• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SHARP ESTIMATES OF ALL HOMOGENEOUS EXPANSIONS FOR A SUBCLASS OF QUASI-CONVEX MAPPINGS OF TYPE B AND ORDER α IN SEVERAL COMPLEX VARIABLES?

    2017-01-21 05:31:22XiaosongLIU劉小松

    Xiaosong LIU(劉小松)

    School of Mathematics and Computational Science,Lingnan Normal University, Zhanjiang 524048,China

    Taishun LIU(劉太順)

    Department of Mathematics,Huzhou University,Huzhou 313000,China

    SHARP ESTIMATES OF ALL HOMOGENEOUS EXPANSIONS FOR A SUBCLASS OF QUASI-CONVEX MAPPINGS OF TYPE B AND ORDER α IN SEVERAL COMPLEX VARIABLES?

    Xiaosong LIU(劉小松)

    School of Mathematics and Computational Science,Lingnan Normal University, Zhanjiang 524048,China

    E-mail:lxszhjnc@163.com

    Taishun LIU(劉太順)

    Department of Mathematics,Huzhou University,Huzhou 313000,China

    E-mail:tsliu@hutc.zj.cn

    In this article,frst,the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings of type B and order α on the unit ball in complex Banach spaces are given.Second,the sharp estimates of all homogeneous expansions for the above generalized mappings on the unit polydisk in Cnare also established.In particular, the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings (include quasi-convex mappings of type A and quasi-convex mappings of type B)in several complex variables are get accordingly.Our results state that a weak version of the Bieberbach conjecture for quasi-convex mappings of type B and order α in several complex variables is proved,and the derived conclusions are the generalization of the classical results in one complex variable.

    homogeneous expansion;quasi-convex mapping of type B and order α;quasiconvex mapping;quasi-convex mapping of type A;quasi-convex mapping of type B

    2010 MR Subject Classifcation32A30;32H02

    1 Introduction

    In geometric function theorey of one complex variable,people show great interest in the following classical theorem.

    We are naturally to ask whether the corresponding result in several complex variables holds or not?In this article,we shall in part provide an afrmative answer.

    Concerning the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings(include quasi-convex mappings of type A and quasi-convex mappings of type B)in several complex variables,it was shown that the above result in general is invalid(see[13]). However,on a special domain,such as the unit polydisk in Cn,Liu[7],Liu and Liu[9]obtained the sharp estimates of all homogeneous expansions for quasi-convex mappings(include quasiconvex mappings of type A and quasi-convex mappings of type B)under diferent restricted conditions respectively.On the other hand,Liu and Liu[8]derived the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings of type B and order α (include quasi-convex mappings,quasi-convex mappings of type A and quasi-convex mappings of type B).We mention that the family of quasi-convex mappings of type B and order α is a signifcant family of holomorphic mappings in several complex variables,and the Bieberbach conjecture in several complex variables(i.e.,the sharp estimates of all homogeneous expansions for biholomorphic starlike mappings on the unit polydisk in Cnhold)(see[1,3,10])is a very signifcant and extremal difcult problem.Owing to this reason,the sharp estimates of all homogeneous expansions for quasi-convex mappings of type B and order α seem to be a meaningful problem as well.

    Let X denote a complex Banach space with the norm k.k,let X?denote the dual space of X,let B be the open unit ball in X,and let U be the Euclidean open unit disk in C.We also denote by Unthe open unit polydisk in Cn,Bnthe Euclidean unit ball in Cnand N?the set of all positive integers.Let?Undenote the boundary of Un,(?U)nbe the distinguished boundary of Un.Let the symbol′mean transpose.For each x∈X{0},we defne

    By the Hahn-Banach theorem,T(x)is nonempty.

    Let H(B)be the set of all holomorphic mappings from B into X.We know that if f∈H(B), then

    for all y in some neighborhood of x∈B,where Dnf(x)is the nth-Fr′echet derivative of f at x, and for n≥1,

    We say that a holomorphic mapping f:B → X is biholomorphic if the inverse f?1exists and is holomorphic on the open set f(B).A mapping f∈H(B)is said to be locally biholomorphic if the Fr′echet derivative Df(x)has a bounded inverse for each x∈B.If f:B→ X is a holomorphic mapping,then we say that f is normalized if f(0)=0 and Df(0)=I,where I represents the identity operator from X into X.

    We say that a normalized biholomorphic mapping f:B→X is a starlike mapping if f(B) is a starlike domain with respect to the origin.

    Suppose that ?∈Cnis a bounded circular domain.The frst Fr′echet derivative and the m(m>2)-th Fr′echet derivative of a mapping f∈H(?)at point z∈? are written by Df(z),Dmf(z),respectively.

    Now we recall some defnitions below.

    Defnition 1.1(see[8]) Suppose that α∈[0,1)and f:B→X is a normalized locally biholomorphic mapping.If

    then f is said to be quasi-convex of type B and order α.

    Let QαB(B)be the set of all quasi-convex mapping of type B and order α on B.

    Defnition 1.2(see[14]) Suppose that f:B→X is a normalized locally biholomorphic mapping,and denote

    If

    then f is said to be a quasi-convex mapping of type A on B.

    We denote by QA(B)the set of all quasi-convex mapping of type A on B.

    Defnition 1.3(see[2]) Suppose that f:B→X is a normalized locally biholomorphic mapping.If

    then f is said to be a quasi-convex mapping of type B on B.

    We refer to the set QB(B)as the set of all quasi-convex mapping of type B on B.

    When X=Cn,Defnitions 1.1 and 1.2 are the same defnitions which were introduced by Roper and Sufridge[13].

    Defnition 1.4(see[14]) Suppose that f:B→X is a normalized locally biholomorphic mapping.If

    then f is said to be a quasi-convex mapping on B.

    Let Q(B)be the set of all quasi-convex mapping of type B on B.Gong[2]proved the inclusion relation

    Indeed,Defnitions 1.2,1.3 and 1.4 reduce to the criteria of biholomorphic convex functions in one complex variable.

    Defnition 1.5(see[5]) Let f∈H(B).It is said that f is k-fold symmetric if

    Defnition 1.6(see[6]) Suppose that ? is a domain(connected open set)in X which contains 0.It is said that x=0 is a zero of order k of f(x)if f(0)=0,···,Dk?1f(0)=0,but Dkf(0)6=0,where k∈N?.

    According to Defnitions 1.4 and 1.5,it is easily shown that x=0 is a zero of order k+1 (k∈N)of f(x)?x if f is a k-fold symmetric normalized holomorphic mapping f(x)(f(x)6≡x) defned on B.However,the converse is fail.

    Let QA,k+1(B)(resp.QB,k+1(B),Qk+1(B))be the subset of QA(B)(resp.QB(B),Q(B)) of mappings f such that z=0 is a zero of order k+1 of f(z)?z.

    2 Sharp Estimates of All Homogeneous Expansions for a Subclass of Quasi-convex Mappings of Type B and Order α on the Unit Ball of Complex Banach Spaces

    In order to prove the desired results in this section,we need to provide some lemmas as follows.

    Lemma 2.1Let α∈[0,1),f,p:B→ C∈H(B),f(0)=p(0)=1,f(e2πikx)=f(x), p(e2πikx)=p(x)(k∈N?),and f(x)+3Df(x)x+D2f(x)(x2)=(f(x)+Df(x)x)(α+(1?α)p(x)). Then

    ProofIn view of the hypothesis of Lemma 2.1,we have

    A simple calculation shows that

    Compare the homogeneous expansions of the two sides in the above equality.We derived the desired result.

    Lemma 2.2Let α∈[0,1),f,p:B→C∈H(B),f(0)=p(0)=1.If x=0 is a zero of order k+1(k∈N?)of xf(x)?x(resp.xp(x)?(x)),and f(x)+3Df(x)x+D2f(x)(x2)= (f(x)+Df(x)x)(α+(1?α)p(x)),then for any x∈B,

    ProofAccording to the conditions of Lemma 2.2,we obtain

    A direct computation shows that

    Compare the homogeneous expansions of the two sides in the above equality.It follows the desired result.

    We now begin to establish the desired results in this section.

    Theorem 2.1Let α∈[0,1),f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)= xf(x)∈QαB(B),and F is a k(k∈N?)-fold symmetric mapping on B.Then

    and the above estimates are sharp.

    ProofLet W(x)=(DF(x))?1D(DF(x)x)x.A straightforward computation shows that

    Since F(x)=xf(x)∈QαB(B),then according to Defnition 1.1,we see that

    Letting

    then p:B→C∈H(B),p(0)=f(0)=1,

    Also since F(x)=xf(x)is a k(k∈N?)-fold symmetric mapping,then f(e2πikx)=f(x)and p(e2πi

    kx)=p(x).We now deduce that

    hold by inductive method.When s=1,(2.3)holds from Lemma 2.1 and[11,Lemma 2.2](the case m=k+1).We assume that

    It sufces to prove that(2.3)holds for s=q+1.For this purpose,by applying Lemma 2.1, (2.4)and[11,Lemma 2.2],we know that

    That is

    Note that

    when F(x)=xf(x).Therefore in view of(2.3)and(2.5),it follows the result,as desired.

    It is easy to check that

    satisfes the condition of Theorem 2.1,where kuk=1.Taking x=ru(0≤r<1),it yields that

    We see that the estimates of Theorem 2.1 are sharp. ?

    Put α=0 in Theorem 2.1.Then we obtain the following corollary immediately.

    Corollary 2.1Let f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)=xf(x)∈QB(B),and F is a k(k∈N?)-fold symmetric mapping on B.Then

    and the above estimates are sharp.

    Note that f(x)+Df(x)x 6=0,x∈B due to the growth theorem of F(x)=xf(x)∈QA(B) (or Q(B))and

    from S?(B)?QA(B)=Q(B)and Q(B)=QA(B)?QB(B)(see[2]).We readily get the following corollary from Corollary 2.1.

    Corollary 2.2Let f:B→C∈H(B),F(x)=xf(x)∈QA(B)(resp.Q(B)),and F is a k(k∈N?)-fold symmetric mapping on B.Then

    and the above estimates are sharp.

    By making use of Theorem 2.1,the Taylor expansion of F(x)=xf(x)and the triangle inequality of the norm in complex Banach spaces,we deduce the following two corollaries immediately(the details of the proof are omitted here).

    Corollary 2.3Let α∈[0,1),f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)= xf(x)∈QαB(B),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimate is sharp.

    The example of the sharpness of Corollary 2.1 is similar to that in Theorem 2.1,we need only to mention that

    holds for x=ru(0≤r<1).

    Corollary 2.4Let α∈[0,1),f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)= xf(x)∈QαB(B),and F(x)is a k(k∈N?)-fold symmetric mapping,where B is the unit ball of a complex Hilbert space X.Then

    and the above estimate is sharp.

    ProofAccording to Corollary 2.1,triangle inequalities with respect to the norm in complex Banach spaces and the fact

    (see[4]),then it follows the result,as desired.Considering

    where kek=1,then F satisfes the conditions of Corollary 2.4.It is shown that

    by a direct calculation.We set x=re,ξ=Re(0≤r<1,R≥0).Then

    We see that the estimate of Corollary 2.4 is sharp. ?

    Taking α=0 in Corollaries 2.3 and 2.4,we directly obtain the corollaries as follows.

    Corollary 2.5Let f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)=xf(x)∈QB(B),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimate is sharp.

    Corollary 2.6Let f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)=xf(x)∈QB(B),and F(x)is a k(k∈N?)-fold symmetric mapping,where B is the unit ball of a complex Hilbert space X.Then

    and the above estimate is sharp.

    With the analogous explanation of Corollary 2.4,we get the following corollary from Corollary 2.6.

    Corollary 2.7Let f:B→C∈H(B),F(x)=xf(x)∈Q(B)(or QA(B)),and F(x)is a k(k∈N?)-fold symmetric mapping,where B is the unit ball of a complex Hilbert space X. Then

    and the above estimate is sharp.

    Remark 2.1The sharp growth and covering theorem for QA(B)(resp.Q(B))was given by Roper and Sufridge[13](the case of fnite dimension)(resp.Zhang and Liu[14](the case of infnite dimension)).However,up to now,the sharp growth and covering theorem for QB(Un), and the sharp distortion theorem for QA(Un)(Q(Un)and QB(Un)are still open problems in several complex variables.

    Theorem 2.2Let α∈[0,1),f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)= xf(x)∈QαB,k+1(B).Then

    for x∈B.The above estimates are sharp for m=k+1 and m=2k+1.

    ProofIn view of the hypothesis of Theorem 2.2,Lemma 2.2 and[11,Lemma 2.2],it yields that

    and

    Noticing that

    if F(x)=xf(x).Then we derive the desired result.The example which shows the sharpness of Theorem 2.2 is similar to that in Theorem 2.1.

    Letting α=0,it is easy to obtain the corollary as follow.

    Corollary 2.8Let f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)=xf(x)∈QB,k+1(B).Then

    for x∈B.The above estimates are sharp for m=k+1 and m=2k+1.

    Similar to that in the explanation of Corollary 2.4,we drive the following corollary from Corollary 2.8.

    Corollary 2.9Let f:B→C∈H(B),F(x)=xf(x)∈Qk+1(B)(or QA,k+1(B)).Then

    for x∈B.The above estimates are sharp for m=k+1 and m=2k+1.

    3 Sharp Estimates of All Homogeneous Expansions for a Subclass of Quasi-convex Mappings of Type B and Order α on the Unit Polydisk in Cn

    In this section,let each mjbe a non-negative integer,N=m1+m2+···+mn∈N?,and mj=0 implies that the corresponding components in Z and F(Z)are omitted.Uml(resp. UN)is denoted by the unit polydisk of Cml(l=1,2,···,n)(resp.CN).

    It is necessary to establish the following lemmas in order to get the desired results in this section.

    Lemma 3.1(see[8]) Suppose that α∈[0,1),and f is a normalized locally biholomorphic mapping on Un.Then f∈QKαB(Un)if and only if

    Theorem 3.1Let α∈[0,1),fl:Uml→C∈H(Uml),fl(Zl)+Dfl(Zl)Zl6=0,Zl∈Uml, l=1,2,···,n,F(Z)=(F1(Z1),F2(Z2),···,Fn(Zn))′=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈QαB(UN),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimates are sharp.

    ProofIn view of the condition of Theorem 3.1,for any Z=(Z1,Z2,···,Zn)′∈UN,it is shown that

    by a direct calculation.We pay attention to that

    Then we know that

    from Lemma 3.1.Noticing that

    here kZlkml(resp.kZkN)is briefy denoted by kZlk(resp.kZk),it follows the desired result.

    For any Z=(Z1,Z2,···,Zn)′∈UN,it is not difcult to check that

    satisfes the condition of Theorem 3.1,where Zl=(Zl1,Zl2,···,Zlml)′∈Uml,l=1,2,···,n. We set Zl=(R,0,···,0)′(0≤R<1),l=1,2,···,n.It is easy to obtain

    Hence the estimates of Theorem 3.1 are sharp.

    We set α=0 in Theorem 3.1.Then we easily get the following corollary.

    Corollary 3.1Let fl:Uml→ C∈H(Uml),fl(Zl)+Dfl(Zl)Zl6=0,Zl∈Uml,l= 1,2,···,n,F(Z)=(F1(Z1),F2(Z2),···,Fn(Zn))′=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈QB(UN),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimates are sharp.

    With the similar interpretation of Corollary 2.4,it is apparent to obtain the corollary as follow.

    Corollary 3.2Let fl:Uml→C∈H(Uml),l=1,2,···,n,F(Z)=(F1(Z1),F2(Z2),···, Fn(Zn))′=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈Q(UN)(QA(UN)),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimates are sharp.

    Theorem 3.2Let α∈[0,1),fl:Uml→C∈H(Uml),fl(Zl)+Dfl(Zl)Zl6=0,Zl∈Uml, l=1,2,···,n,F(Z)=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈QαB,k+1(UN).Then

    for Z=(Z1,Z2,···,Zn)′∈UN.The above estimates are sharp for m=k+1 and m=2k+1.

    ProofWith the analogous arguments as in the proof of Theorem 2.2,it follows the desired result. ?

    Put α=0 in Theorem 3.2.Then we readily obtain the following corollary.

    Corollary 3.3Let fl:Uml→ C∈H(Uml),fl(Zl)+Dfl(Zl)Zl6=0,Zl∈Uml,l= 1,2,···,n,F(Z)=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈QB,k+1(UN).Then

    for Z=(Z1,Z2,···,Zn)′∈UN.The above estimates are sharp for m=k+1 and m=2k+1.

    Similar to that in the interpretation of Corollary 2.2,we easily obtain the corollary as follow.

    Corollary 3.4Let fl:Uml→C∈H(Uml),l=1,2,···,n,F(Z)=(Z1f1(Z1),Z2f2(Z2), ···,Znfn(Zn))′∈Qk+1(UN)(QA,k+1(UN)).Then

    for Z=(Z1,Z2,···,Zn)′∈UN.The above estimates are sharp for m=k+1 and m=2k+1.

    and the above estimates are sharp.

    ProofFixWe writeLet

    by a simple calculation.Therefore,we have

    It is also easy to know that

    from(3.1).Comparing the coefcients of the two sides in the above equality,it is shown that

    Hence,by Theorem 2.1(the case X=C,B=U),we conclude that

    When z0∈(?U)n,it yields that

    Also in view of Dsk+1Fl(0)(zsk+1)is a holomorphic function on Un,we have

    by the maximum modulus theorem of holomorphic functions on the unit polydisk.This implies that

    Therefore,

    It is not difcult to verify that

    satisfes the condition of Theorem 3.3.Put z=(r,0,···,0)′(0≤r<1),we see that

    by a direct computation.Then we know that the sharpness for the estimates of Theorem 3.3.

    Taking α=0 in Theorem 3.3,we get the following corollary immedately.

    and the above estimates are sharp.

    for z=(z1,z2,···,zn)′∈Un.The above estimates are sharp for m=k+1 and m=2k+1.

    We set α=0 in Theorem 3.4.Then it is obvious to obtain the corollary as follow.

    for z=(z1,z2,···,zn)′∈Un.The above estimates are sharp for m=k+1 and m=2k+1.

    Remark 3.1We see that Theorem 2.1 is the special case of Theorem 3.3 if X=Cn, B=Un,and Theorem 3.1 is the special case of Theorem 3.3 if m1=n,ml=0,l=2,···,n or ml=1,l=1,2,···,n as well.

    Remark 3.2It is not difcult to verify that F(z)=zf(z)in general does not satisfy

    In view of Theorems 2.1,3.1 and 3.3,we accordingly pose the open problem as follow.

    Open problem 3.1Suppose that F∈QαB(Un),and F is a k(k∈N?)-fold symmetric mapping on Un.Then

    and the above estimates are sharp.

    [1]Gong S.The Bieberbach Conjecture.International Press.Providence RI:Amer Math Soc,1999

    [2]Gong S.Convex and Starlike Mappings in Several Complex Variables(in Chinese).2nd ed.Beijing:Science Press,2003

    [3]Graham I,Kohr G.Geometric Function Theory in One and Higher Dimensions.New York:Marcel Dekker, 2003

    [4]H¨ormander L.On a theorem of Graced.Math Scand,1954,2:55–64

    [5]Honda T.The growth theorem for k-fold symmetric convex mappings.Bull London Math Soc,2002,34: 717–724

    [6]Lin Y Y,Hong Y.Some properties of holomorphic maps in Banach spaces.Acta Math Sinica,1995,38(2): 234–241(in Chinese)

    [7]Liu X S.On the quasi-convex mappings on the unit polydisk in Cn.J Math Anal Appl,2007,335:43–55

    [8]Liu X S,Liu M S.Quasi-convex mappings of order α on the unit polydisk in Cn.Rocky Mountain J Math, 2010,40:1619–1644

    [9]Liu X S,Liu T S.The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in Cn.Chin Ann Math,2011,32B:241–252

    [10]Liu X S,Liu T S.The sharp estimate of the third homogeneous expansion for a class of starlike mappings of order α on the unit polydisk in Cn.Acta Math Sci,2012,32B:752–764

    [11]Liu X S,Liu T S,Xu Q H.A proof of a weak version of the Bieberbach conjecture in several complex variables.Sci China Math,2015,58:2531–2540

    [12]Robertson M S.On the theory of univalent functions.Ann Math,1936,37:374–408

    [13]Roper K A,Sufridge T J.Convexity properties of holomorphic mappings in Cn.Trans Amer Math Soc, 1999,351:1803–1833

    [14]Zhang W J,Liu T S.The growth and covering theorems for quasi-convex mappings in the unit ball of a complex Banach space.Sci China Ser A-Math,2002,45:1538–1547

    ?Received March 24,2015;revised December 23,2015.Supported by National Natural Science Foundation of China(11471111)and Guangdong Natural Science Foundation(2014A030307016).

    天天操日日干夜夜撸| 亚洲色图综合在线观看| 9热在线视频观看99| 嫩草影视91久久| 亚洲精品一二三| 国产成人精品久久二区二区91| 国产欧美日韩综合在线一区二区| 99国产精品99久久久久| 成人国产一区最新在线观看| 亚洲av日韩精品久久久久久密| 欧美日韩成人在线一区二区| 黑人欧美特级aaaaaa片| 国产精品亚洲一级av第二区| 日韩欧美三级三区| 国产av又大| 伦理电影免费视频| 成人特级黄色片久久久久久久| 久久精品熟女亚洲av麻豆精品| 久久中文字幕一级| 久久久久视频综合| 激情在线观看视频在线高清 | 国产激情久久老熟女| 欧美乱码精品一区二区三区| av天堂在线播放| 亚洲av日韩精品久久久久久密| 99精品久久久久人妻精品| 91大片在线观看| 国产乱人伦免费视频| 免费少妇av软件| 国产精品av久久久久免费| 18禁黄网站禁片午夜丰满| 国产99久久九九免费精品| 动漫黄色视频在线观看| 在线天堂中文资源库| 桃红色精品国产亚洲av| 亚洲精品久久午夜乱码| 亚洲专区中文字幕在线| 国产一区二区三区在线臀色熟女 | 精品国产乱子伦一区二区三区| 黄网站色视频无遮挡免费观看| 两个人免费观看高清视频| 狠狠狠狠99中文字幕| 18禁裸乳无遮挡动漫免费视频| 99久久99久久久精品蜜桃| 999久久久国产精品视频| 久久中文看片网| 麻豆av在线久日| 国产精品永久免费网站| 热re99久久精品国产66热6| 少妇被粗大的猛进出69影院| 1024视频免费在线观看| 50天的宝宝边吃奶边哭怎么回事| 午夜精品国产一区二区电影| 国产三级黄色录像| 欧美日韩福利视频一区二区| 男男h啪啪无遮挡| 久久久久久久国产电影| 亚洲性夜色夜夜综合| 国产精品美女特级片免费视频播放器 | 久久天堂一区二区三区四区| 欧美乱妇无乱码| 国产在线精品亚洲第一网站| 一进一出抽搐gif免费好疼 | 女警被强在线播放| 亚洲av片天天在线观看| 亚洲欧美色中文字幕在线| 日韩欧美免费精品| 日韩欧美在线二视频 | 欧美人与性动交α欧美精品济南到| 欧美久久黑人一区二区| 三上悠亚av全集在线观看| 国产精品.久久久| 日韩有码中文字幕| 热re99久久国产66热| 成人国产一区最新在线观看| 亚洲国产精品一区二区三区在线| 国产高清videossex| 欧美国产精品va在线观看不卡| 亚洲国产精品sss在线观看 | 国产极品粉嫩免费观看在线| 中文字幕精品免费在线观看视频| 国产精品久久久av美女十八| 国产精品久久视频播放| 国产高清国产精品国产三级| 国产高清视频在线播放一区| 成人亚洲精品一区在线观看| 老司机福利观看| 岛国在线观看网站| 1024香蕉在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 日日夜夜操网爽| 18禁观看日本| 国内毛片毛片毛片毛片毛片| 欧美国产精品一级二级三级| 丰满饥渴人妻一区二区三| 午夜福利,免费看| 亚洲精品自拍成人| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品久久久久久毛片 | 99久久99久久久精品蜜桃| 男女午夜视频在线观看| 国产精品久久久久久人妻精品电影| 国产男女内射视频| 欧美日韩黄片免| 国产欧美亚洲国产| 久久久国产成人精品二区 | 一区福利在线观看| 又大又爽又粗| 91精品国产国语对白视频| 日韩欧美国产一区二区入口| 亚洲av欧美aⅴ国产| www.熟女人妻精品国产| 妹子高潮喷水视频| 大陆偷拍与自拍| 中文字幕色久视频| 九色亚洲精品在线播放| 人妻一区二区av| 如日韩欧美国产精品一区二区三区| 亚洲精品久久午夜乱码| 国产深夜福利视频在线观看| 精品福利永久在线观看| 色尼玛亚洲综合影院| 精品国内亚洲2022精品成人 | 亚洲国产欧美一区二区综合| xxx96com| 中文字幕制服av| 黑丝袜美女国产一区| 亚洲综合色网址| av免费在线观看网站| 免费在线观看完整版高清| 69精品国产乱码久久久| 久久精品亚洲熟妇少妇任你| 欧美黑人欧美精品刺激| 人人妻人人澡人人看| 香蕉久久夜色| 一进一出好大好爽视频| 美女 人体艺术 gogo| av电影中文网址| 国产高清激情床上av| 在线观看免费日韩欧美大片| 日日摸夜夜添夜夜添小说| 日本五十路高清| 亚洲av日韩在线播放| 国内久久婷婷六月综合欲色啪| 久久久久久免费高清国产稀缺| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲第一av免费看| 欧美乱妇无乱码| 午夜日韩欧美国产| av视频免费观看在线观看| 久久九九热精品免费| 一级毛片精品| 亚洲精品久久成人aⅴ小说| 国产精华一区二区三区| 亚洲中文日韩欧美视频| 精品国产一区二区三区四区第35| 成年人黄色毛片网站| 一区二区三区国产精品乱码| 久久亚洲精品不卡| 亚洲人成电影免费在线| 老司机在亚洲福利影院| 19禁男女啪啪无遮挡网站| 国产97色在线日韩免费| 欧美成人午夜精品| 亚洲九九香蕉| 成人18禁高潮啪啪吃奶动态图| 成人国产一区最新在线观看| 久久久久国内视频| 日日摸夜夜添夜夜添小说| 在线视频色国产色| 欧美亚洲 丝袜 人妻 在线| 免费一级毛片在线播放高清视频 | 999久久久国产精品视频| 免费观看人在逋| 国内久久婷婷六月综合欲色啪| 每晚都被弄得嗷嗷叫到高潮| 少妇裸体淫交视频免费看高清 | 伦理电影免费视频| 精品亚洲成国产av| 国产色视频综合| 午夜日韩欧美国产| 欧美黑人精品巨大| 99久久精品国产亚洲精品| 亚洲午夜精品一区,二区,三区| 欧美黑人欧美精品刺激| 色综合欧美亚洲国产小说| 亚洲成人免费电影在线观看| 狠狠婷婷综合久久久久久88av| 免费av中文字幕在线| 久久婷婷成人综合色麻豆| 俄罗斯特黄特色一大片| 国产高清国产精品国产三级| 人人妻人人澡人人爽人人夜夜| 欧美一级毛片孕妇| 国产无遮挡羞羞视频在线观看| 色94色欧美一区二区| 少妇的丰满在线观看| 亚洲专区国产一区二区| 大陆偷拍与自拍| 成人影院久久| 久久国产精品男人的天堂亚洲| 男人的好看免费观看在线视频 | 丰满饥渴人妻一区二区三| 国产男女超爽视频在线观看| 久久久国产一区二区| 国产成人欧美| 久久精品91无色码中文字幕| 免费在线观看视频国产中文字幕亚洲| 天堂√8在线中文| 久久久久国产一级毛片高清牌| 中文亚洲av片在线观看爽 | 99国产精品一区二区三区| 精品乱码久久久久久99久播| 首页视频小说图片口味搜索| 少妇粗大呻吟视频| а√天堂www在线а√下载 | 亚洲av欧美aⅴ国产| 欧美最黄视频在线播放免费 | 亚洲av美国av| 国产男女内射视频| 免费黄频网站在线观看国产| 久久精品亚洲av国产电影网| a级毛片黄视频| 国产三级黄色录像| 男女高潮啪啪啪动态图| 国产在线观看jvid| 精品久久久久久电影网| 老司机靠b影院| 亚洲av日韩在线播放| 亚洲色图综合在线观看| 精品乱码久久久久久99久播| 免费久久久久久久精品成人欧美视频| 亚洲成人免费av在线播放| 欧美精品一区二区免费开放| 国产精品1区2区在线观看. | 中文字幕高清在线视频| 午夜福利一区二区在线看| 午夜老司机福利片| 中文亚洲av片在线观看爽 | 国产精品亚洲一级av第二区| 国产成人精品久久二区二区91| 亚洲精品av麻豆狂野| 久久亚洲精品不卡| 久久草成人影院| 老司机靠b影院| 久久久久久久久久久久大奶| 热99国产精品久久久久久7| 亚洲精品美女久久av网站| 午夜久久久在线观看| 午夜精品国产一区二区电影| 久久午夜亚洲精品久久| 亚洲欧美日韩另类电影网站| 亚洲国产精品一区二区三区在线| 搡老熟女国产l中国老女人| 人妻一区二区av| 一级片'在线观看视频| 大型黄色视频在线免费观看| 国产色视频综合| 一边摸一边抽搐一进一出视频| 国产精品九九99| 亚洲精品国产一区二区精华液| 老熟女久久久| 午夜精品久久久久久毛片777| 老司机在亚洲福利影院| 欧美激情高清一区二区三区| 一级毛片女人18水好多| 午夜福利乱码中文字幕| 精品无人区乱码1区二区| 建设人人有责人人尽责人人享有的| 少妇裸体淫交视频免费看高清 | 一本大道久久a久久精品| 日本黄色日本黄色录像| www.熟女人妻精品国产| 久久亚洲精品不卡| 大片电影免费在线观看免费| 亚洲欧美色中文字幕在线| 国产精品美女特级片免费视频播放器 | 精品午夜福利视频在线观看一区| 午夜影院日韩av| 久9热在线精品视频| 国产乱人伦免费视频| 久久人妻福利社区极品人妻图片| 美女福利国产在线| 日韩三级视频一区二区三区| 亚洲精品国产色婷婷电影| 国产一区有黄有色的免费视频| 日本一区二区免费在线视频| 在线观看www视频免费| 亚洲aⅴ乱码一区二区在线播放 | 91成人精品电影| 波多野结衣一区麻豆| 97人妻天天添夜夜摸| 99精国产麻豆久久婷婷| 一级毛片精品| 19禁男女啪啪无遮挡网站| 成人18禁高潮啪啪吃奶动态图| 国产不卡一卡二| 亚洲欧美激情综合另类| 999久久久国产精品视频| 国产精华一区二区三区| 亚洲熟女毛片儿| 免费人成视频x8x8入口观看| 久久精品亚洲熟妇少妇任你| 欧美日韩乱码在线| 一本大道久久a久久精品| 国产免费现黄频在线看| 脱女人内裤的视频| 天堂√8在线中文| av天堂久久9| 亚洲国产看品久久| 自拍欧美九色日韩亚洲蝌蚪91| www.自偷自拍.com| 久久久精品国产亚洲av高清涩受| 日韩免费av在线播放| 高清毛片免费观看视频网站 | 12—13女人毛片做爰片一| 久久久久国内视频| 久久香蕉精品热| 国产精品久久久久久人妻精品电影| 欧美乱色亚洲激情| 老司机影院毛片| 亚洲精品av麻豆狂野| 一本一本久久a久久精品综合妖精| 国产精品欧美亚洲77777| 国产又爽黄色视频| 欧美丝袜亚洲另类 | 老司机在亚洲福利影院| 日本a在线网址| 精品久久久精品久久久| 欧美日韩亚洲综合一区二区三区_| 国产精品电影一区二区三区 | 欧美日韩国产mv在线观看视频| 欧美日本中文国产一区发布| 国产激情欧美一区二区| 美女高潮喷水抽搐中文字幕| 国产精品一区二区免费欧美| 亚洲成av片中文字幕在线观看| 久久ye,这里只有精品| 成年动漫av网址| 成年女人毛片免费观看观看9 | 亚洲熟女精品中文字幕| 日韩中文字幕欧美一区二区| 十八禁人妻一区二区| 九色亚洲精品在线播放| 欧美精品av麻豆av| 久久中文看片网| 正在播放国产对白刺激| 亚洲精品一二三| 久久久久精品国产欧美久久久| 日韩精品免费视频一区二区三区| 多毛熟女@视频| 精品国产一区二区三区四区第35| 国产精品久久电影中文字幕 | 国产麻豆69| 午夜视频精品福利| 热99re8久久精品国产| 久久久久久久国产电影| 亚洲人成伊人成综合网2020| 国产男靠女视频免费网站| 免费在线观看亚洲国产| 涩涩av久久男人的天堂| 国产单亲对白刺激| 午夜福利欧美成人| 国产精品 欧美亚洲| 亚洲片人在线观看| 亚洲欧洲精品一区二区精品久久久| 久久精品国产亚洲av香蕉五月 | 男女床上黄色一级片免费看| 欧美最黄视频在线播放免费 | 欧美日韩乱码在线| 岛国在线观看网站| 最近最新免费中文字幕在线| 欧美日韩瑟瑟在线播放| 天天操日日干夜夜撸| 亚洲一区中文字幕在线| 亚洲av欧美aⅴ国产| 欧美日韩av久久| 久久99一区二区三区| 欧美日韩瑟瑟在线播放| 亚洲国产欧美一区二区综合| 亚洲熟女毛片儿| 男人的好看免费观看在线视频 | 18禁国产床啪视频网站| 精品久久久久久久久久免费视频 | 国内毛片毛片毛片毛片毛片| 欧美国产精品va在线观看不卡| 亚洲七黄色美女视频| 久久精品亚洲熟妇少妇任你| 夜夜爽天天搞| 国产视频一区二区在线看| 又大又爽又粗| 国产一区二区三区视频了| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区视频在线观看免费 | 丝袜美腿诱惑在线| 欧美激情久久久久久爽电影 | 色94色欧美一区二区| 亚洲午夜理论影院| 免费观看人在逋| 久久精品亚洲熟妇少妇任你| av超薄肉色丝袜交足视频| 午夜激情av网站| 1024视频免费在线观看| 国产一区二区三区视频了| 久久香蕉激情| 亚洲少妇的诱惑av| 一级片'在线观看视频| 国产主播在线观看一区二区| 久久影院123| 精品乱码久久久久久99久播| 啦啦啦在线免费观看视频4| av有码第一页| 国产在视频线精品| 欧美在线一区亚洲| 国产精品亚洲一级av第二区| 国产熟女午夜一区二区三区| 午夜免费成人在线视频| 婷婷丁香在线五月| 午夜福利乱码中文字幕| 国产精品一区二区免费欧美| 女性生殖器流出的白浆| 国产精品久久久久成人av| 亚洲七黄色美女视频| 国产乱人伦免费视频| 又大又爽又粗| 欧美日韩亚洲高清精品| 精品久久久久久电影网| 99re在线观看精品视频| 色精品久久人妻99蜜桃| 麻豆乱淫一区二区| 在线观看免费午夜福利视频| 国产亚洲精品第一综合不卡| 国产精品免费大片| 另类亚洲欧美激情| 亚洲色图综合在线观看| 丝袜美腿诱惑在线| av免费在线观看网站| 大香蕉久久成人网| 丝瓜视频免费看黄片| 欧美丝袜亚洲另类 | 男人舔女人的私密视频| 亚洲免费av在线视频| 99re在线观看精品视频| 最新美女视频免费是黄的| 亚洲熟妇熟女久久| 久久精品国产综合久久久| а√天堂www在线а√下载 | x7x7x7水蜜桃| 国产一区在线观看成人免费| 亚洲精品国产色婷婷电影| 亚洲成av片中文字幕在线观看| 成人精品一区二区免费| 亚洲国产精品一区二区三区在线| 亚洲熟女毛片儿| 久99久视频精品免费| 亚洲美女黄片视频| 伦理电影免费视频| 美女高潮到喷水免费观看| 美国免费a级毛片| 交换朋友夫妻互换小说| 在线观看www视频免费| 国产成人av教育| 一级a爱片免费观看的视频| 日韩欧美在线二视频 | 精品久久久精品久久久| 亚洲精华国产精华精| 超碰97精品在线观看| 亚洲人成伊人成综合网2020| 一区福利在线观看| 久久青草综合色| 叶爱在线成人免费视频播放| 久热爱精品视频在线9| 欧美日韩视频精品一区| 国产男靠女视频免费网站| 免费久久久久久久精品成人欧美视频| 天堂动漫精品| 香蕉久久夜色| 久久久久国内视频| 欧美+亚洲+日韩+国产| 少妇的丰满在线观看| 他把我摸到了高潮在线观看| 亚洲 欧美一区二区三区| 俄罗斯特黄特色一大片| 一级黄色大片毛片| 国产成人一区二区三区免费视频网站| 精品国产一区二区三区四区第35| 淫妇啪啪啪对白视频| 大陆偷拍与自拍| 九色亚洲精品在线播放| 欧美日韩一级在线毛片| 国产在线观看jvid| 国产精品一区二区免费欧美| 精品国产一区二区三区久久久樱花| 国产乱人伦免费视频| 久9热在线精品视频| 日韩成人在线观看一区二区三区| 国产aⅴ精品一区二区三区波| 欧美激情极品国产一区二区三区| 757午夜福利合集在线观看| 国产精品偷伦视频观看了| 黑人巨大精品欧美一区二区mp4| 老鸭窝网址在线观看| 在线观看www视频免费| 色婷婷av一区二区三区视频| 久久国产乱子伦精品免费另类| 十分钟在线观看高清视频www| 国产成人系列免费观看| 91老司机精品| 国产av精品麻豆| 九色亚洲精品在线播放| 国产国语露脸激情在线看| 啦啦啦免费观看视频1| 人人澡人人妻人| 亚洲性夜色夜夜综合| 久热爱精品视频在线9| 视频区图区小说| 国产淫语在线视频| 黄色a级毛片大全视频| 亚洲性夜色夜夜综合| 又紧又爽又黄一区二区| 视频区图区小说| 亚洲精品久久成人aⅴ小说| 国精品久久久久久国模美| 男女免费视频国产| 身体一侧抽搐| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成av片中文字幕在线观看| 亚洲专区字幕在线| 久久九九热精品免费| 免费黄频网站在线观看国产| 国产精品一区二区免费欧美| 国产亚洲精品久久久久5区| 在线观看www视频免费| 在线av久久热| 男女床上黄色一级片免费看| 热99国产精品久久久久久7| tocl精华| 国产精品久久久av美女十八| 怎么达到女性高潮| 51午夜福利影视在线观看| 国产无遮挡羞羞视频在线观看| 丰满迷人的少妇在线观看| 黑丝袜美女国产一区| 国产精品亚洲一级av第二区| 女人精品久久久久毛片| 亚洲av美国av| 两性午夜刺激爽爽歪歪视频在线观看 | 99热国产这里只有精品6| 一a级毛片在线观看| 国精品久久久久久国模美| 精品福利永久在线观看| 好男人电影高清在线观看| 午夜成年电影在线免费观看| 国产免费现黄频在线看| 黑人巨大精品欧美一区二区mp4| 色婷婷av一区二区三区视频| 日韩欧美三级三区| 久久精品亚洲熟妇少妇任你| 中文字幕人妻熟女乱码| 两个人免费观看高清视频| 色播在线永久视频| 欧美日韩成人在线一区二区| 波多野结衣av一区二区av| 高潮久久久久久久久久久不卡| 天堂中文最新版在线下载| 悠悠久久av| 欧美日韩亚洲国产一区二区在线观看 | 国产欧美日韩一区二区精品| 天天影视国产精品| 丁香六月欧美| 免费看十八禁软件| 久久久国产欧美日韩av| 精品久久久久久久久久免费视频 | 久久性视频一级片| 久久国产精品男人的天堂亚洲| 亚洲精品av麻豆狂野| 一级,二级,三级黄色视频| 99久久人妻综合| 精品第一国产精品| 在线看a的网站| 999久久久精品免费观看国产| 婷婷丁香在线五月| 久久久久久久午夜电影 | 日韩欧美一区二区三区在线观看 | 大香蕉久久网| av免费在线观看网站| 亚洲成a人片在线一区二区| 男女床上黄色一级片免费看| 亚洲午夜精品一区,二区,三区| 国产成人一区二区三区免费视频网站| 宅男免费午夜| 久久精品亚洲熟妇少妇任你| 一进一出抽搐动态| a级片在线免费高清观看视频| 国产精品久久久久成人av| 在线观看日韩欧美| 欧美午夜高清在线| 亚洲专区字幕在线| 99香蕉大伊视频| 热99久久久久精品小说推荐| 亚洲自偷自拍图片 自拍| 欧美日韩福利视频一区二区| 午夜免费观看网址| 欧美乱色亚洲激情| 操出白浆在线播放| 亚洲成人国产一区在线观看| 757午夜福利合集在线观看| 精品国产一区二区久久| a级片在线免费高清观看视频| 免费日韩欧美在线观看| 精品国产一区二区久久| 一本一本久久a久久精品综合妖精| 手机成人av网站| 女人精品久久久久毛片| 日韩三级视频一区二区三区|