com| 久久久久久久久久久久大奶| 热re99久久国产66热| 美女大奶头视频| 久久精品91无色码中文字幕| 怎么达到女性高潮| 男人舔女人下体高潮全视频| 午夜精品久久久久久毛片777| 国产成人精品久久二区二区免费| 一区二区日韩欧美中文字幕| 午夜老司机福利片| 一级a爱视频在线免费观看| 日本精品一区二区三区蜜桃| 欧美日韩福利视频一区二区| 免费无遮挡裸体视频| 在线免费观看的www视频| 一级作爱视频免费观看| 97人妻天天添夜夜摸| 久久欧美精品欧美久久欧美| 亚洲 国产 在线| 精品人妻1区二区| 91成人精品电影| 日韩欧美一区二区三区在线观看| 美女大奶头视频| 国产精品二区激情视频| 在线免费观看的www视频| 久久婷婷人人爽人人干人人爱 | 午夜免费激情av| 国产成人欧美在线观看| 久久国产亚洲av麻豆专区| 国产精品98久久久久久宅男小说| 亚洲欧美日韩无卡精品| 淫秽高清视频在线观看| 久久久国产成人免费| 亚洲精品国产色婷婷电影| 欧美绝顶高潮抽搐喷水| 嫩草影视91久久| 亚洲精品美女久久久久99蜜臀| 日韩大码丰满熟妇| 亚洲专区字幕在线| 亚洲精品国产精品久久久不卡| 狂野欧美激情性xxxx| 在线观看免费视频日本深夜| 制服丝袜大香蕉在线| 国产精品一区二区在线不卡| 一级a爱片免费观看的视频| 国产精华一区二区三区| 久久精品亚洲精品国产色婷小说| 日韩欧美一区二区三区在线观看| 首页视频小说图片口味搜索| 又紧又爽又黄一区二区| 制服丝袜大香蕉在线| 成人18禁高潮啪啪吃奶动态图| 亚洲精品在线观看二区| 香蕉国产在线看| 美国免费a级毛片| 他把我摸到了高潮在线观看| 亚洲一区高清亚洲精品| 纯流量卡能插随身wifi吗| 18禁美女被吸乳视频| 国产日韩一区二区三区精品不卡| 波多野结衣巨乳人妻| 日韩精品青青久久久久久| 高清黄色对白视频在线免费看| 精品久久久久久久久久免费视频| 中文字幕人成人乱码亚洲影| 精品无人区乱码1区二区| 久热爱精品视频在线9| 久久久久久久午夜电影| 亚洲情色 制服丝袜| 村上凉子中文字幕在线| 久9热在线精品视频| 少妇熟女aⅴ在线视频| 天堂√8在线中文| 老司机午夜福利在线观看视频| 动漫黄色视频在线观看| 大型av网站在线播放| 国产日韩一区二区三区精品不卡| 无遮挡黄片免费观看| 又大又爽又粗| 亚洲最大成人中文| 亚洲人成77777在线视频| 伦理电影免费视频| 巨乳人妻的诱惑在线观看| 国产熟女午夜一区二区三区| 黑人巨大精品欧美一区二区mp4| 天天添夜夜摸| 精品久久久久久久久久免费视频| 国产精品香港三级国产av潘金莲| 亚洲一卡2卡3卡4卡5卡精品中文| 又黄又爽又免费观看的视频| 黄色视频不卡| 久久影院123| 在线视频色国产色| 美女 人体艺术 gogo| 久热爱精品视频在线9| 天天添夜夜摸| 看片在线看免费视频| 丰满的人妻完整版| 人妻久久中文字幕网| 男人舔女人的私密视频| 真人一进一出gif抽搐免费| 欧美国产精品va在线观看不卡| 变态另类丝袜制服| 成人18禁高潮啪啪吃奶动态图| 午夜福利18| 成年人黄色毛片网站| www日本在线高清视频| 亚洲熟妇熟女久久| 国产在线精品亚洲第一网站| 黄色女人牲交| 国产精品久久电影中文字幕| 美女免费视频网站| 久久久精品国产亚洲av高清涩受| 亚洲成人免费电影在线观看| cao死你这个sao货| 91在线观看av| 女生性感内裤真人,穿戴方法视频| 亚洲第一电影网av| av欧美777| aaaaa片日本免费| 精品国产超薄肉色丝袜足j| 亚洲精品中文字幕一二三四区| 一级毛片女人18水好多| 中文字幕人成人乱码亚洲影| 国产精品亚洲av一区麻豆| 国产一区二区三区视频了| 老鸭窝网址在线观看| 欧美日本视频| 国产精品日韩av在线免费观看 | 亚洲中文av在线| av天堂久久9| 精品国产一区二区三区四区第35| 国产97色在线日韩免费| 此物有八面人人有两片| 国产欧美日韩综合在线一区二区| 亚洲三区欧美一区| 一夜夜www| 看免费av毛片| 十八禁网站免费在线| 色尼玛亚洲综合影院| 村上凉子中文字幕在线| 亚洲成a人片在线一区二区| 欧美日韩黄片免| av网站免费在线观看视频| 精品国产国语对白av| 深夜精品福利| 久久人妻av系列| 国产xxxxx性猛交| 人人妻人人澡人人看| 亚洲国产高清在线一区二区三 | 欧美日韩一级在线毛片| 亚洲一区二区三区色噜噜| 久久亚洲真实| 女性被躁到高潮视频| 免费高清在线观看日韩| 色播在线永久视频| 亚洲中文av在线| 精品久久久久久久久久免费视频| 午夜福利,免费看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品影院久久| 老司机午夜十八禁免费视频| 此物有八面人人有两片| 国产成人一区二区三区免费视频网站| 午夜视频精品福利| 99在线视频只有这里精品首页| 国产亚洲精品久久久久久毛片| 国产精品久久久久久人妻精品电影| 黑人操中国人逼视频| 国产三级黄色录像| 免费一级毛片在线播放高清视频 | 香蕉久久夜色| 亚洲av美国av| 一进一出抽搐动态| 免费一级毛片在线播放高清视频 | 首页视频小说图片口味搜索| 丝袜美足系列| 好男人电影高清在线观看| 一进一出好大好爽视频| 免费看十八禁软件| 日日夜夜操网爽| 亚洲国产精品sss在线观看| 国产高清有码在线观看视频 | 动漫黄色视频在线观看| 欧美激情极品国产一区二区三区| 亚洲,欧美精品.| 在线观看免费午夜福利视频| 757午夜福利合集在线观看| 婷婷六月久久综合丁香| 久久精品91无色码中文字幕| 亚洲av片天天在线观看| 精品国产美女av久久久久小说| 制服诱惑二区| 丁香六月欧美| 国产私拍福利视频在线观看| 亚洲性夜色夜夜综合| 我的亚洲天堂| 久久亚洲精品不卡| 国产国语露脸激情在线看| 亚洲欧美精品综合一区二区三区| 极品教师在线免费播放| 欧美一级a爱片免费观看看 | 国产成人av激情在线播放| 亚洲欧美日韩无卡精品| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成+人综合+亚洲专区| 99精品欧美一区二区三区四区| 少妇的丰满在线观看| 国产一级毛片七仙女欲春2 | 极品教师在线免费播放| 亚洲欧美日韩高清在线视频| 精品国产一区二区三区四区第35| 人人妻人人澡人人看| 久久精品亚洲精品国产色婷小说| 久久精品aⅴ一区二区三区四区| 美女 人体艺术 gogo| 国产亚洲欧美在线一区二区| 久久香蕉激情| 99久久99久久久精品蜜桃| 欧美av亚洲av综合av国产av| 免费搜索国产男女视频| 99精品在免费线老司机午夜| 成人三级黄色视频| www.www免费av| 亚洲午夜理论影院| 97人妻精品一区二区三区麻豆 | 国产亚洲欧美在线一区二区| 中出人妻视频一区二区| 悠悠久久av| 免费观看人在逋| 国产aⅴ精品一区二区三区波| 久久欧美精品欧美久久欧美| 一级片免费观看大全| 怎么达到女性高潮| 村上凉子中文字幕在线| 国产精华一区二区三区| 搡老熟女国产l中国老女人| 久久婷婷人人爽人人干人人爱 | 好男人电影高清在线观看| av超薄肉色丝袜交足视频| xxx96com| 久久国产乱子伦精品免费另类| 欧美人与性动交α欧美精品济南到| 亚洲一区二区三区不卡视频| 99精品欧美一区二区三区四区| 亚洲成国产人片在线观看| 大型黄色视频在线免费观看| 欧美在线一区亚洲| 搡老熟女国产l中国老女人| 黄片小视频在线播放| 成人18禁在线播放| 亚洲美女黄片视频| 非洲黑人性xxxx精品又粗又长| 夜夜看夜夜爽夜夜摸| 欧美在线一区亚洲| 亚洲 欧美一区二区三区| 亚洲,欧美精品.| www.精华液| 美女大奶头视频| 亚洲成a人片在线一区二区| 自线自在国产av| 给我免费播放毛片高清在线观看| 少妇 在线观看| 亚洲aⅴ乱码一区二区在线播放 | 可以在线观看的亚洲视频| 亚洲欧美激情在线| 色综合站精品国产| 亚洲国产精品久久男人天堂| 人人妻,人人澡人人爽秒播| 这个男人来自地球电影免费观看| 国产成人免费无遮挡视频| 在线永久观看黄色视频| 欧美成人免费av一区二区三区| av中文乱码字幕在线| 后天国语完整版免费观看| 动漫黄色视频在线观看| 亚洲五月天丁香| 国产成+人综合+亚洲专区| 大陆偷拍与自拍| 91九色精品人成在线观看| 国产午夜精品久久久久久| 啦啦啦观看免费观看视频高清 | 精品日产1卡2卡| 欧美+亚洲+日韩+国产| 欧美在线一区亚洲| www日本在线高清视频| 精品国产乱码久久久久久男人| 亚洲av成人一区二区三| 国产一区二区激情短视频| 亚洲在线自拍视频| 男女床上黄色一级片免费看| 色尼玛亚洲综合影院| avwww免费| 免费在线观看黄色视频的| 久久婷婷成人综合色麻豆| 免费看十八禁软件| 色老头精品视频在线观看| 国产一区二区激情短视频| 亚洲男人的天堂狠狠| 日韩成人在线观看一区二区三区| 日韩欧美免费精品| 欧美大码av| 亚洲片人在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 一级a爱片免费观看的视频| 热99re8久久精品国产| 欧美一区二区精品小视频在线| 一区在线观看完整版| 亚洲精品中文字幕在线视频| 国产精华一区二区三区| 国产精品亚洲一级av第二区| 高清黄色对白视频在线免费看| 丁香六月欧美| 午夜福利免费观看在线| 国产亚洲精品av在线| 久久久久久大精品| 久久青草综合色| 久久婷婷人人爽人人干人人爱 | 丝袜在线中文字幕| 国产乱人伦免费视频| 日韩欧美免费精品| 人人澡人人妻人| 国产主播在线观看一区二区| 亚洲第一欧美日韩一区二区三区| 身体一侧抽搐| 高清黄色对白视频在线免费看| 看片在线看免费视频| 国产蜜桃级精品一区二区三区| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av在线| 国产极品粉嫩免费观看在线| 国产一级毛片七仙女欲春2 | 国内毛片毛片毛片毛片毛片| 我的亚洲天堂| 日本 av在线| 欧美色欧美亚洲另类二区 | 一级,二级,三级黄色视频| 国产伦一二天堂av在线观看| 亚洲av美国av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲少妇的诱惑av| 性少妇av在线| 人人妻人人澡欧美一区二区 | 久久人人精品亚洲av| 国产成人一区二区三区免费视频网站| 国产精品1区2区在线观看.| 日本 欧美在线| 欧美绝顶高潮抽搐喷水| 淫秽高清视频在线观看| 国产精品电影一区二区三区| 免费在线观看完整版高清| 精品第一国产精品| 国产精品免费一区二区三区在线| 黄色丝袜av网址大全| 国产一卡二卡三卡精品| 九色国产91popny在线| 深夜精品福利| 免费观看精品视频网站| 十八禁网站免费在线| 免费在线观看日本一区| 19禁男女啪啪无遮挡网站| 免费一级毛片在线播放高清视频 | 亚洲av片天天在线观看| 极品教师在线免费播放| 中文字幕精品免费在线观看视频| 久久精品国产亚洲av高清一级| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久人人做人人爽| 99久久综合精品五月天人人| 国产xxxxx性猛交| 亚洲男人的天堂狠狠| 日韩欧美一区二区三区在线观看| 国产精品一区二区在线不卡| 国产在线观看jvid| e午夜精品久久久久久久| 大型黄色视频在线免费观看| 国产亚洲欧美98| 天天躁狠狠躁夜夜躁狠狠躁| 日韩有码中文字幕| 日韩精品青青久久久久久| 操美女的视频在线观看| 精品国产一区二区三区四区第35| www.精华液| 91麻豆精品激情在线观看国产| 日本三级黄在线观看| 18禁国产床啪视频网站| 两个人看的免费小视频| 长腿黑丝高跟| 日日夜夜操网爽| 国产三级黄色录像| 看免费av毛片| 女性生殖器流出的白浆| 波多野结衣巨乳人妻| 国产黄a三级三级三级人| 日日爽夜夜爽网站| 亚洲熟妇熟女久久| 一级毛片高清免费大全| 淫秽高清视频在线观看| 一级毛片高清免费大全| 国产精品二区激情视频| 日韩大尺度精品在线看网址 | 一级毛片女人18水好多| 女生性感内裤真人,穿戴方法视频| 黑人欧美特级aaaaaa片| 长腿黑丝高跟| 日日摸夜夜添夜夜添小说| 日韩欧美三级三区| 欧美国产日韩亚洲一区| 亚洲精品久久成人aⅴ小说| 国产高清videossex| 亚洲熟妇中文字幕五十中出| 国产99久久九九免费精品| 国产一区二区三区综合在线观看| 高潮久久久久久久久久久不卡| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲天堂国产精品一区在线| 亚洲精品粉嫩美女一区| 国产亚洲精品av在线| 欧美成人性av电影在线观看| 精品不卡国产一区二区三区| 精品欧美国产一区二区三| 韩国精品一区二区三区| 久久精品国产99精品国产亚洲性色 | 国产xxxxx性猛交| 亚洲av电影不卡..在线观看| 欧美黑人精品巨大| 久久国产精品人妻蜜桃| 国产精品日韩av在线免费观看 | 日本a在线网址| 国产精品99久久99久久久不卡| 后天国语完整版免费观看| 丝袜在线中文字幕| 两人在一起打扑克的视频| 在线观看一区二区三区| 91老司机精品| 91成年电影在线观看| 色婷婷久久久亚洲欧美| 中国美女看黄片| 精品电影一区二区在线| 十分钟在线观看高清视频www| 一a级毛片在线观看| 久久伊人香网站| 欧美黄色片欧美黄色片| 久久国产亚洲av麻豆专区| 欧美日韩乱码在线| 女同久久另类99精品国产91| 可以在线观看的亚洲视频| 丁香欧美五月| 91大片在线观看| 亚洲中文av在线| 91在线观看av| 亚洲九九香蕉| 亚洲va日本ⅴa欧美va伊人久久| 久久人妻熟女aⅴ| 亚洲专区国产一区二区| 国产欧美日韩一区二区精品| 日韩成人在线观看一区二区三区| 亚洲天堂国产精品一区在线| 视频区欧美日本亚洲| 色老头精品视频在线观看| 午夜精品在线福利| 亚洲自拍偷在线| 亚洲精品国产色婷婷电影| 亚洲av日韩精品久久久久久密| 精品国产国语对白av| 99国产精品一区二区蜜桃av| 不卡一级毛片| 国产精品亚洲av一区麻豆| 亚洲精品久久成人aⅴ小说| 亚洲 欧美一区二区三区| 性色av乱码一区二区三区2| 精品少妇一区二区三区视频日本电影| 在线观看日韩欧美| 国产又爽黄色视频|