• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RIGIDITY OF COMPACT SURFACES IN HOMOGENEOUS 3-MANIFOLDS WITH CONSTANT MEAN CURVATURE?

    2017-01-21 05:30:21JingWANG王靜
    關(guān)鍵詞:王靜銀山

    Jing WANG(王靜)

    School of Mathematics and Statistics,Beijing Institute of Technology,Beijing 100081,China

    Yinshan ZHANG(張銀山)?

    School of Mathematics and Statistics,Zhengzhou University,Zhengzhou 450001,China

    RIGIDITY OF COMPACT SURFACES IN HOMOGENEOUS 3-MANIFOLDS WITH CONSTANT MEAN CURVATURE?

    Jing WANG(王靜)

    School of Mathematics and Statistics,Beijing Institute of Technology,Beijing 100081,China

    E-mail:wangjingzzumath@163.com

    Yinshan ZHANG(張銀山)?

    School of Mathematics and Statistics,Zhengzhou University,Zhengzhou 450001,China

    E-mail:zhangysookk@163.com

    In this paper,we establish a rigidity theorem for compact constant mean curvature surfaces of the Berger sphere in terms of the surfaces’geometric invariants.This extends the previous similar result on compact minimal surfaces of the Berger sphere.

    homogeneous 3-manifolds;Berger sphere;constant mean curvature surface; Hopf torus;Cliford torus

    2010 MR Subject Classifcation53C24;53C20;53C42

    1 Introduction

    This paper is a continuation of Hu-Lyu-Wang’s previous work[1].According to the standard notation,we denote by E(κ,τ)the homogeneous 3-manifolds whose isometry group is of dimension 4,where κ and τ are constant and κ 6=4τ2.In[1]the authors studied surfaces of E(κ,τ)and,as main results,rigidity theorems in terms of the second fundamental form are established for compact minimal surfaces of the Berger sphere S3b(κ,τ)(κ 6=4τ2).In this paper, by checking the proof of[1]in further detail,we succeed in extending the rigidity theorem therein to all compact surfaces of S3b(κ,τ)(κ 6=4τ2)with constant mean curvature.

    We noticed that,in the last years the study of constant mean curvature surfaces of the homogeneous Riemannian 3-manifolds is a topic of increasing interest,see[2–11]and references therein.

    Recall that for E(κ,τ),equipped with a Riemannian metric g that also denoted by h·,·i, there exists a Riemannian submersion Π:E(κ,τ)→M2(κ),where M2(κ)is a 2-dimensional simply connected space form of constant curvature κ,with totally geodesic fbers and there exists a unit Killing vector feld ξ on E(κ,τ)which is vertical with respect to Π.The bundle curvature is the number τ such thatfor any vector feldwhere×denotes the vector product and?denotes the Riemannian connection of E(κ,τ),respectively. When τ=0(and then κ 6=0),we get a product manifold M2(κ)×R,the vertical vector ξ is tangent to the factor R.This case was treated extensively,we refer to [12],among many others.The manifolds with τ 6=0 are of three types based on the value of κ:the Berger spheres for κ>0 that is commonly denoted by S3b(κ,τ);the Heisenberg group Nil3for κ=0;and the universal coverfSL(2,R)of the Lie group SL(2,R)(endowed with a 2-parameter family of homogeneous metrics)for κ<0.

    To state our results,let Φ:Σ→ E(κ,τ)be an immersion of a surface Σ,and denote by C,H and S the angle function,the mean curvature and the squared norm of the second fundamental form of Φ,respectively(see Section 2 for the defnition of C,H and S).Then the main result of[1]can be stated as

    Theorem 1.1(see[1]) Let Φ:Σ→E(κ,τ)be a minimal immersion of a compact surface Σ.Then it holds the Simons’type integral inequality

    where the equality holds if and only if Φ is of parallel second fundamental form.

    In particular,if Φ:Σ→S3b(κ,τ)(κ 6=4τ2)is a minimal immersion of a compact surface Σ,then equality holds in(1.1)if and only if Φ:Σ→S3b(κ,τ)is the Cliford torus,the latter case occurs only when C≡0 and S≡2τ2.

    To prove Theorem 1.1,due to that E(κ,τ)is of no constant sectional curvature,instead of computing the Laplacian of the squared norm of the second fundamental form?S alone as one usually did when studying minimal surfaces of the unit sphere S3(1),a computation of the combination?S?(κ?4τ2)[?|T|2?2div(?TT)]was carried out,here T denotes the tangential component of the Killing feld ξ onto the surface.

    Conceptually,one expects that the rigidity phenomena of Theorem 1.1 can be extended to all surfaces of E(κ,τ)with constant mean curvature.We fnd,however,if we deal again with the combination?S?(κ?4τ2)[?|T|2?2div(?TT)]in the situation of non-minimal constant mean curvature surfaces,it turns out impossible.Eventually,we fnd that the right way is to compute?S?(κ?4τ2)?|T|2.Accordingly,in this paper we can extend Theorem 1.1 to achieve the following main conclusion.

    Theorem 1.2Let Φ:Σ→E(κ,τ)be a constant mean curvature immersion of a compact surface Σ.Then it holds the Simons’type integral inequality

    where the equality holds if and only if Φ is of parallel second fundamental form.

    In particular,if Φ:Σ→S3b(κ,τ)(κ 6=4τ2)is a constant mean curvature immersion of a compact surface Σ,then equality holds in(1.2)if and only if Φ:Σ→S3b(κ,τ)is the Cliford torus,the latter case occurs only when C≡0 and S≡2τ2+4H2.

    As a counterpart of Theorem 1.1,from Theorem 1.2 we immediately have the following.

    Corollary 1.3Let Φ:Σ→ E(κ,τ)be a minimal immersion of a compact surface Σ.

    Then it holds the Simons’type integral inequality

    where the equality holds if and only if Φ is of parallel second fundamental form.

    In particular,if Φ:Σ→S3b(κ,τ)(κ 6=4τ2)is a minimal immersion of a compact surface Σ,then equality holds in(1.3)if and only if Φ:Σ→S3b(κ,τ)is the Cliford torus,the latter case occurs only when C≡0 and S≡2τ2.

    Remark 1.4It is well known that,for a compact immersed surface M of the unit sphere S3(1)with constant mean curvature H,the squared norm S of its second fundamental form satisfes the Simons’integral inequality

    where the equality holds if and only if M is either the totally umbilic sphere or the Cliford torus(see[13,14]).Compared the diference between(1.2)for S3b(κ,τ)and(1.4)for S3(1),it is remarkable that the equality sign in(1.2)is attainable only by the Cliford torus.This can be convinced by the conclusion that there exists no totally umbilic surfaces in S3b(κ,τ)(κ 6=4τ2) (see[15]).

    2 Preliminaries

    Following[16],we made the following convention that the Riemannian curvature tensor R of E(κ,τ)is defned by

    where X,Y,Z are tangent vector felds of E(κ,τ).Then we have

    Proposition 2.1(see[16]) For all vector felds X,Y,Z,W on E(κ,τ),we have

    It follows that

    Let Φ:Σ→E(κ,τ)be an immersion of oriented surface Σ and?be the induced Riemannian connection on Σ.We choose a local feld of orthonormal positively frames{e1,e2;e3}in E(κ,τ)such that,restricted to Σ,the vectors e1,e2are tangent to Σ and e3is normal to Σ.Let {ωA}1≤A≤3be the dual frame feld of{eA}1≤A≤3.For brevity,we use the following convention on the range of indices unless otherwise stated:1≤A,B,C,···≤3;1≤i,j,k,···≤2.Thenthe structure equations of E(κ,τ)are given by

    where RABCD=hR(eA,eB)eC,eDi are the components of R.

    When restricted to Σ,we have ω3=0 and ωi3=Pjhijωj,hij=hji.

    The second fundamental form h,the mean curvature H and the squared norm S of h are given by

    The frst and second covariant derivatives hijkand hijklof hijare thus defned by

    Denote C=he3,ξi,which is called the angle function of Φ:Σ→E(κ,τ).Put

    Let Rijklbe the components of the Riemannian curvature tensor R of Σ,which is given by

    From these we obtain the Gauss equation of Φ:Σ→E(κ,τ),

    Let K=R1212denote the Gauss curvature of Σ,then by applying(2.1)we can write(2.5) to be(see also[16])

    Similarly,we can derive the Codazzi equation of Φ:Σ→E(κ,τ),

    and the Ricci identity

    At any fxed point p∈Σ,we can suitably choose the local orthonormal frame feld{e1,e2} such that hij(p)=λiδij.If not stated otherwise,all calculations in sequel is carried out at p.

    Put dC=PiCiωi.Then we have

    We need to calculate Ti,jfor later use,

    3 Lemmas and Their Proofs

    First of all,we recall the following Simons’type formula for surfaces in E(κ,τ),which we have derived in[1]by using the Gauss-Codazzi equations and the Ricci identity.

    Lemma 3.1(see[1]) Let Φ:Σ→ E(κ,τ)be an immersion of a surface Σ.Then,at p∈Σ,it holds

    where?denotes the Laplacian of the induced metric on Σ.

    Lemma 3.2(see[1]) Let Φ:Σ→ E(κ,τ)be an immersion of a surface Σ.Then,at p∈Σ,it holds that

    To deal with surfaces Φ:Σ→E(κ,τ)of constant mean curvature H,we have improved the above two Lemmas when restricted to the case H=0 in[1].In fact,such improvement can be extended to all H 6=0 cases to meet our subsequent requirements.

    Lemma 3.3Let Φ:Σ→E(κ,τ)be constant mean curvature immersion of a surface Σ. Then,at p∈Σ,it holds that

    ProofThis is an direct consequence of(3.1).

    In fact,frst using that H is constant,we obtain that

    Further,noting that|T|2=1?C2,λ1λ2=2H2?S2and(λ1?λ2)2=2(S?2H2),we canwrite

    Inserting(3.4)and(3.5)into(3.1),we immediately get assertion(3.3).

    The calculation of?|T|2can also be improved to obtain the following.

    Lemma 3.4Let Φ:Σ→E(κ,τ)be a constant mean curvature immersion of a surface Σ.Then,at p∈Σ,it holds that

    ProofAccording to(2.9)and(2.10),we have

    Inserting(3.7)and(3.8)into(3.2),we get assertion(3.6).

    Now we state the main results of this section,which will be crucial for the proof of Theorem 1.2.

    Lemma 3.5Let Φ:Σ→E(κ,τ)be a constant mean curvature immersion of a surface Σ.Then it holds on Σ that

    ProofAccording to Lemmas 3.3,3.4 and the Gauss equation(2.6),we see that(3.9) holds at p∈Σ.The assertion fnally follows from the fact that each term on both sides of(3.9) is independent of the choice of the orthonormal frame.

    Remark 3.6To compare with Lemma 3.5,we recall that it was shown in[1]that for a minimal immersion Φ:Σ→E(κ,τ),the following holds on Σ:

    We point out that if H is a non-zero constant,then we cannot extend the above computation so that the LHS of(3.10)still has an invariant form that is expressed in terms of the well-defned functions as we obtained on the RHS of(3.9).

    4 Examples and Proof of Main Theorem

    Let us frst look at the examples of the Cliford tori in the Berger spheres.

    Recall that as a special case of E(κ,τ)for κ>0 and τ 6=0,the Berger sphere S3b(κ,τ)is the 3-sphere S3={(z,w)∈C2:|z|2+|w|2=1}endowed with the metric g=h,ibas that

    where h,i0stands for the usual metric on the sphere,V(z,w):=(iz,iw)for each(z,w)∈S3.

    The above relation between the standard metric on the sphere and the Berger metric immediately implies the next formula,that links the Levi-Civita connection?0of the round sphere to?,the one associated to the Berger metric(see[17]):

    where J is the complex structure of C2,that is J(z,w)=(iz,iw),and()?denotes the tangential component to the sphere.

    The Hopf fbration Π:S3b(κ,τ)→ S2(κ),where S2(κ)stands for the 2-sphere of radius 1/√κ,defned by

    By defnition,the Cliford tori are a family surfaces of the Berger sphere which can be parameterized by φ(r1,r2):R2→S3b(κ,τ)with

    we see that{e1,e2;e3}is a local orthonormal frame of S3b(κ,τ),and e1,e2are tangent vector felds of φ(r1,r2)(R2),e3is its normal vector feld.Let{ωA}1≤A≤3be the dual frame feld ofThe fact thatis a Hopf torus can now be seen from the fact thatis a unit tangent vector feld of φ(r1,r2)(R2).Straightforward computation by using(4.2)gives that

    Let ωABbe the connection forms associated to{e1,e2;e3},then(4.4)implies that

    In addition,from the above calculations and(2.3),we can immediately obtain that hijk=0 for all i,j,k.Hence the Cliford tori are of parallel second fundamental form.

    We also need the following simple observation.

    Proposition 4.1Let Φ:Σ→E(κ,τ)(τ 6=0)be a constant mean curvature immersion of a compact surface Σ.Then the angle function C≡0 is equivalent to that the squared norm of the second fundamental form of Φ satisfes S≡2τ2+4H2.

    ProofIf C≡0,then the Gauss equation(2.6)implies that

    On the other hand,C≡0 showing that ξ is a tangent vector feld of Σ.Thus,for a tangent vector feld v,?vξ=τv×ξ∈T⊥Σ.This implies that?vξ=0 and therefore R(v,ξ,ξ,v)=0. Hence we have K≡0,and then S≡2τ2+4H2follows.

    The converse follows from the following integral formula(see(3.3)in[18]):

    In fact,if S≡2τ2+4H2,then the Gauss equation(2.6)gives that K=(κ?4τ2)C2.From (4.5),we obtain

    Therefore,C2(1?C2)=0 on Σ.The following remark shows that C2=1 does not occur,we get C=0 on Σ as claimed.

    Remark 4.2As pointed out in[18],if C2=1,then it is well known that τ=0 and the surface is a totally geodesic slice of M2(κ)×R.This holds true even without the compactness assumption.

    Finally,before giving the proof of Theorem 1.2,we noticed that surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces are shown to be the Hopf cylinders by Belkhelfa,Dillen and Inoguchi in[19].This particularly implies the following.

    Theorem 4.3(see Theorem 8.2 of[19]) Let Φ:Σ→E(κ,τ)(τ 6=0)be a surface with parallel second fundamental form,then Φ is a Hopf cylinder.

    Proof of Theorem 1.2Integrating(3.9)over Σ and using the divergence theorem,we immediately obtain the frst assertion.Then,the second assertion is a direct consequence of Theorem 4.3,Proposition 4.1 and a fact that the Hopf torus Φ(Σ)in S3b(κ,τ)has constant mean curvature if and only if Φ(Σ)is given by Π?1(γ)such that the cross closed curve γ in S2(κ) is of constant curvature(see[20]),which show that γ is a circle in S2(κ)and thus Φ(Σ)is a Cliford torus. ?

    Remark 4.4In contrast with the above fact that the Cliford tori are the only constant mean curvature Hopf torus in S3b(κ,τ),an interesting phenomenon being worth noting is that in[18],it was shown that the only fat compact surfaces in S3b(κ,τ)are the Hopf tori.This later result in the Berger sphere contrasts with the case of the round sphere where,besides the Hopf tori,there are other fat tori(see[21,22]).

    To get more explicit information from Theorem 1.2,we next consider the cases of Berger sphere S3b(κ,τ).For such cases and under some additional conditions,e.g.if κ>4τ2and,the following equation on x=S?2H2:

    has two distinct real number solutions x1=a(κ,τ,C)and x2=b(κ,τ,C),where by letting

    Combining Theorem 1.2 with the above discussions,we immediately get

    then it must be the case that C≡0,S≡2τ2+4H2and Φ is the Cliford torus.

    [1]Hu Z,Lyu D,Wang J.On rigidity phenomena of compact surfaces in homogeneous 3-manifolds.Proc Amer Math Soc,2015,143:3097–3109

    [2]Abresch U,Rosenberg H.A Hopf diferential for constant mean curvature surfaces in S2×R and H2×R. Acta Math,2004,193:141–174

    [3]Abresch U,Rosenberg H.Generalized Hopf diferentials.Mat Contemp,2005,28:1–28

    [4]Caddeo R,Piu P,Ratto A.SO(2)-invariant minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces.Manuscripta Math,1995,87:1–12

    [5]Espinar J M,Rosenberg H.Complete constant mean curvature surfaces in homogeneous spaces.Comment Math Helv,2011,86:659–674

    [6]Fernandez I,Mira P.A characterization of constant mean curvature surfaces in homogeneous 3-manifolds. Diferential Geom Appl,2007,25:281–289

    [7]Inoguchi J,Van der Veken J.A complete classifcation of parallel surfaces in three-dimensional homogeneous spaces.Geom Dedicata,2008,131:159–172

    [8]Meeks III W H,P′erez J.Constant mean curvature surfaces in metric Lie groups.Geometric analysis:partial diferential equations and surfaces//Contemp Math 570.Providence,RI:Amer Math Soc,2012:25–110

    [9]Torralbo F.Rotationally invariant constant mean curvature surfaces in homogeneous 3-manifolds.Diferential Geom Appl,2010,28:593–607

    [10]Torralbo F,Urbano F.Compact stable constant mean curvature surfaces in homogeneous 3-manifolds. Indiana Univ Math J,2012,61:1129–1156

    [11]Jleli M.Stability of Constant mean curvature hypersurfaces of revolution in hyperbolic space.Acta Math Sci,2013,33B(3):830–838

    [12]Daniel B.Isometric immersions into Sn×R and Hn×R and applications to minimal surfaces.Trans Amer Math Soc,2009,361:6255–6282

    [13]Alencar H,do Carmo M.Hypersurfaces with constant mean curvature in sphere.Proc Amer Math Soc, 1994,120:1223–1229

    [14]Xu H.A rigidity theorem for submanifolds with parallel mean curvature in a sphere.Arch Math,1993,61: 489–496

    [15]Souam R,Toubiana E.Totally umbilic surfaces in homogeneous 3-manifolds.Comment Math Helv,2009, 84:673–704

    [16]Daniel B.Isometric immersions into 3-dimensional homogeneous manifolds.Comment Math Helv,2007, 82:87–131

    [17]Torralbo F.Compact minimal surfaces in the Berger spheres.Ann Global Anal Geom,2012,41:391–405

    [18]Torralbo F,Urbano F.On the Gauss curvature of compact surfaces in homogeneous 3-manifolds.Proc Amer Math Soc,2010,138:2561–2567

    [19]Belkhelfa M,Dillen F,Inoguchi J.Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces.Banach Center Publ,2002,57:67–87

    [20]Barros M,Ferr′andez A.Willmore energy estimates in conformal Berger sphere.Chaos Solitons Fractals, 2011,44:515–521

    [21]Pinkall U.Hopf tori in S3.Invent Math,1985,81:379–386

    [22]Weiner J L.Flat tori in S3and their Gauss maps.Proc London Math Soc,1991,62:54–76

    ?Received July 25,2015;revised March 28,2016.This work was supported by NSFC(11371330).

    ?Corresponding author:Yinshan ZHANG.

    猜你喜歡
    王靜銀山
    綠水青山就是金山銀山
    Fusionable and fissionable waves of(2+1)-dimensional shallow water wave equation
    The Management Methods And Thinking Of Personnel Files
    客聯(lián)(2021年9期)2021-11-07 19:21:33
    國(guó)外是如何保護(hù)“金山銀山”的
    讓“綠水青山”變成“金山銀山”
    公民與法治(2020年3期)2020-05-30 12:29:48
    The Development of Contemporary Oil Painting Art
    青年生活(2019年16期)2019-10-21 01:46:49
    卡陽:實(shí)施水土流失綜合治理 荒山禿嶺變成了金山銀山
    綠水青山就是金山銀山
    海峽姐妹(2018年10期)2018-12-26 01:21:16
    王靜博士簡(jiǎn)介
    綠水青山就是金山銀山
    深夜a级毛片| 一夜夜www| 最后的刺客免费高清国语| 超碰97精品在线观看| 波多野结衣巨乳人妻| 美女脱内裤让男人舔精品视频| av国产免费在线观看| 国国产精品蜜臀av免费| 麻豆乱淫一区二区| 国产成人午夜福利电影在线观看| 神马国产精品三级电影在线观看| 成年女人永久免费观看视频| 亚洲国产色片| 联通29元200g的流量卡| 两个人的视频大全免费| 又粗又硬又长又爽又黄的视频| 插阴视频在线观看视频| 亚洲精品一区蜜桃| 色综合色国产| 国产成人91sexporn| 日韩av在线大香蕉| 日本黄色片子视频| 日本熟妇午夜| 久久99热这里只有精品18| 99国产精品一区二区蜜桃av| 国产精品蜜桃在线观看| 人妻制服诱惑在线中文字幕| 国产伦精品一区二区三区视频9| 国产黄片视频在线免费观看| 免费看日本二区| 国产在线男女| 国产精品福利在线免费观看| 青青草视频在线视频观看| 麻豆乱淫一区二区| 看免费成人av毛片| 大话2 男鬼变身卡| www日本黄色视频网| 国产成人福利小说| 69人妻影院| 亚洲国产精品成人久久小说| 91精品国产九色| 欧美极品一区二区三区四区| 精品久久久久久成人av| 少妇的逼水好多| 少妇的逼水好多| 免费av不卡在线播放| 亚洲色图av天堂| 永久网站在线| 日本色播在线视频| 国产成人免费观看mmmm| 少妇的逼好多水| 国产高清国产精品国产三级 | 一个人免费在线观看电影| 国产精品久久久久久av不卡| 精品免费久久久久久久清纯| 18禁在线无遮挡免费观看视频| 老司机影院成人| 欧美3d第一页| 国产大屁股一区二区在线视频| 美女被艹到高潮喷水动态| 网址你懂的国产日韩在线| 国内少妇人妻偷人精品xxx网站| АⅤ资源中文在线天堂| 99热这里只有是精品在线观看| 久久久久九九精品影院| 美女被艹到高潮喷水动态| 午夜福利高清视频| 少妇的逼好多水| 国产成人aa在线观看| 午夜视频国产福利| 免费观看a级毛片全部| 最近中文字幕高清免费大全6| 国产单亲对白刺激| 一个人看视频在线观看www免费| 亚洲真实伦在线观看| 97在线视频观看| 最近2019中文字幕mv第一页| 日韩欧美在线乱码| 亚洲欧美成人综合另类久久久 | 在线天堂最新版资源| 日韩欧美三级三区| 国产人妻一区二区三区在| 波多野结衣巨乳人妻| 久久热精品热| 亚洲av男天堂| 亚洲综合精品二区| 亚洲欧美精品综合久久99| 欧美97在线视频| 纵有疾风起免费观看全集完整版 | 男女国产视频网站| 麻豆乱淫一区二区| 老司机影院毛片| 亚洲av.av天堂| 亚洲四区av| 可以在线观看毛片的网站| 成人毛片a级毛片在线播放| 国产一区二区在线av高清观看| 国产麻豆成人av免费视频| 国产精品麻豆人妻色哟哟久久 | 五月玫瑰六月丁香| 久99久视频精品免费| 国产在线男女| 国产不卡一卡二| 一边摸一边抽搐一进一小说| 成人欧美大片| 久久精品人妻少妇| 两个人视频免费观看高清| 亚洲国产精品久久男人天堂| 精品一区二区三区人妻视频| 美女xxoo啪啪120秒动态图| 久久99热6这里只有精品| 久久鲁丝午夜福利片| 欧美日韩精品成人综合77777| 国产成人a∨麻豆精品| 国产在视频线在精品| 国产成人精品久久久久久| 一级毛片电影观看 | 中文天堂在线官网| 校园人妻丝袜中文字幕| 久久久a久久爽久久v久久| 午夜福利网站1000一区二区三区| 亚洲av一区综合| 欧美极品一区二区三区四区| 天堂中文最新版在线下载 | 亚洲精品乱码久久久久久按摩| 欧美性感艳星| 中文在线观看免费www的网站| 夜夜看夜夜爽夜夜摸| 变态另类丝袜制服| 99热这里只有是精品在线观看| 天天一区二区日本电影三级| 在线免费观看的www视频| 国产片特级美女逼逼视频| 国产精品不卡视频一区二区| 精品久久久久久电影网 | 亚洲精品,欧美精品| 亚洲国产欧美人成| 国产精品久久电影中文字幕| 国产精品一区二区性色av| 国产亚洲最大av| 91精品国产九色| 人体艺术视频欧美日本| 舔av片在线| 嘟嘟电影网在线观看| 国产精品.久久久| 99久久中文字幕三级久久日本| 精品一区二区三区视频在线| 91狼人影院| 国产伦精品一区二区三区视频9| 在现免费观看毛片| 91精品一卡2卡3卡4卡| 婷婷色综合大香蕉| 久久久国产成人免费| 中文资源天堂在线| 国产精品一及| 欧美丝袜亚洲另类| 成人亚洲欧美一区二区av| 亚洲av福利一区| 在线免费观看不下载黄p国产| 内射极品少妇av片p| 亚洲欧洲国产日韩| 51国产日韩欧美| 特级一级黄色大片| 亚洲国产欧美在线一区| 国产一级毛片在线| 中文亚洲av片在线观看爽| 国产一区二区在线av高清观看| 一级av片app| 九九在线视频观看精品| 噜噜噜噜噜久久久久久91| 蜜桃亚洲精品一区二区三区| 国产爱豆传媒在线观看| 日本av手机在线免费观看| 亚洲天堂国产精品一区在线| 男的添女的下面高潮视频| 日本免费a在线| 日韩欧美国产在线观看| 少妇人妻一区二区三区视频| 岛国在线免费视频观看| 赤兔流量卡办理| 看非洲黑人一级黄片| 日本一二三区视频观看| 午夜视频国产福利| 我的女老师完整版在线观看| 嘟嘟电影网在线观看| 欧美三级亚洲精品| 色播亚洲综合网| 天堂网av新在线| 91aial.com中文字幕在线观看| 一区二区三区免费毛片| 特级一级黄色大片| 男女边吃奶边做爰视频| 中文字幕人妻熟人妻熟丝袜美| 国产免费一级a男人的天堂| 日本av手机在线免费观看| 亚洲人成网站高清观看| 色噜噜av男人的天堂激情| 中文乱码字字幕精品一区二区三区 | 欧美成人一区二区免费高清观看| 久久久久久久久久成人| 国国产精品蜜臀av免费| 国产大屁股一区二区在线视频| 久久欧美精品欧美久久欧美| 最近手机中文字幕大全| 免费看光身美女| av又黄又爽大尺度在线免费看 | 美女脱内裤让男人舔精品视频| 国产视频首页在线观看| 蜜桃久久精品国产亚洲av| 久久热精品热| 毛片女人毛片| 国产白丝娇喘喷水9色精品| 九色成人免费人妻av| 中文字幕制服av| 日韩欧美 国产精品| 日本爱情动作片www.在线观看| 亚洲在线观看片| 精品人妻视频免费看| 插阴视频在线观看视频| 精品少妇黑人巨大在线播放 | 成年av动漫网址| 波多野结衣巨乳人妻| 男人舔奶头视频| 精品免费久久久久久久清纯| 中文字幕久久专区| 国产精品,欧美在线| 免费在线观看成人毛片| 国产一级毛片七仙女欲春2| 免费观看性生交大片5| 成人美女网站在线观看视频| 菩萨蛮人人尽说江南好唐韦庄 | 国产免费一级a男人的天堂| av在线播放精品| 国产伦精品一区二区三区四那| 热99在线观看视频| 国产亚洲一区二区精品| 在线观看av片永久免费下载| 国产在视频线精品| 久久久久久久久久久免费av| 我要搜黄色片| 亚洲精华国产精华液的使用体验| 国产av不卡久久| 亚洲久久久久久中文字幕| 日韩av在线免费看完整版不卡| 欧美xxxx黑人xx丫x性爽| 亚洲成av人片在线播放无| 国产私拍福利视频在线观看| 内地一区二区视频在线| 日产精品乱码卡一卡2卡三| 春色校园在线视频观看| 人妻制服诱惑在线中文字幕| 国产精品女同一区二区软件| 免费观看精品视频网站| 日韩三级伦理在线观看| 亚洲精品乱码久久久v下载方式| 波多野结衣高清无吗| 午夜老司机福利剧场| 91狼人影院| 国产av不卡久久| 日本三级黄在线观看| 亚洲真实伦在线观看| 老司机影院成人| 国产精品1区2区在线观看.| 我要搜黄色片| 日日摸夜夜添夜夜添av毛片| 国产一区二区亚洲精品在线观看| 天堂网av新在线| 日本wwww免费看| 久久99热6这里只有精品| 永久免费av网站大全| 少妇猛男粗大的猛烈进出视频 | 国产激情偷乱视频一区二区| 国产精品人妻久久久影院| 亚洲精品乱码久久久v下载方式| 亚洲精品,欧美精品| 中文乱码字字幕精品一区二区三区 | 欧美日韩一区二区视频在线观看视频在线 | 精品国产露脸久久av麻豆 | 精品一区二区三区视频在线| 午夜福利在线观看免费完整高清在| 色播亚洲综合网| 尾随美女入室| 国产一区二区亚洲精品在线观看| 啦啦啦韩国在线观看视频| 亚洲国产精品专区欧美| 国产91av在线免费观看| 少妇被粗大猛烈的视频| 免费看日本二区| 国内少妇人妻偷人精品xxx网站| 午夜福利在线观看吧| 久久精品国产亚洲av涩爱| 精品久久国产蜜桃| 一级毛片aaaaaa免费看小| av免费在线看不卡| av黄色大香蕉| 日韩中字成人| 久久精品国产99精品国产亚洲性色| 久久久亚洲精品成人影院| 午夜精品在线福利| 国产成人精品久久久久久| 一边摸一边抽搐一进一小说| 女人久久www免费人成看片 | 国产极品精品免费视频能看的| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 国产精品久久久久久av不卡| h日本视频在线播放| 免费看美女性在线毛片视频| 波多野结衣巨乳人妻| 国产亚洲91精品色在线| 久久久a久久爽久久v久久| 婷婷六月久久综合丁香| 国产精品久久电影中文字幕| 久久久久精品久久久久真实原创| 午夜精品国产一区二区电影 | 欧美高清性xxxxhd video| 欧美三级亚洲精品| 国产精品女同一区二区软件| 国产综合懂色| 男女啪啪激烈高潮av片| 国产精品久久久久久av不卡| 成人一区二区视频在线观看| 日本午夜av视频| 国产精品久久久久久精品电影小说 | 亚洲在久久综合| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人精品久久久久久| 美女xxoo啪啪120秒动态图| 精品久久久久久成人av| 两个人的视频大全免费| 搡老妇女老女人老熟妇| 观看免费一级毛片| 日韩国内少妇激情av| 美女黄网站色视频| 国产老妇伦熟女老妇高清| 搞女人的毛片| 精品午夜福利在线看| 少妇熟女欧美另类| av黄色大香蕉| 2021天堂中文幕一二区在线观| 亚洲va在线va天堂va国产| 午夜免费男女啪啪视频观看| 搡女人真爽免费视频火全软件| 精品一区二区三区视频在线| 人妻制服诱惑在线中文字幕| 久久精品国产自在天天线| 国产精品熟女久久久久浪| 97超碰精品成人国产| 最近最新中文字幕免费大全7| 国产在线一区二区三区精 | 亚洲18禁久久av| 国产69精品久久久久777片| 免费无遮挡裸体视频| 一级毛片电影观看 | 边亲边吃奶的免费视频| 免费观看性生交大片5| 国产亚洲av片在线观看秒播厂 | 欧美最新免费一区二区三区| 国国产精品蜜臀av免费| av线在线观看网站| 午夜日本视频在线| 欧美xxxx黑人xx丫x性爽| 中国美白少妇内射xxxbb| 国产一区亚洲一区在线观看| 国产v大片淫在线免费观看| 人妻夜夜爽99麻豆av| 男女视频在线观看网站免费| 久久这里有精品视频免费| 久久久成人免费电影| 99热这里只有是精品在线观看| 国产午夜福利久久久久久| 两个人视频免费观看高清| 久久精品熟女亚洲av麻豆精品 | 欧美高清成人免费视频www| 永久网站在线| 亚洲自拍偷在线| 久久久久久久午夜电影| 高清毛片免费看| 韩国av在线不卡| 内射极品少妇av片p| 日本色播在线视频| 国产精品一区www在线观看| 精品国产露脸久久av麻豆 | 91狼人影院| 亚洲国产精品专区欧美| 国产精华一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人福利小说| 国产精品伦人一区二区| av福利片在线观看| 在线观看美女被高潮喷水网站| 国产色婷婷99| 精华霜和精华液先用哪个| 51国产日韩欧美| 精品熟女少妇av免费看| 日本猛色少妇xxxxx猛交久久| 亚洲久久久久久中文字幕| 午夜福利网站1000一区二区三区| 国产亚洲av嫩草精品影院| 97超碰精品成人国产| 免费电影在线观看免费观看| 老司机福利观看| 亚洲精品自拍成人| 精品久久久久久久末码| 中国美白少妇内射xxxbb| 亚洲国产欧美在线一区| 99热这里只有精品一区| 久久国产乱子免费精品| 最近2019中文字幕mv第一页| 国产老妇女一区| av在线播放精品| 国产欧美日韩精品一区二区| 免费av毛片视频| 狂野欧美白嫩少妇大欣赏| 波野结衣二区三区在线| 国产精品三级大全| 国产大屁股一区二区在线视频| 黄片wwwwww| 免费在线观看成人毛片| 国产免费一级a男人的天堂| 亚洲国产最新在线播放| 精品少妇黑人巨大在线播放 | 波多野结衣巨乳人妻| av免费在线看不卡| 精品久久久久久成人av| 欧美日韩在线观看h| 狂野欧美白嫩少妇大欣赏| 午夜福利在线观看免费完整高清在| 嫩草影院入口| 不卡视频在线观看欧美| 我要看日韩黄色一级片| 久久这里有精品视频免费| 国产精品国产三级国产av玫瑰| 欧美另类亚洲清纯唯美| 精品人妻偷拍中文字幕| 久久国内精品自在自线图片| 夫妻性生交免费视频一级片| 18禁在线播放成人免费| 久久久精品大字幕| 亚洲av男天堂| 99久久人妻综合| 国产精品福利在线免费观看| 欧美色视频一区免费| 色网站视频免费| 国内精品宾馆在线| 国产高潮美女av| 桃色一区二区三区在线观看| 久久亚洲精品不卡| 国产在视频线在精品| 亚洲18禁久久av| 精品久久久久久久人妻蜜臀av| 欧美性感艳星| 人人妻人人澡人人爽人人夜夜 | 一区二区三区乱码不卡18| 成年女人看的毛片在线观看| 少妇熟女欧美另类| 亚洲美女视频黄频| 久久99热这里只有精品18| 久久精品夜色国产| 亚洲电影在线观看av| 久久午夜福利片| 日韩国内少妇激情av| 久久精品综合一区二区三区| 国产免费又黄又爽又色| 亚洲国产精品专区欧美| 午夜福利成人在线免费观看| av在线观看视频网站免费| 好男人在线观看高清免费视频| 色网站视频免费| 国产精品女同一区二区软件| 十八禁国产超污无遮挡网站| 22中文网久久字幕| 91在线精品国自产拍蜜月| 久久久久久久久中文| 亚洲真实伦在线观看| 午夜爱爱视频在线播放| 国产精品1区2区在线观看.| 国产欧美另类精品又又久久亚洲欧美| 99热这里只有精品一区| 国产 一区精品| 欧美xxxx性猛交bbbb| 国产极品精品免费视频能看的| 国产精品久久视频播放| 99久久九九国产精品国产免费| 少妇裸体淫交视频免费看高清| 伦精品一区二区三区| or卡值多少钱| 日韩一区二区视频免费看| av又黄又爽大尺度在线免费看 | 免费av不卡在线播放| 久久韩国三级中文字幕| 欧美不卡视频在线免费观看| 99久久无色码亚洲精品果冻| 波野结衣二区三区在线| 国产精品久久视频播放| 色网站视频免费| 久久精品人妻少妇| 老司机影院成人| av.在线天堂| 能在线免费看毛片的网站| 欧美最新免费一区二区三区| 日本爱情动作片www.在线观看| 亚洲经典国产精华液单| 亚洲综合精品二区| 国产探花极品一区二区| 美女黄网站色视频| 欧美xxxx性猛交bbbb| 亚洲真实伦在线观看| 能在线免费观看的黄片| 国产亚洲5aaaaa淫片| 国产单亲对白刺激| 男人舔女人下体高潮全视频| 特大巨黑吊av在线直播| 精品人妻视频免费看| 亚洲国产成人一精品久久久| 99久久精品热视频| 丝袜喷水一区| 亚洲自偷自拍三级| 国产伦精品一区二区三区四那| 村上凉子中文字幕在线| 在线免费观看不下载黄p国产| 中文天堂在线官网| 一级黄片播放器| 国内少妇人妻偷人精品xxx网站| 欧美xxxx性猛交bbbb| 男女啪啪激烈高潮av片| 精品无人区乱码1区二区| 男人舔奶头视频| 精品无人区乱码1区二区| 波多野结衣高清无吗| 韩国av在线不卡| 亚洲真实伦在线观看| 欧美丝袜亚洲另类| 亚洲精品久久久久久婷婷小说 | 午夜久久久久精精品| 免费av毛片视频| 午夜久久久久精精品| 在线免费观看的www视频| 国产又黄又爽又无遮挡在线| 在线免费观看的www视频| 99热这里只有是精品50| 又粗又硬又长又爽又黄的视频| 中文字幕久久专区| 色哟哟·www| 中文字幕av在线有码专区| 国国产精品蜜臀av免费| 亚洲人成网站在线观看播放| 中国国产av一级| 一个人看视频在线观看www免费| 乱人视频在线观看| 熟妇人妻久久中文字幕3abv| 中文字幕熟女人妻在线| 日韩,欧美,国产一区二区三区 | 国内精品一区二区在线观看| 久99久视频精品免费| 日韩精品有码人妻一区| 国产欧美日韩精品一区二区| av卡一久久| 国产精品久久久久久久电影| 亚洲精品456在线播放app| 国产国拍精品亚洲av在线观看| 女人久久www免费人成看片 | 久久这里只有精品中国| 日韩在线高清观看一区二区三区| 最近手机中文字幕大全| 亚洲成人中文字幕在线播放| 日韩一区二区视频免费看| 国产精品久久视频播放| 中文欧美无线码| 亚洲在线自拍视频| 欧美zozozo另类| 亚洲精品亚洲一区二区| 国产 一区 欧美 日韩| 我要搜黄色片| 边亲边吃奶的免费视频| 国产在线一区二区三区精 | 联通29元200g的流量卡| 欧美成人a在线观看| 国产亚洲5aaaaa淫片| 亚洲在线观看片| 国产免费视频播放在线视频 | 男女边吃奶边做爰视频| 最近中文字幕2019免费版| 欧美丝袜亚洲另类| 又粗又硬又长又爽又黄的视频| 白带黄色成豆腐渣| 午夜激情福利司机影院| 亚州av有码| 欧美高清成人免费视频www| 一区二区三区四区激情视频| 欧美最新免费一区二区三区| 亚洲成人中文字幕在线播放| 简卡轻食公司| 中文欧美无线码| 超碰97精品在线观看| 波多野结衣高清无吗| 午夜福利视频1000在线观看| 97超碰精品成人国产| 综合色av麻豆| 赤兔流量卡办理| 久久久久久大精品| 久久精品国产亚洲av涩爱| 能在线免费看毛片的网站| 边亲边吃奶的免费视频| 啦啦啦啦在线视频资源| 少妇人妻一区二区三区视频| 尤物成人国产欧美一区二区三区| 精品久久国产蜜桃| 亚洲在久久综合| 国语对白做爰xxxⅹ性视频网站| 午夜福利高清视频| 亚洲欧美精品综合久久99| 日韩欧美三级三区| 97超碰精品成人国产| 99久久无色码亚洲精品果冻|