• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON DOUBLY WARPED PRODUCT OF COMPLEX FINSLER MANIFOLDS?

    2017-01-21 05:31:03YongHE何勇ChunpingZHONG鐘春平
    關(guān)鍵詞:何勇

    Yong HE(何勇)Chunping ZHONG(鐘春平)

    1.School of Mathematical Sciences,Xiamen University,Xiamen 361005,China

    2.School of Mathematical Sciences,Xinjiang Normal University,Urumqi 830053,China

    ON DOUBLY WARPED PRODUCT OF COMPLEX FINSLER MANIFOLDS?

    Yong HE(何勇)1,2Chunping ZHONG(鐘春平)1

    1.School of Mathematical Sciences,Xiamen University,Xiamen 361005,China

    2.School of Mathematical Sciences,Xinjiang Normal University,Urumqi 830053,China

    E-mail:19020130154147@stu.xmu.edu.cn;zcp@xmu.edu.cn

    Let(M1,F1)and(M2,F2)be two strongly pseudoconvex complex Finsler manifolds.The doubly wraped product complex Finsler manifold(f2M1×f1M2,F)of(M1,F1) and(M2,F2)is the product manifold M1×M2endowed with the warped product complex Finsler metric F2=f22F21+f21F22,where f1and f2are positive smooth functions on M1and M2,respectively.In this paper,the most often used complex Finsler connections,holomorphic curvature,Ricci scalar curvature,and real geodesics of the DWP-complex Finsler manifold are derived in terms of the corresponding objects of its components.Necessary and sufcient conditions for the DWP-complex Finsler manifold to be K¨ahler Finsler(resp.,weakly K¨ahler Finsler,complex Berwald,weakly complex Berwald,complex Landsberg)manifold are obtained,respectively.It is proved that if(M1,F1)and(M2,F2)are projectively fat,then the DWP-complex Finsler manifold is projectively fat if and only if f1and f2are positive constants.

    doubly warped products;complex Finsler metric;holomorphic curvature; geodesic

    2010 MR Subject Classifcation53C60;53C40

    1 Introduction

    Singly warped product or simply warped product of Riemannian manifolds was frst defned by O’Neill and Bishop in[12]to construct Riemannian manifolds with negative sectional curvature,then in[22],O’Neill obtained the curvature formulae of warped products in terms of curvatures of its components.The recent studies showed that warped product is useful in theoretical physics,particulary in general relativity.For instance,Beem,Ehrlich and Powell [11]pointed out that many exact solutions to Einstein’s feld equation can be expressed in terms of Lorentzian warped products.Under the assumption that four-dimensional space-time to be a general warped product of two surfaces,Katanaev,Kl¨osch and Kummer[16]explicitly constructed all global vacuum solutions to the four-dimensional Einstein equations.Doubly warped product of Riemannian manifolds was also of interesting and was studied by Unal[30].

    The notion of warped product was recently extended to Finsler spaces.In[6,7],Asanov obtained some models of relativity theory which were described by the warped product of Finsler metrics.In[18],Kozma,Peter and Varga studied the warped product of real Finsler manifolds. They obtained the relationship between the Cartan connection of the warped product Finsler metric and the Cartan connections of its components.More recently,Hushmandi and Rezaii [8]studied the warped product Finsler spaces of Landsberg type,and then in[9],Hushmandi, Rezaii and Morteza obtained the curvature of warped product Finsler spaces and the Laplacian of the Sasaki-Finsler metrics.In[23],Peyghan and Tayebi obtained the relationship between the Riemannian curvature of the doubly warped product Finsler manifold and the curvatures of its components.

    Let(M1,F1)and(M2,F2)be two complex Finsler manifolds.In[33],Wu and Zhong considered the product complex manifold M=M1×M2endowed with a complex Finsler metric F=f(K,H),where f(K,H)is a function of K=F21and H=F22.The possibility of F to be K¨ahler Finsler metric and complex Berwald metric were investigated.Recently in[35],Zhong showed that there are lots of strongly pseudoconvex(even strongly convex)unitary invariant complex Finsler metrics in domains in Cn.In this paper,we consider the warped product of strongly pseudoconvex complex Finsler manifolds.Our purpose of doing this is to study the possibility of constructing some special strongly pseudoconvex complex Finsler metrics such as K¨ahler Finsler metrics,weakly K¨ahler Finsler metrics,complex Berwald metrics,complex Landsberg metrics and weakly complex Berwald metrics,among which to fnd possible way to obtain strongly pseudoconvex complex Finsler metrics which are of constant holomorphic curvatures.Note that it was prove in[33]that the Chern-Finsler nonlinear connection coefcients are independent of the choice of f,i.e.,there is no diference between the case F2=f(K,H) and F2=F21+F22.In this paper,the warping product metric F on the product complex manifold M=M1×M2is F2=f22F21+f21F22,which generalizes[33]whenever f1and f2are not positive constants.

    This paper is organized as follows.In Section 2,we recall some basic concepts and notions in complex Finsler geometry.In Section 3,we derive the most often used complex Finsler connections(the Chern-Finsler connection,the complex Rund connection,the complex Berwald connection,and the complex Hashiguchi connection,etc.)of the DWP-complex Finsler manifold in terms of the corresponding connections of its components,respectively.In Section 4,we derive the formulae of the holomorphic curvature and Ricci scalar curvature of the DWP-complex Finsler manifold in terms of the holomorphic curvatures and Ricci scalar curvatures of its components.In Section 5,we obtain the necessary and sufcient conditions for the DWP-complex Finsler manifold to be K¨ahler Finsler(resp.weakly K¨ahler Finsler,complex Berwald,weakly complex Berwald,complex Landsberg,complex locally Minkowski)manifold. In Section 6,we derive the real geodesic equations of the DWP-complex Finsler manifold in terms of the geodesic equations of its components,and prove that if the warping function f1(resp.f2)is a positive constant,then(M1,F1)(resp.(M2,F2))is a totally geodesic manifold of the DWP-complex Finsler manifold(f2M1×f1M2,F),and the projection of any geodesic of the DWP-complex Finsler manifold onto M1(resp.M2)is a geodesic of(M1,F1)(resp.(M2,F2)). In Section 7,we prove that if(M1,F1)and(M2,F2)are locally projectively fat manifolds,then the DWP-complex Finsler manifold(f2M1×f1M2,F)is projectively fat if and only if f1andf2are positive constants.

    The main results in this paper are as follows.

    Theorem 1.1Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).Then the holomorphic curvature of(M,F)along a holomorphic tangent vector v=(vi,vi′)∈T1,0zM satisfying F1(π1(v))=1 and F2(π2(v))=1 is given by

    Theorem 1.1 implies that if KF1(π1(v))=KF2(π2(v))≡c,then KF(v)≡c if and only if the warping functions lnf1and lnf2are pluriharmonic functions on M1and M2,respectively.

    Theorem 1.2Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1)and (M2,F2).Then the Ricci scalar curvature of(f2M1×f1M2,F)associated to the Chern-Finsler connections is given by

    where RicF1and RicF2are Ricci scalar curvature of(M1,F1)and(M2,F2),respectively.

    Theorem 1.2 implies that equality(1.2)is independent of the choice of the warping functions f1and f2.

    Theorem 1.3Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of two weakly K¨ahler Finsler manifolds(M1,F1)and(M2,F2).Then(f2M1×f1M2,F)is a weakly K¨ahler Finsler manifold if and only if the functions f1and f2are positive constants.

    Theorem 1.4The DWP-complex Finsler manifold(f2M1×f1M2,F)is a complex Berwald manifold if and only if(M1,F1)and(M2,F2)are complex Berwald manifolds and the functions f1and f2are positive constants.

    Theorems 1.3 and 1.4 imply that unless the doubly warping function f1and f2are positive constants,the doubly warped product operation does not preserve weakly K¨ahler Finsler manifolds and complex Berwald manifolds.

    Theorem 1.5The DWP-complex Finsler manifold(f2M1×f1M2,F)is a weakly complex Berwald manifold if and only if(M1,F1)and(M2,F2)are weakly complex Berwald manifolds.

    Theorem 1.5 implies that the doubly warped product operation preserves weakly complex Berwald metrics.Since there are lots of weakly complex Berwald metrics(see[35]),this theorem provides us an efective way to construct new weakly complex Berwald metrics.

    Theorem 1.6Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of two complex Finsler manifolds(M1,F1)and(M2,F2).

    (i)If the warping functions f1(resp.f2)is a positive constant on M1(resp.M2),then any geodesic of(M1,F1)(resp.(M2,F2))is a geodesic of(f2M1×f1M2,F),that is to say(M1,F1) (resp.(M2,F2))is a totally geodesic subspace of the doubly warped product complex Finsler space(f2M1×f1M2,F).

    (ii)If the warping functions f1(resp.f2)is a positive constant on M1(resp.M2),then the projection of any geodesic of the DWP-complex Finsler manifold(f2M1×f1M2,F)onto M1(resp.M2)is a geodesic of(M1,F1)(resp.(M2,F2)).

    Theorem 1.7Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of two strongly convex complex Finsler manifolds(M1,F1)and(M2,F2).

    (i)If(M1,F1)and(M2,F2)are locally projectively fat manifolds,then(f2M1×f1M2,F) is a locally projectively fat manifold if and only if the warping functions f1and f2are positive constants.

    2 Preliminary

    Let M be a complex manifold of complex dimension n.We denote z=(z1,···,zn)the local holomorphic coordinates on M,and(z,v)=(z1,···,zn,v1,···,vn)the induced local holomorphic coordinates on the holomorphic tangent bundle T1,0M of M.We shall assume that M is endowed with a strongly pseudoconvex complex Finsler metric F in the following sense.

    Defnition 2.1(see[1]) A strongly pseudoconvex complex Finsler metric F on a complex manifold M is a continuous function F:T1,0M→R+satisfying

    (i)G=F2is smooth on?M=T1,0M?{zero section};

    (ii)F(p,v)>0 for all(p,v)∈ ?M;

    (iii)F(p,ζv)=|ζ|F(p,v)for all(p,v)∈T1,0M and ζ∈C;

    (iv)the Levi matrix(or complex Hessian matrix)

    is positive defnite on?M.

    In this paper,we denote(Gνβ)the inverse matrix of(Gαν)such that GνβGαν=δβα.We also use the notion in[1],that is,the derivatives of G with respect to the v-coordinates and z-coordinates are separated by semicolon;for instance,

    Let(M1,F1)and(M2,F2)be two strongly pseudoconvex complex Finsler manifolds with dimCM1=m and dimCM2=n,then M=M1×M2is a strongly pseudoconvex complex Finsler manifold with dimCM=m+n.

    Throughout this paper we use the natural product coordinate system on the product manifold M=M1×M2.Let(p0,q0)be a point in M,then there are coordinate chart(U,z1) and(V,z2)on M1and M2,respectively,such that p0∈U and q0∈V.Thus we obtain a coordinate chart(W,z)on M such that W=U×V and(p0,q0)∈W,and for all(p,q)∈W, z(p,q)=(z1(p),z2(q)),where π1:M1×M2→M1,π2:M1×M2→M2are natural projections.

    Let T1,0M1,T1,0M2and T1,0M be the holomorphic tangent bundles of M1,M2and M, respectively.Denote dπ1:T1,0(M1×M2)→ T1,0M1,dπ2:T1,0(M1×M2)→ T1,0M2the holomorphic tangent maps induced by π1and π2,respectively.Note that dπ1(z,v)=(z1,v1) and dπ2(z,v)=(z2,v2)for every v=(v1,v2)∈T1,0z(M1×M2)with v1=(v1,···,vm)∈T1,0z1M1and v2=(vm+1,···,vm+n)∈T1,0z2M2.Denote?M1=T1,0M1?{zero section},?M2=T1,0M2?{zero section},fM=fM1×fM2?T1,0(M1×M2)?{zero section}.

    Defnition 2.2Let(M1,F1)and(M2,F2)be two strongly pseudoconvex complex Finsler manifolds and f1:M1→(0,+∞)and f2:M2→(0,+∞)be smooth functions.The doubly warped product(abbreviated as DWP)complex Finsler manifold of(M1,F1)and(M2,F2) is the product complex manifold M=M1×M2endowed with the complex Finsler metricgiven by

    for z=(z1,z2)∈M and v=(v1,v2)∈T1,0zM?{zero section}.The functions f1and f2are called warped functions.The DWP-complex Finsler manifold of(M1,F1)and(M2,F2)is denoted by(f2M1×f1M2,F).

    It is obvious that the function F defned by(2.2)is a strongly pseudoconvex complex Finsler metric on M.Note that it is natural to ask F to be defned onfM rather than on T1,0(M1×M2)?{zero section},or onfM1×T1,0M2,or on T1,0M1×fM2,since Fiis smooth on T1,0Miif and only if Ficomes from a Hermitian metric on Mifor i=1,2.

    If either f1=1 or f2=1,but not both of them,then(f2M1×f1M2,F)becomes a warped product of complex Finsler manifolds(M1,F1)and(M2,F2).If f1≡1 and f2≡1,then (f2M1×f1M2,F)becomes a product of complex Finsler manifolds(M1,F1)and(M2,F2).If neither f1nor f2is a constant,then we call(f2M1×f1M2,F)a nontrivial(proper)DWP-complex Finsler manifold of(M1,F1)and(M2,F2).

    The local coordinates(z,v)onfM are transformed by the rules

    For?/?vα,we have

    Denote g=F21,h=F22,so that G=F2=f22g+f21h and

    The fundamental tensor matrix of F is given by

    with its inverse matrix(Gβα)given by

    Let V1,0be the holomorphic vertical vector subbundle ofwhich is locally spanned by the nature frame feldsand is called the doubly warped vertical distribution onThen,the complementary vector subbundleis locally spanned bywhereis called the doubly warped horizontal distribution onfM.Thus the holomorphic tangent bundleadmits the decomposition

    3 Connections of DWP-complex Finsler Manifold

    In complex Finsler geometry,the Chern-Finsler connection is the most often used complex Finsler connection.There are also other complex Finsler connections,such as complex Rund connection,complex Berwald connection,complex Hashiguchi connection and Rund type complex Finsler connection used in various topics[27].

    In this section we derive these connections of DWP-complex Finsler manifold,which are expressed in terms of connections of its components.

    The Chern-Finsler complex nonlinear connectionassociate to a given strongly pseudoconvex complex Finsler metric F is given by

    The Chern-Finsler connection D:X(V1,0)→ X(T?CfM ?V1,0)associated to a strongly pseudoconvex complex Finsler metric F was frst introduced in[17]and systemically studied in[1].Essentially,the Chern-Finsler connection associated to F is the Hermitian connection on the holomorphic vector bundle V1,0endowed with the Hermitian metric h·,·i induced by F. The connection 1-forms ωαβof D is of type(1,0)and are given by

    where

    and

    In the following we denote

    Note that

    Lemma 3.1Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1)and (M2,F2).Then the Chern-Finsler complex nonlinear connection coefcients associated to F are given by

    where

    ProofBy using(2.5)and(3.1),we have

    Similarly,we can obtain other equalities in Lemma 3.1.

    Using(3.3),(3.4)and Lemma 3.1,after a straightfoward computation,we have

    Proposition 3.2Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2),Γαβ;μand Γαβμare the horizontal and vertical coefcients of the Chern-Finsler connection associated to F,respectively.Then

    and

    Using(3.3)and Lemma 3.1,we have

    Proposition 3.3Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2),Γαβ;μbe the coefcients of the complex Rund connection associated to F.Then

    Next we shall derive the complex Berwald nonlinear connection coefcientswhich is obtained fromAccording to[21],the complex nonlinear connectionalways determine a complex sprayConversely,the complex spray Gαinduces another complex nonlinear connection denoted by

    which are called the complex Berwald nonlinear coefcients associated to F.Note that we always have

    The complex Berwald connectionwas frst introduced in [21],and its connection 1-form can be expressed as

    where

    By Lemma 3.1 one may easily establish the following result.

    Lemma 3.4Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1)and (M2,F2).Then the complex spray coefcients Gαassociated to Γα;μ(or equivalently Gαμ)are given by

    Using(3.8),(3.10)and Lemma 3.4,by a straight forward computation,we obtain the following result.

    Lemma 3.5Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1)and (M2,F2).Then the complex Berwald nonlinear connection coefcients Gαμare given by

    where

    Corollary 3.6Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).Then the complex Berwald connection coefcients Gαβμassociated to F are given by

    The complex Hashiguchi connectionis a complex analogue of the Hashiguchi connection in real Finsler geometry[19].Its connection 1-formsare given by

    where Gαβμare given by(3.10),Γαβμare given by(3.4)and

    Proposition 3.7Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).Then the horizontal and vertical connection coefcients of the complex Hashiguchi connection,respectively Gαβμand Γαβμare given by Proposition 3.3 and Corollary 3.6.

    In[5],Aldea and Munteanu gave the defnition of complex Landsberg space.A complex Finsler manifold(M,F)is called a complex Landsberg manifold if

    where

    Proposition 3.8Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).Then

    ProofUsing(2.4),(2.5),(3.13),(3.14)and Lemma 3.5,we have

    Similarly,we can obtain other equalities of Proposition 3.8.

    4 Holomorphic Curvature and Ricci Scalar Curvature of Doubly Warped Product Complex Finsler Manifold

    Our purpose in this section is to derive formulae of the holomorphic curvature and Ricci scalar curvature of DWP-complex Finsler manifold in terms of the holomorphic curvature and Ricci scalar curvature of its components.

    In a complex Finsler space(M,F),there are two ways of defning the holomorphic curvature of F.

    The frst method gives the holomorphic curvature on(M,F)from the Gauss curvature on the unit disc△ ?C via a holomorphic map ?:△ → M.More precisely,the holomorphic curvature is defned by KF(v)=sup{K(??G)(0)}[31].The second method to defne the holomorphic curvature on(M,F)from the curvature tensor ? of a complex Finsler connection and this was considered by Kobayashi[17],and locally expression of the holomorphic curvature of a strongly pseudoconvex Finsler metric F alongwith respect to Chern-Finsler connection D is given by Abate and Patrizio[1]:

    In[3],Aikou proved that the above two defnitions is equivalent to each other,and if F comes from a Hermitian metric on M,then the holomorphic curvature is just the holomorphic sectional curvature in the usual sense[32].

    In[27],Sun and Zhong pointed out that the holomorphic curvature of a strongly pseudoconvex Finsler metric F along a nonzero vectorwith respect to the Chern-Finsler connection D,or the complex Rund connection?D,or the complex Berwald connection?D,or the complex Hashiguchi connectionˇD,are coincide with each other.In the following,we use the Chern-Finsler connection to derive the holomorphic curvature of the DWP-complex Finsler manifold.

    Theorem 4.1Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).Then the holomorphic curvature of(M,F)along a holomorphic tangent vectorsatisfying F1(π1(v))=1 and F2(π2(v))=1 is given by

    ProofThe holomorphic curvature of the DWP-complex Finsler manifold(f2M1×f1M2, F)with respect to the Chern-Finsler connection is given by

    where in the last equality we used

    Similarly,we have

    Thus we get(4.2).

    Corollary 4.2Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).If KF1(π1(v))=KF2(π2(v))≡c,lnf1and lnf2are pluriharmonic functions on M1and M2,respectively.Then the holomorphic sectional curvature of(f2M1×f1M2,F)along v=(vi,vi′)is

    The Ricci scalar curvature of F along a nonzero vectorassociated to the Chern-Finsler connection is given by[21]:

    Theorem 4.3Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1)and (M2,F2).Then the Ricci scalar curvature of(f2M1×f1M2,F)associated to the Chern-Finsler connection is given by

    where RicF1and RicF2are Ricci scalar curvatures of(M1,F1)and(M2,F2),respectively.

    ProofUsing(4.4),we have

    Using Lemma 3.1,and notice thatit follows that

    Similar calculations gives

    Thus

    5 Doubly Warped Product of Special Complex Finsler Manifolds

    Let(M1,F1)and(M2,F2)be two K¨ahler Finsler(or weakly K¨ahler Finsler,complex Berwald,weakly complex Berwald,complex Landsberg)manifold,one may want to know whether the DWP-complex Finsler manifold(f2M1×f1M2,F)is also a K¨ahler Finsler(or weakly K¨ahler Finsler,complex Berwald,weakly complex Berwald,complex Landsberg)manifold.In this section,we shall give a complete answer to these questions.

    Defnition 5.1(see[1]) Let F be a strongly pseudoconvex complex Finsler metric on a complex manifold M.F is called a strongly K¨ahler Finsler metric ifcalled a K¨ahler Finsler metric ifcalled a weakly K¨ahler Finsler metric if

    In[13],Chen and Shen proved that a K¨ahler Finsler metric is actually a strongly K¨ahler Finsler metric.Thus there are only two K¨ahlerian notions in Finsler setting,i.e.,K¨ahler Finsler metric and weakly K¨ahler Finsler metric.

    Now,let us consider the case of K¨ahler Finsler manifolds and weakly K¨ahler Finsler manifolds.We have the following theorem.

    Theorem 5.2Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).Then(f2M1×f1M2,F)is a K¨ahler Finsler manifold if and only if(M1,F1)and (M2,F2)are K¨ahler Finsler manifolds and the functions f1and f2are positive constants.

    ProofAssume that(f2M1×f1M2,F)is a K¨ahler Finsler manifold,then Γαβ;μ=Γαμ;β.By Proposition 3.2,this is equivalent to

    Thus(M1,F1)and(M2,F2)are K¨ahler Finsler manifolds and the functions f1and f2are positive constant.

    Theorem 5.3Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of two weakly K¨ahler Finsler manifolds(M1,F1)and(M2,F2).Then(f2M1×f1M2,F)is a weakly K¨ahler Finsler manifold if and only the functions f1and f2are positive constants.

    ProofBy puttingμ=k in(5.1)and using Proposition 3.2,after a long but trivial computation,we obtain

    Similary,By puttingμ=k′in(5.1),we obtain

    By Defnition 5.1,(f2M1×f1M2,F)is a weakly K¨ahler Finsler manifold if and only if

    Note that gi(Γij;k?Γik;j)vjand f1are independent of vk′,thus diferentiating(5.2)with respect to vk′,we get

    Interchanging indices j and k in(5.2),and then contracting the obtained equality with vj,we get

    Contracting(5.3)with vk′,we get

    Now subtracting(5.6)from(5.5)and using(5.4),we get

    Since(M1,F1)and(M2,F2)are weakly K¨ahler Finsler manifolds,we have

    Thus we obtain the following diferential equation

    Note that the left hand side of(5.8)depends only on(z1,v1),while the right hand side of(5.8) depends only on(z2,v2),thus we get

    Suppose c 6=0,then

    Diferentiating the above two equations with respect to vi,vjand vi′,vj′,respectively,we get

    This is a contradiction since(gij)and(hi′j′)are positive defnite matrices.Thus it necessary that c=0,which implies that f1and f2are positive constants.

    As an immediate consequence of relations(2.4),we have

    Theorem 5.4The DWP-complex Finsler manifold(f2M1×f1M2,F)is a Hermitian manifold if and only if(M1,F1)and(M2,F2)are Hermitian manifolds.

    For the case of complex Berwald manifold,weakly complex Berwald manifold and complex Landsberg manifolds,we need the following defnitions.

    Defnition 5.5(see[4]) A complex Finsler manifold(M,F)is called a complex Berwald manifold if the horizontal connection coefcients Γαβ;μ(z,v)of the Chern-Finsler connection are independent of fbre coordinates v and its associated Hermitian metric hFis a K¨ahler metric on M.

    Remark 5.6In[2],Aikou gave the defnition of complex Berwald manifold in which there is no requirement of the K¨ahler Finsler condition.But diferent from real Finsler geometry, in complex Finsler geometry,there exists two diferent covariant derivative for Cartan tensor, Cijk|hand Cijk|h.The requirement of the K¨ahler Finsler condition in[4]implies that Cijk|h=0. Later the above defnition of complex Berwald manifold was given by Aikou himself[4],and was widely used in various topics[3,5].In this paper,complex Berwald manifold is in the sense of Aikou[4].

    Defnition 5.7(see[34]) Let F be a strongly pseudoconvex complex Finsler metric on M. If locally the connection coefcients Gαβμ(z,v)of the associated complex Berwald connection are independent of fbre coordinates v,then F is called a weakly complex Berwald metric.

    Defnition 5.8(see[5]) Let F be a complex Finsler metric on complex manifold M.F is said to be a complex Landsberg metric if it satisfes

    Theorem 5.9The DWP-complex Finsler manifold(f2M1×f1M2,F)is a complex Berwald manifold if and only if(M1,F1)and(M2,F2)are complex Berwald manifolds and the functions f1and f2are positive constants.

    ProofAccording to Theorem 5.2 and Defnition 5.5,(f2M1×f1M2,F)is a complex Berwald manifold if and only if(M1,F1)and(M2,F2)are K¨ahler manifolds,the functions f1and f2are positive constants and Γαβ;μ(z,v)=Γαβ;μ(z).Thus by the relations of the coefcient Γαβ;μof the Chern-Finsler connection in Proposition 3.2,we have

    This is equivalent to the conditions that(M1,F1)and(M2,F2)are complex Berwald manifolds and the functions f1and f2are positive constants.

    In the sense of Aikou[3,4],a complex Finsler manifold(M,F)is said to be modeled on a complex Minkowski space if the connection coefcients Γαβ;μ(z,v)of the Chern-Finsler connection depend only on the coordinates of the base manifoldSo, according to Proposition 3.2,we have

    Corollary 5.10The DWP-complex Finsler manifold(f2M1×f1M2,F)is modeled on a complex Minkowski space if and only if(M1,F1)and(M2,F2)are modeled on a complex Minkowski spaces.

    In the sense of Aikou[2],a complex Finsler manifold(M,F)is said to be complex locally Minkowski,if there exits an open coversuch that on eachthe function F is a function of the fbre-coordinate only.A complex Finsler manifold(M,F)is complex locally Minkowski if and only if it is modeled on a complex Minkowski space and the complex Rund connection(i.e.,the connection coefcients Γαβ;μ(z,v)of the associated Chern-Finsler connection)on(M,F)is holomorphic.In[4],Aikou gave an example of complex manifold which is modeled on a complex Minkowski space,but not complex locally Minkowski.

    According to Proposition 3.2,we have

    Corollary 5.11If lnf1and lnf2are pluriharmonic functions on M1and M2,respectively, then the DWP-complex Finsler manifold(f2M1×f1M2,F)is a complex locally Minkowski if and only if(M1,F1)and(M2,F2)are complex locally Minkowski manifolds.

    Theorem 5.12The DWP-complex Finsler manifold(f2M1×f1M2,F)is a weakly complex Berwald manifold if and only if(M1,F1)and(M2,F2)are weakly complex Berwald manifolds.

    ProofAccording to Defnition 5.7,(f2M1×f1M2,F)is a weakly complex Berwald manifold if and only if Gαβμ(z,v)=Gαβμ(z).Thus by the relations of the complex Berwald connection in Proposition 3.6,we have

    which is equivalent to the condition that(M1,F1)and(M2,F2)are weakly complex Berwald manifolds. ?

    Remark 5.13It was shown in[34]that the complex Wrona metric is a weakly complex Berwald metric,but not a complex Berwald metric.This assertion was proved by showing that Gα=12Γα;μvμ≡0 while Γα;μdo not vanish identically.It was also shown in[35]that there are lots of unitary invariant strongly pseudoconvex complex Finsler metric which are weakly complex Berwald metrics.Theorem 5.12 provide us an efective way to construct weakly complex Berwald manifolds.

    Theorem 5.14The DWP-complex Finsler manifold(f2M1×f1M2,F)is a complex Landsberg manifold if and only if(M1,F1)and(M2,F2)are complex Landsberg manifolds and the functions f1and f2are positive constants.

    ProofAccording to Defnition 5.8,Propositions 3.6 and 3.8,(f2M1×f1M2,F)is a complex Landsberg manifold if and only if

    which is equivalent to the condition that(M1,F1)and(M2,F2)are complex Landsberg manifolds and the functions f1and f2are positive constants.

    A complex n-dimensional complex Finsler space(M,F)is called a G-Landsberg spaces if it is complex Landsberg and the spray coefcient Gαare holomorphic with respect to v,i.e., ˙?μ(Gα)=0[5].Thus we have

    Corollary 5.15The DWP-complex Finsler manifold(f2M1×f1M2,F)is a complex GLandsberg manifold if and only if(M1,F1)and(M2,F2)are complex G-Landsberg manifolds and the functions f1and f2are positive constants.

    Remark 5.16In real Finsler Geometry,every Berwald space is a Landsberg space,the converse,however,is still an open problem[10].This problem was studied by several authors [20,25,28,29].In complex Finsler geometry,there is also notions of complex Berwald metric and complex Landsberg metric.Every complex Berwald metric is complex Landsberg metric [5].One may want to know whether every complex Landsberg metric is also a complex Berwaldmetric.By Theorems 5.9 and 5.14,it follows that these two class of manifolds are the same type complex Finsler manifolds under warped product operations,thus showing that it is impossible to construct such metrics by this method.But,if we have two complex Landsberg manifolds M1and M2which are not complex Berwald manifolds,we can use the above Theorems to produce such manifolds of dimension dimCM1+dimCM2,as follows.

    Let M1and M2be two complex Landsberg manifolds,but they are not complex Berwald manifolds.Now,for any positive constant functions f1:M1→R+and f2:M2→R+,Theorem 5.14 ensures that the DWP-complex Finsler manifold(f2M1×f1M2,F)is a complex Landsberg manifold.Theorem 5.9 guarantees that it is not a complex Berwald manifold,otherwise,M1and M2must be complex Berwald manifolds,which is a contradiction to the choice of M1and M2.

    Practical application of this method depends on the existence of a non-Berwald complex Landsberg manifold to start with.If there is,we would prefer to select one with the lowest dimension.Let us have complex Landsberg manifolds which are not Berwald,ordered according to their dimension.Then,by well-ordering principle,there exists a natural number that is the lowest dimension of such manifolds,and there exists a manifold of this type,which has this dimension.We have the following corollary of the theorems.

    Corollary 5.17Let C be the collection of complex Landsberg manifolds which are not complex Berwald manifold.Assume that C is non-empty.Let m0be the lowest dimension. Let M be a complex Finsler manifold in C with dimension m0,then M cannot be of warped product type.

    ProofLet,on the contrary,M be of warped product type,that is,M=(f2M1×f1M2,F) for some functions f1:M1→ R+and f2:M2→ R+,then,by Theorem 5.14,M1and M2are complex Landsberg manifold,and according to Theorem 5.9,M1and M2are not complex Berwald manifolds,otherwise M itself should be a complex Berwald manifold.But,as dimCM1≥1,M1itself is a member of C,whose dimension should less than m0,contradicting the choice of m0.

    6 Geodesics of Doubly Warped Product Complex Finsler Manifold

    In this section,we shall investigate geodesics of DWP-complex Finsler manifold.

    A real geodesic σα(t)with an afne parameter t of a complex Finsler manifold(M,F) satisfes the following equation[1]:

    Proposition 6.1Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).If σ(t)=(σα(t))=(σk(t),σk′(t))is a geodesic of(f2M1×f1M2,F),then it is necessary that

    ProofBy putting α=k in(6.1),using(2.4),(2.5)and Proposition 3.2,after a long computation,we obtain

    Similary,by putting α=k′in(6.1),using(2.4),(2.5)and Proposition 3.2,we obtain

    which completes the proof.

    Corollary 6.2Let(M1×f1M2,F)be a product complex Finsler manifold of(M1,F1) and(M2,F2).If{σk(t)}and{σk′(t)}are real geodesics of F1and F2,respectively.Then {σα(t)}={σk(t),σk′(t)}is a geodesic of F if and only if f1is a positive constant function on M1.

    Theorem 6.3Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1)and (M2,F2).

    (i)If the warping function f1(resp.f2)is a positive constant on M1(resp.M2),then any geodesic of(M1,F1)(resp.(M2,F2))is a geodesic of(f2M1×f1M2,F),that is to say,(M1,F1) (resp.(M2,F2))is a totally geodesic subspace of the doubly warped product complex Finsler space(f2M1×f1M2,F).

    (ii)If the warping function f1(resp.f2)is a positive constant on M1(resp.M2),then the projection of any geodesic of the DWP-complex Finsler manifold(f2M1×f1M2,F)onto M1(resp.M2)is a geodesic of(M1,F1)(resp.(M2,F2)).

    ProofSince the proof of(ii)is similar to(i),we only prove(i).If(σk(t))is a geodesic of (M1,F1),then

    Consider the curve(σk(t),σk′),where σk′is a constant.We have˙σi′=0,thus the diferential equation(6.2)reduces to

    7 Projective Flatness of Doubly Warped Product Complex Finsler Manifold

    Let F(x,u)be a real Finsler metric defned on a domain D?Rn.F is called projectively fat if its geodesic are straight lines[14].This is equivalent to the following system of PDEs[15]

    where x=(x1,···,xn)∈D and u=(u1,···,un)∈TxD,F is called dually fat if and only if F satisfes[26]

    For a strongly convex complex Finsler metric,it makes sense to talk about its projectiveness.

    Let(M1,F1)and(M2,F2)be two locally projectively fat or dually fat Finsler manifold, one may want to know whether the DWP-complex Finsler manifold(f2M1×f1M2,F)is also a locally projectively fat or dually fat complex Finsler manifold.For this problem we need the following proposition.

    Proposition 7.1(see[35]) Let F be a strongly convex complex Finsler metric defned on a domain D?Cn.Then

    (i)F is locally projectively fat if and only if

    (ii)F is locally dually fat if and only if

    It is obviously that F is a strongly convex complex Finsler metric whenever F1and F2are strongly convex complex Finsler metrics.Thus it makes sense to investigate the projective fatness or dual fatness of F.

    Theorem 7.2Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of two strongly convex complex Finsler manifolds(M1,F1)and(M2,F2).

    (i)If(M1,F1)and(M2,F2)are locally projectively fat manifolds,then(f2M1×f1M2,F)is a locally projectively fat manifold if and only if the functions f1and f2are positive constants.

    Proof(i)According to Proposition 7.1,(f2M1×f1M2,F)is locally projectively fat if and only if

    Contracting(7.3)and(7.4)with respect to viand vi′,respectively,and compare the obtained equations,we get

    Using(2.2),and notice(M1,F1)and(M2,F2)are projectively fat manifolds,we obtain

    Diferentiating(7.6)with respect to vsand vt′,we get

    Contracting(7.7)with respect to vsand vt′,we get

    Since the left hand side of(7.8)depends only on(z1,v1),while the right hand side of(7.8) depends only on(z2,v2),it follows that

    which implies that the functions f1and f2are positive constants.

    (ii)According to Proposition 7.1,(f2M1×f1M2,F)is locally dually fat if and only if

    Using(2.2),and notice(M1,F1)and(M2,F2)are locally dually fat complex Finsler manifolds,we fnd that this is equivalent to

    Contracting(7.10)and(7.11)with viand vi′,respectively,we obtain

    Interchanging indices i and j of(7.13),and adding(7.12),we get

    Since the left hand side of(7.14)is conjugate to the right hand side of(7.14),thus

    is a real value function.

    [1]Abate M,Patrizio G.Finsler Metrics—A Global Approach with Applications to Geometric Function Theory. Lecture Notes in Mathematics,Volume 1591.Berlin Aeidelberg:Springer-Verlag,1994

    [2]Aikou T.On complex Finsler manifolds.Rep Fac Sci Kagoshima Univ(Math Phys&Chem),1991,24: 9–25

    [3]Aikou T.Complex manifolds modeled on a complex Minkowski space.J Math Kyoto Univ(JMKYAZ), 1998,35-1:85–103

    [4]Aikou T.Some remarks on locally conformal complex Berwald spaces.Contem Math,1996,196:109–120

    [5]Aldea N,Munteanu G.On complex Landsberg and Berwald spaces.J Geom Phys,2012,62(2):368–380

    [6]Asanov G S.Finslerian extensions of Schwarzschild metric.Fortschr Phys,1992,40:667–693

    [7]Asanov G S.Finslerian metric functions over the product R×M and their potential applications.Rep Math Phys,1998,41:117–132

    [8]Baagherzadeh Hushmandi A,Rezaii M M.On warped product Finsler spaces of Landsberg type.J Math Phys,2011,52,No.9093506.17

    [9]Baagherzadeh Hushmandi A,Rezaii M M,Morteza M.On the curvature of warped product Finsler spaces and the Laplacian of the Sasaki-Finsler metrics.J Geom Phys,2012,62(10):2077–2098

    [10]Bao D,Chern S S,Shen Z.An Introduction to Riemann-Finsler Geometry.GTM 200.Springer-Verlag, 2000

    [11]Beem J K,Ehrlich P,Powell T G.Warped product manifolds in relativity in selected studies:a volume dedicated to the memory of Albert Einstein(T.M.Rassias and G.M.Rassias eds.).Armsterdarm:North-Holland,1982:41–56

    [12]Bishop R L,O’Neill B.Manifolds of negative curvature.Trans Amer Math Soc,1969,145:1–49

    [13]Chen B,Shen Y B.K¨ahler Finsler metrics are actually strongly K¨ahler.Chin Ann Math Ser B,2009,30(2): 173–178

    [14]Chern S S,Shen Z.Riemann-Finsler geometry.World Scientifc,2005

    [15]Hamel G.¨Uber die Geometrieen in denen die Geraden die K¨urzesten sind.Math Ann,1903,57:231–264 [16]Katanaev O M,Kl¨osch T,Kummer W.Global properties of warped solutions in general relativity.Ann Physics,1999,276:191–222

    [17]Kobayashi S.Negative vector bundles and complex Finsler structures.Nagoya Math J,1975,57:153–166 [18]Kozma L,Peter I R,Varga C.Warped product of Finsler-manifolds.Ann Univ Sci Budapest,2001,44: 157

    [19]Matsumoto M.Foundations of Finsler Geometry and Special Finsler Spaces.Kaiseisha Press,1986

    [20]Matsumoto M.Remarks on Berwald and Landsberg spaces,in Finsler Geometry.Contem Math,1996,196: 79–82

    [21]Munteanu G.Complex Spaces in Finsler,Lagrange and Hamilton Geometries.Kluwer Academic Publishers, 2004

    [22]O’Neill B.Semi-Riemannian Geometry.New York:Academic Publisher,1983

    [23]Peyghan E,Tayebi A.On doubly warped product Finsler manifolds.Nonlinear Anal Real World Appl, 2012,13(4):1703–1720

    [24]Rund H.The curvature theory of direction-dependent connections on complex manifolds.Tensor N S,1972, 24:189–205

    [25]Shen Z.On a class of Landsberg metrics in Finsler geometry.Can J Math,2009,61(6):1357–1374

    [26]Shen Z.Riemann-Finsler geometry with applications to information geometry.Chin Ann Math Ser B,2006, 27(1):73–94

    [27]Sun L,Zhong C.Characterizations of complex Finsler connections and weakly complex Berwald metrics. Diferential Geom Appl,2013,31:648–671

    [28]Szabso Z I.All regular Landsberg metrics are Berwald.Ann Global Anal Geom,2008,34(4):381–386

    [29]Szabso Z I.Correction to all regular Landsberg metrics are Berwald.Ann Global Anal Geom,2009,35(3): 227–230

    [30]Unal B.Doubly Warped Products.Difer Geom Appl,2001,15(3):253–263

    [31]Wong B.On the holomorphic curvature of some intrinsic metrics.Proc Amer Math Soc,1977,65:57–61

    [32]Wu H.A remark on holomorphic sectional curvature.Indiana Univ Math J,1973,22:1103–1108

    [33]Wu Z,Zhong C.Some results on product complex Finsler manifolds.Acta Math Sci,2011,31B(4):1541–1552

    [34]Zhong C.On real and complex Berwald connections associated to strongly convex weakly K¨ahler-Finsler metric.Diferential Geom Appl,2011,29:388–408

    [35]Zhong C.On unitary invariant strongly pseudoconvex complex Finsler metrics.Diferential Geom Appl, 2015,40:159–186

    ?Received May 11,2015;revised December 22,2015.This work is supported by Program for New Century Excellent Talents in University(NCET-13-0510);National Natural Science Foundation of China(11271304, 11571288,11461064);the Fujian Province Natural Science Funds for Distinguished Young Scholar(2013J06001); the Scientifc Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry.

    猜你喜歡
    何勇
    樂壇持刀傷人事件:搖滾巨星淪落“垃圾場”
    Experimental study on the parameter optimization and application of a packed-bed dielectric barrier discharge reactor in diesel particulate filter regeneration
    Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma
    漁歌子·端午龍舟·珠村車陂
    嶺南音樂(2021年3期)2021-07-12 13:00:16
    Measurement of time-varying electron density of the plasma generated from a small-size cylindrical RDX explosion by Rayleigh microwave scattering
    雨的味道
    從妻子到“母親”,6年呵護讓倒下的丈夫“站”起來
    勵志!養(yǎng)蝦連續(xù)虧5年,這個老板如何成功逆襲?
    Structure Design of Shaped Charge for Requirements of Concrete Crater Diameter
    『武林高手』成才記
    国产亚洲av高清不卡| 黄色片一级片一级黄色片| 亚洲精品国产区一区二| 日日爽夜夜爽网站| 免费在线观看亚洲国产| а√天堂www在线а√下载 | av一本久久久久| 免费少妇av软件| 亚洲专区字幕在线| 日日夜夜操网爽| 欧美人与性动交α欧美精品济南到| 免费人成视频x8x8入口观看| 亚洲熟女毛片儿| 人妻丰满熟妇av一区二区三区 | 国产单亲对白刺激| 久久精品91无色码中文字幕| 一进一出好大好爽视频| 日韩免费av在线播放| 女人爽到高潮嗷嗷叫在线视频| av天堂久久9| 大码成人一级视频| 成人特级黄色片久久久久久久| 母亲3免费完整高清在线观看| 99re6热这里在线精品视频| 亚洲美女黄片视频| 老汉色∧v一级毛片| 欧美不卡视频在线免费观看 | 国产主播在线观看一区二区| 在线观看www视频免费| 女警被强在线播放| 一二三四社区在线视频社区8| 精品国内亚洲2022精品成人 | 高清在线国产一区| 日本一区二区免费在线视频| 69av精品久久久久久| 黄色视频不卡| 亚洲一区中文字幕在线| 欧美中文综合在线视频| 国产精品久久久久久人妻精品电影| 精品人妻熟女毛片av久久网站| 国产一区在线观看成人免费| 国产一区二区三区视频了| 欧美精品啪啪一区二区三区| 亚洲精品av麻豆狂野| 免费观看精品视频网站| 欧美日韩亚洲国产一区二区在线观看 | 国产一卡二卡三卡精品| 精品亚洲成国产av| 嫩草影视91久久| 国产成人欧美| 在线观看www视频免费| 亚洲成人免费av在线播放| 国产精品综合久久久久久久免费 | 免费观看a级毛片全部| 欧美日韩福利视频一区二区| 一级片'在线观看视频| 成人18禁高潮啪啪吃奶动态图| 国产在线精品亚洲第一网站| 亚洲成人国产一区在线观看| 女人被躁到高潮嗷嗷叫费观| 国产精品久久久久久精品古装| 侵犯人妻中文字幕一二三四区| 老司机在亚洲福利影院| 香蕉久久夜色| 国产激情欧美一区二区| 国产精品一区二区在线不卡| 在线av久久热| 女警被强在线播放| 欧美精品一区二区免费开放| 99热只有精品国产| 每晚都被弄得嗷嗷叫到高潮| 麻豆乱淫一区二区| 曰老女人黄片| 国产在视频线精品| 两个人看的免费小视频| 在线观看免费午夜福利视频| 成年人黄色毛片网站| 国产成人精品无人区| 视频区欧美日本亚洲| 人妻一区二区av| avwww免费| 91字幕亚洲| 国产精品98久久久久久宅男小说| 香蕉久久夜色| 日日摸夜夜添夜夜添小说| 欧美乱色亚洲激情| 99国产精品一区二区三区| 人成视频在线观看免费观看| 91成年电影在线观看| 高清毛片免费观看视频网站 | 好看av亚洲va欧美ⅴa在| 50天的宝宝边吃奶边哭怎么回事| 大码成人一级视频| 国产成人欧美在线观看 | 一区二区三区激情视频| 国产精品一区二区精品视频观看| 精品卡一卡二卡四卡免费| 久久人人爽av亚洲精品天堂| 久久久精品免费免费高清| 后天国语完整版免费观看| 下体分泌物呈黄色| 搡老熟女国产l中国老女人| 9热在线视频观看99| 欧美不卡视频在线免费观看 | 久久人妻熟女aⅴ| 男女下面插进去视频免费观看| 久久亚洲真实| 淫妇啪啪啪对白视频| 久久热在线av| 看免费av毛片| 国产在线精品亚洲第一网站| 久久热在线av| 亚洲精品久久午夜乱码| 精品久久久久久久久久免费视频 | 精品久久久久久久毛片微露脸| 亚洲性夜色夜夜综合| 亚洲欧美一区二区三区黑人| 欧美激情高清一区二区三区| 精品免费久久久久久久清纯 | 成人永久免费在线观看视频| 中文字幕精品免费在线观看视频| 日本黄色视频三级网站网址 | 亚洲七黄色美女视频| 大型av网站在线播放| 大型av网站在线播放| 视频在线观看一区二区三区| 成人手机av| 男人的好看免费观看在线视频 | 777久久人妻少妇嫩草av网站| 国产精品久久久久成人av| 超碰成人久久| 精品福利观看| 亚洲五月色婷婷综合| 曰老女人黄片| 国产无遮挡羞羞视频在线观看| www.自偷自拍.com| 午夜免费成人在线视频| 少妇被粗大的猛进出69影院| 一个人免费在线观看的高清视频| 国内毛片毛片毛片毛片毛片| 一边摸一边抽搐一进一小说 | 99久久99久久久精品蜜桃| 色综合婷婷激情| 两性午夜刺激爽爽歪歪视频在线观看 | 手机成人av网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲午夜精品一区,二区,三区| 亚洲精品中文字幕在线视频| 欧美av亚洲av综合av国产av| 他把我摸到了高潮在线观看| 少妇被粗大的猛进出69影院| 国产精品国产av在线观看| 久久中文字幕一级| 丝袜人妻中文字幕| 波多野结衣一区麻豆| 免费在线观看黄色视频的| 一进一出抽搐动态| 视频区图区小说| 久99久视频精品免费| 久久久国产成人免费| 日本一区二区免费在线视频| 亚洲片人在线观看| 男人舔女人的私密视频| 自线自在国产av| 日韩成人在线观看一区二区三区| 欧美av亚洲av综合av国产av| 国产xxxxx性猛交| 久久精品国产亚洲av香蕉五月 | 夜夜躁狠狠躁天天躁| 人人澡人人妻人| 视频区欧美日本亚洲| 日本黄色日本黄色录像| 亚洲精品粉嫩美女一区| 天天添夜夜摸| 极品教师在线免费播放| 精品免费久久久久久久清纯 | 看黄色毛片网站| 九色亚洲精品在线播放| 亚洲精品乱久久久久久| 免费在线观看亚洲国产| 两人在一起打扑克的视频| 大码成人一级视频| 国内久久婷婷六月综合欲色啪| 成人影院久久| 日日夜夜操网爽| 一本综合久久免费| 精品福利观看| 亚洲精品一卡2卡三卡4卡5卡| 水蜜桃什么品种好| 亚洲欧美激情在线| 亚洲欧美日韩另类电影网站| 亚洲专区中文字幕在线| 男女午夜视频在线观看| 午夜福利欧美成人| 99re6热这里在线精品视频| 一个人免费在线观看的高清视频| 亚洲一码二码三码区别大吗| 成人手机av| 国产区一区二久久| √禁漫天堂资源中文www| 在线观看免费高清a一片| 久久精品亚洲熟妇少妇任你| 色老头精品视频在线观看| 久久久久久免费高清国产稀缺| 自线自在国产av| avwww免费| 精品人妻熟女毛片av久久网站| 久久亚洲真实| av超薄肉色丝袜交足视频| 中文字幕人妻熟女乱码| 免费观看a级毛片全部| 女人精品久久久久毛片| 色尼玛亚洲综合影院| 啦啦啦在线免费观看视频4| 一边摸一边做爽爽视频免费| 国产精品久久久人人做人人爽| 老汉色av国产亚洲站长工具| 国产精品美女特级片免费视频播放器 | 人妻丰满熟妇av一区二区三区 | 亚洲熟妇熟女久久| 亚洲国产精品一区二区三区在线| 在线观看免费日韩欧美大片| 99香蕉大伊视频| 亚洲精品国产色婷婷电影| 91在线观看av| 亚洲精品在线美女| 亚洲美女黄片视频| 日韩精品免费视频一区二区三区| 波多野结衣av一区二区av| 99re6热这里在线精品视频| 国产亚洲精品久久久久5区| 久久久久久亚洲精品国产蜜桃av| 最近最新中文字幕大全电影3 | 99热网站在线观看| svipshipincom国产片| 精品国产乱子伦一区二区三区| 日韩免费高清中文字幕av| 不卡一级毛片| 国产不卡一卡二| 亚洲中文av在线| a级毛片在线看网站| 精品久久蜜臀av无| 国产99久久九九免费精品| 又紧又爽又黄一区二区| 国产亚洲精品第一综合不卡| 日韩欧美一区二区三区在线观看 | 亚洲午夜理论影院| 欧美不卡视频在线免费观看 | 精品人妻1区二区| 精品亚洲成国产av| 亚洲精品国产精品久久久不卡| 精品福利永久在线观看| 欧美人与性动交α欧美精品济南到| 成人三级做爰电影| 免费观看精品视频网站| 岛国在线观看网站| 亚洲美女黄片视频| 在线天堂中文资源库| av有码第一页| 交换朋友夫妻互换小说| 精品国产一区二区久久| 国产高清videossex| 黑人操中国人逼视频| 天堂俺去俺来也www色官网| 在线免费观看的www视频| 亚洲性夜色夜夜综合| 亚洲五月婷婷丁香| 久久久久视频综合| 午夜成年电影在线免费观看| 国产成+人综合+亚洲专区| 精品久久久久久,| 久久久国产精品麻豆| 一级,二级,三级黄色视频| 在线av久久热| 色综合婷婷激情| 久久久久久久国产电影| 99国产综合亚洲精品| 在线永久观看黄色视频| 久久天躁狠狠躁夜夜2o2o| 国产激情欧美一区二区| 国产xxxxx性猛交| av网站免费在线观看视频| 91大片在线观看| 亚洲av成人不卡在线观看播放网| 欧美日韩亚洲综合一区二区三区_| 欧美黑人精品巨大| 男女下面插进去视频免费观看| 国产成人免费观看mmmm| 亚洲精品av麻豆狂野| 国产精品久久久久久精品古装| 国产av一区二区精品久久| 亚洲av熟女| 两人在一起打扑克的视频| 精品久久久精品久久久| 精品久久久久久,| 国产免费现黄频在线看| 国产精品av久久久久免费| tocl精华| xxx96com| 欧美精品亚洲一区二区| 涩涩av久久男人的天堂| 国产三级黄色录像| 又大又爽又粗| 色综合欧美亚洲国产小说| 国产在视频线精品| 999久久久国产精品视频| 欧美黑人欧美精品刺激| 日韩大码丰满熟妇| 一级片'在线观看视频| 黄网站色视频无遮挡免费观看| 亚洲av成人av| 无人区码免费观看不卡| 一级毛片高清免费大全| 亚洲精品国产区一区二| 亚洲成人国产一区在线观看| 在线观看免费日韩欧美大片| 淫妇啪啪啪对白视频| 美女国产高潮福利片在线看| 91成人精品电影| 极品教师在线免费播放| 日本wwww免费看| 窝窝影院91人妻| 亚洲精品国产区一区二| 欧美激情 高清一区二区三区| 色精品久久人妻99蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久久精品久久久| 男人舔女人的私密视频| 男女下面插进去视频免费观看| 国产亚洲欧美98| 精品高清国产在线一区| 国产精品综合久久久久久久免费 | 国产免费av片在线观看野外av| 狠狠狠狠99中文字幕| x7x7x7水蜜桃| av国产精品久久久久影院| 动漫黄色视频在线观看| 精品国产美女av久久久久小说| 母亲3免费完整高清在线观看| 亚洲avbb在线观看| 丰满饥渴人妻一区二区三| 99精品欧美一区二区三区四区| 老鸭窝网址在线观看| 91精品国产国语对白视频| 国产成+人综合+亚洲专区| 天天影视国产精品| 99国产精品一区二区蜜桃av | 久久久精品免费免费高清| 成年人黄色毛片网站| 99riav亚洲国产免费| 日本vs欧美在线观看视频| 亚洲av成人一区二区三| 国产日韩欧美亚洲二区| 俄罗斯特黄特色一大片| 免费久久久久久久精品成人欧美视频| 久久精品亚洲精品国产色婷小说| 天天躁狠狠躁夜夜躁狠狠躁| cao死你这个sao货| 9191精品国产免费久久| 欧美黑人精品巨大| x7x7x7水蜜桃| 久久精品亚洲熟妇少妇任你| 国产蜜桃级精品一区二区三区 | 脱女人内裤的视频| 好男人电影高清在线观看| 少妇裸体淫交视频免费看高清 | 国产精品电影一区二区三区 | 18禁裸乳无遮挡免费网站照片 | 人成视频在线观看免费观看| 校园春色视频在线观看| 婷婷成人精品国产| 国产一区二区三区综合在线观看| 国产精品偷伦视频观看了| 两个人看的免费小视频| 国产高清视频在线播放一区| 国产精品av久久久久免费| 高清av免费在线| 精品国产亚洲在线| 宅男免费午夜| 国产麻豆69| 热re99久久国产66热| 黄网站色视频无遮挡免费观看| 啦啦啦 在线观看视频| 国产成人欧美在线观看 | 久久久久久久午夜电影 | 91国产中文字幕| 精品一区二区三区av网在线观看| 老熟妇仑乱视频hdxx| 亚洲av日韩精品久久久久久密| 免费在线观看亚洲国产| 又黄又爽又免费观看的视频| 国产亚洲欧美在线一区二区| 黄色丝袜av网址大全| 成人手机av| 淫妇啪啪啪对白视频| 日韩欧美三级三区| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦在线免费观看视频4| 国产深夜福利视频在线观看| 中文字幕人妻丝袜制服| 亚洲avbb在线观看| 亚洲欧美激情在线| 精品人妻熟女毛片av久久网站| 国产极品粉嫩免费观看在线| netflix在线观看网站| 国产一区有黄有色的免费视频| 亚洲一码二码三码区别大吗| 亚洲精品国产色婷婷电影| 热re99久久精品国产66热6| 亚洲精品粉嫩美女一区| 美女 人体艺术 gogo| 亚洲一区二区三区不卡视频| 国产精品.久久久| 操美女的视频在线观看| 女性被躁到高潮视频| 久久精品aⅴ一区二区三区四区| 18在线观看网站| 国产成人免费无遮挡视频| 久久国产乱子伦精品免费另类| 久久久久久久久久久久大奶| 国精品久久久久久国模美| 国产在线观看jvid| 国产精华一区二区三区| 久久精品亚洲熟妇少妇任你| 国产又色又爽无遮挡免费看| 亚洲熟女精品中文字幕| 久久久久国产精品人妻aⅴ院 | 成年女人毛片免费观看观看9 | 日韩 欧美 亚洲 中文字幕| 亚洲一码二码三码区别大吗| 免费在线观看日本一区| 日本欧美视频一区| 久久精品亚洲av国产电影网| 9191精品国产免费久久| 国产免费av片在线观看野外av| 国产国语露脸激情在线看| 欧美日本中文国产一区发布| 亚洲av熟女| 大码成人一级视频| 热re99久久精品国产66热6| 日韩欧美免费精品| 91老司机精品| 精品视频人人做人人爽| 成人手机av| 亚洲一区二区三区不卡视频| 国产精品国产av在线观看| 久久久国产成人精品二区 | 精品国产亚洲在线| 日韩视频一区二区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 天堂俺去俺来也www色官网| 成人免费观看视频高清| 成人三级做爰电影| 超碰97精品在线观看| 亚洲性夜色夜夜综合| 男女高潮啪啪啪动态图| 亚洲专区中文字幕在线| 满18在线观看网站| 午夜免费鲁丝| 色在线成人网| 欧美日韩成人在线一区二区| 亚洲午夜理论影院| 久久精品国产亚洲av香蕉五月 | 麻豆乱淫一区二区| 老熟妇仑乱视频hdxx| 精品免费久久久久久久清纯 | 老汉色∧v一级毛片| 黄色视频,在线免费观看| 99re6热这里在线精品视频| 婷婷成人精品国产| 日韩熟女老妇一区二区性免费视频| 国产精品亚洲av一区麻豆| 12—13女人毛片做爰片一| 欧美精品人与动牲交sv欧美| 丝袜美足系列| 人妻一区二区av| 国产单亲对白刺激| 999精品在线视频| 交换朋友夫妻互换小说| 久久精品国产综合久久久| 十八禁网站免费在线| 成人18禁在线播放| 亚洲第一av免费看| 人人妻人人澡人人看| 侵犯人妻中文字幕一二三四区| 欧美日韩中文字幕国产精品一区二区三区 | 精品福利永久在线观看| 91精品国产国语对白视频| 人妻 亚洲 视频| av片东京热男人的天堂| 国产亚洲一区二区精品| 久久精品国产亚洲av高清一级| 人妻丰满熟妇av一区二区三区 | 人人妻人人澡人人爽人人夜夜| 成人18禁在线播放| 婷婷精品国产亚洲av在线 | 麻豆成人av在线观看| 中文字幕人妻丝袜制服| 国产1区2区3区精品| 18禁国产床啪视频网站| 精品欧美一区二区三区在线| 纯流量卡能插随身wifi吗| 久久精品91无色码中文字幕| 国产亚洲精品一区二区www | 午夜成年电影在线免费观看| 亚洲国产精品sss在线观看 | 十八禁网站免费在线| 国产成人啪精品午夜网站| 女人高潮潮喷娇喘18禁视频| 免费在线观看黄色视频的| 成人特级黄色片久久久久久久| 狠狠婷婷综合久久久久久88av| 色综合婷婷激情| 老汉色av国产亚洲站长工具| √禁漫天堂资源中文www| 久久久国产欧美日韩av| av福利片在线| 国产精品1区2区在线观看. | 日本撒尿小便嘘嘘汇集6| 乱人伦中国视频| 性少妇av在线| 国产亚洲精品第一综合不卡| 三级毛片av免费| 免费在线观看影片大全网站| 亚洲精品自拍成人| av不卡在线播放| 亚洲av电影在线进入| 亚洲欧美日韩高清在线视频| 亚洲片人在线观看| 久久久久久亚洲精品国产蜜桃av| 成人av一区二区三区在线看| 最新的欧美精品一区二区| 色婷婷久久久亚洲欧美| 国产一区二区三区在线臀色熟女 | 无人区码免费观看不卡| 欧美精品亚洲一区二区| 日本a在线网址| 久久精品国产综合久久久| 欧美日本中文国产一区发布| 国产日韩一区二区三区精品不卡| av在线播放免费不卡| 在线av久久热| 免费看a级黄色片| 别揉我奶头~嗯~啊~动态视频| 中文亚洲av片在线观看爽 | 亚洲国产欧美网| 国产欧美亚洲国产| 黑人欧美特级aaaaaa片| 精品国产美女av久久久久小说| 色综合欧美亚洲国产小说| 涩涩av久久男人的天堂| 国产亚洲欧美98| www.自偷自拍.com| 午夜精品久久久久久毛片777| 欧美亚洲日本最大视频资源| 如日韩欧美国产精品一区二区三区| 黄网站色视频无遮挡免费观看| 国产精品偷伦视频观看了| 午夜两性在线视频| 1024视频免费在线观看| 老熟妇乱子伦视频在线观看| 免费观看人在逋| 91在线观看av| 人人妻人人澡人人爽人人夜夜| 日日夜夜操网爽| 老汉色av国产亚洲站长工具| 亚洲欧美日韩高清在线视频| 亚洲av美国av| 国产在线精品亚洲第一网站| 人妻一区二区av| 精品久久久久久久久久免费视频 | 久久久精品区二区三区| 两性夫妻黄色片| 妹子高潮喷水视频| 免费在线观看日本一区| 国产精品国产av在线观看| www.熟女人妻精品国产| 黄色女人牲交| 欧美精品av麻豆av| 美女高潮喷水抽搐中文字幕| 9色porny在线观看| 日韩欧美三级三区| 人人澡人人妻人| 啦啦啦 在线观看视频| 国产成人免费无遮挡视频| 日韩熟女老妇一区二区性免费视频| 国产成人免费无遮挡视频| 日韩熟女老妇一区二区性免费视频| 国产成人欧美| 久久精品亚洲av国产电影网| 欧美日韩黄片免| 麻豆国产av国片精品| 国产欧美日韩一区二区三区在线| 成年女人毛片免费观看观看9 | 叶爱在线成人免费视频播放| 国精品久久久久久国模美| 国产亚洲欧美在线一区二区| 亚洲av成人一区二区三| 亚洲国产欧美一区二区综合| 久久久久久人人人人人| 自拍欧美九色日韩亚洲蝌蚪91| 男女床上黄色一级片免费看| 在线观看舔阴道视频| 久久精品91无色码中文字幕| 女人被躁到高潮嗷嗷叫费观| 亚洲成国产人片在线观看| 久久精品国产亚洲av香蕉五月 | 18禁国产床啪视频网站| 看黄色毛片网站| 电影成人av| 国产成人欧美| 亚洲av电影在线进入| 国产成人啪精品午夜网站| 久久久水蜜桃国产精品网| 久久精品亚洲熟妇少妇任你|