• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON DOUBLY WARPED PRODUCT OF COMPLEX FINSLER MANIFOLDS?

    2017-01-21 05:31:03YongHE何勇ChunpingZHONG鐘春平
    關(guān)鍵詞:何勇

    Yong HE(何勇)Chunping ZHONG(鐘春平)

    1.School of Mathematical Sciences,Xiamen University,Xiamen 361005,China

    2.School of Mathematical Sciences,Xinjiang Normal University,Urumqi 830053,China

    ON DOUBLY WARPED PRODUCT OF COMPLEX FINSLER MANIFOLDS?

    Yong HE(何勇)1,2Chunping ZHONG(鐘春平)1

    1.School of Mathematical Sciences,Xiamen University,Xiamen 361005,China

    2.School of Mathematical Sciences,Xinjiang Normal University,Urumqi 830053,China

    E-mail:19020130154147@stu.xmu.edu.cn;zcp@xmu.edu.cn

    Let(M1,F1)and(M2,F2)be two strongly pseudoconvex complex Finsler manifolds.The doubly wraped product complex Finsler manifold(f2M1×f1M2,F)of(M1,F1) and(M2,F2)is the product manifold M1×M2endowed with the warped product complex Finsler metric F2=f22F21+f21F22,where f1and f2are positive smooth functions on M1and M2,respectively.In this paper,the most often used complex Finsler connections,holomorphic curvature,Ricci scalar curvature,and real geodesics of the DWP-complex Finsler manifold are derived in terms of the corresponding objects of its components.Necessary and sufcient conditions for the DWP-complex Finsler manifold to be K¨ahler Finsler(resp.,weakly K¨ahler Finsler,complex Berwald,weakly complex Berwald,complex Landsberg)manifold are obtained,respectively.It is proved that if(M1,F1)and(M2,F2)are projectively fat,then the DWP-complex Finsler manifold is projectively fat if and only if f1and f2are positive constants.

    doubly warped products;complex Finsler metric;holomorphic curvature; geodesic

    2010 MR Subject Classifcation53C60;53C40

    1 Introduction

    Singly warped product or simply warped product of Riemannian manifolds was frst defned by O’Neill and Bishop in[12]to construct Riemannian manifolds with negative sectional curvature,then in[22],O’Neill obtained the curvature formulae of warped products in terms of curvatures of its components.The recent studies showed that warped product is useful in theoretical physics,particulary in general relativity.For instance,Beem,Ehrlich and Powell [11]pointed out that many exact solutions to Einstein’s feld equation can be expressed in terms of Lorentzian warped products.Under the assumption that four-dimensional space-time to be a general warped product of two surfaces,Katanaev,Kl¨osch and Kummer[16]explicitly constructed all global vacuum solutions to the four-dimensional Einstein equations.Doubly warped product of Riemannian manifolds was also of interesting and was studied by Unal[30].

    The notion of warped product was recently extended to Finsler spaces.In[6,7],Asanov obtained some models of relativity theory which were described by the warped product of Finsler metrics.In[18],Kozma,Peter and Varga studied the warped product of real Finsler manifolds. They obtained the relationship between the Cartan connection of the warped product Finsler metric and the Cartan connections of its components.More recently,Hushmandi and Rezaii [8]studied the warped product Finsler spaces of Landsberg type,and then in[9],Hushmandi, Rezaii and Morteza obtained the curvature of warped product Finsler spaces and the Laplacian of the Sasaki-Finsler metrics.In[23],Peyghan and Tayebi obtained the relationship between the Riemannian curvature of the doubly warped product Finsler manifold and the curvatures of its components.

    Let(M1,F1)and(M2,F2)be two complex Finsler manifolds.In[33],Wu and Zhong considered the product complex manifold M=M1×M2endowed with a complex Finsler metric F=f(K,H),where f(K,H)is a function of K=F21and H=F22.The possibility of F to be K¨ahler Finsler metric and complex Berwald metric were investigated.Recently in[35],Zhong showed that there are lots of strongly pseudoconvex(even strongly convex)unitary invariant complex Finsler metrics in domains in Cn.In this paper,we consider the warped product of strongly pseudoconvex complex Finsler manifolds.Our purpose of doing this is to study the possibility of constructing some special strongly pseudoconvex complex Finsler metrics such as K¨ahler Finsler metrics,weakly K¨ahler Finsler metrics,complex Berwald metrics,complex Landsberg metrics and weakly complex Berwald metrics,among which to fnd possible way to obtain strongly pseudoconvex complex Finsler metrics which are of constant holomorphic curvatures.Note that it was prove in[33]that the Chern-Finsler nonlinear connection coefcients are independent of the choice of f,i.e.,there is no diference between the case F2=f(K,H) and F2=F21+F22.In this paper,the warping product metric F on the product complex manifold M=M1×M2is F2=f22F21+f21F22,which generalizes[33]whenever f1and f2are not positive constants.

    This paper is organized as follows.In Section 2,we recall some basic concepts and notions in complex Finsler geometry.In Section 3,we derive the most often used complex Finsler connections(the Chern-Finsler connection,the complex Rund connection,the complex Berwald connection,and the complex Hashiguchi connection,etc.)of the DWP-complex Finsler manifold in terms of the corresponding connections of its components,respectively.In Section 4,we derive the formulae of the holomorphic curvature and Ricci scalar curvature of the DWP-complex Finsler manifold in terms of the holomorphic curvatures and Ricci scalar curvatures of its components.In Section 5,we obtain the necessary and sufcient conditions for the DWP-complex Finsler manifold to be K¨ahler Finsler(resp.weakly K¨ahler Finsler,complex Berwald,weakly complex Berwald,complex Landsberg,complex locally Minkowski)manifold. In Section 6,we derive the real geodesic equations of the DWP-complex Finsler manifold in terms of the geodesic equations of its components,and prove that if the warping function f1(resp.f2)is a positive constant,then(M1,F1)(resp.(M2,F2))is a totally geodesic manifold of the DWP-complex Finsler manifold(f2M1×f1M2,F),and the projection of any geodesic of the DWP-complex Finsler manifold onto M1(resp.M2)is a geodesic of(M1,F1)(resp.(M2,F2)). In Section 7,we prove that if(M1,F1)and(M2,F2)are locally projectively fat manifolds,then the DWP-complex Finsler manifold(f2M1×f1M2,F)is projectively fat if and only if f1andf2are positive constants.

    The main results in this paper are as follows.

    Theorem 1.1Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).Then the holomorphic curvature of(M,F)along a holomorphic tangent vector v=(vi,vi′)∈T1,0zM satisfying F1(π1(v))=1 and F2(π2(v))=1 is given by

    Theorem 1.1 implies that if KF1(π1(v))=KF2(π2(v))≡c,then KF(v)≡c if and only if the warping functions lnf1and lnf2are pluriharmonic functions on M1and M2,respectively.

    Theorem 1.2Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1)and (M2,F2).Then the Ricci scalar curvature of(f2M1×f1M2,F)associated to the Chern-Finsler connections is given by

    where RicF1and RicF2are Ricci scalar curvature of(M1,F1)and(M2,F2),respectively.

    Theorem 1.2 implies that equality(1.2)is independent of the choice of the warping functions f1and f2.

    Theorem 1.3Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of two weakly K¨ahler Finsler manifolds(M1,F1)and(M2,F2).Then(f2M1×f1M2,F)is a weakly K¨ahler Finsler manifold if and only if the functions f1and f2are positive constants.

    Theorem 1.4The DWP-complex Finsler manifold(f2M1×f1M2,F)is a complex Berwald manifold if and only if(M1,F1)and(M2,F2)are complex Berwald manifolds and the functions f1and f2are positive constants.

    Theorems 1.3 and 1.4 imply that unless the doubly warping function f1and f2are positive constants,the doubly warped product operation does not preserve weakly K¨ahler Finsler manifolds and complex Berwald manifolds.

    Theorem 1.5The DWP-complex Finsler manifold(f2M1×f1M2,F)is a weakly complex Berwald manifold if and only if(M1,F1)and(M2,F2)are weakly complex Berwald manifolds.

    Theorem 1.5 implies that the doubly warped product operation preserves weakly complex Berwald metrics.Since there are lots of weakly complex Berwald metrics(see[35]),this theorem provides us an efective way to construct new weakly complex Berwald metrics.

    Theorem 1.6Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of two complex Finsler manifolds(M1,F1)and(M2,F2).

    (i)If the warping functions f1(resp.f2)is a positive constant on M1(resp.M2),then any geodesic of(M1,F1)(resp.(M2,F2))is a geodesic of(f2M1×f1M2,F),that is to say(M1,F1) (resp.(M2,F2))is a totally geodesic subspace of the doubly warped product complex Finsler space(f2M1×f1M2,F).

    (ii)If the warping functions f1(resp.f2)is a positive constant on M1(resp.M2),then the projection of any geodesic of the DWP-complex Finsler manifold(f2M1×f1M2,F)onto M1(resp.M2)is a geodesic of(M1,F1)(resp.(M2,F2)).

    Theorem 1.7Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of two strongly convex complex Finsler manifolds(M1,F1)and(M2,F2).

    (i)If(M1,F1)and(M2,F2)are locally projectively fat manifolds,then(f2M1×f1M2,F) is a locally projectively fat manifold if and only if the warping functions f1and f2are positive constants.

    2 Preliminary

    Let M be a complex manifold of complex dimension n.We denote z=(z1,···,zn)the local holomorphic coordinates on M,and(z,v)=(z1,···,zn,v1,···,vn)the induced local holomorphic coordinates on the holomorphic tangent bundle T1,0M of M.We shall assume that M is endowed with a strongly pseudoconvex complex Finsler metric F in the following sense.

    Defnition 2.1(see[1]) A strongly pseudoconvex complex Finsler metric F on a complex manifold M is a continuous function F:T1,0M→R+satisfying

    (i)G=F2is smooth on?M=T1,0M?{zero section};

    (ii)F(p,v)>0 for all(p,v)∈ ?M;

    (iii)F(p,ζv)=|ζ|F(p,v)for all(p,v)∈T1,0M and ζ∈C;

    (iv)the Levi matrix(or complex Hessian matrix)

    is positive defnite on?M.

    In this paper,we denote(Gνβ)the inverse matrix of(Gαν)such that GνβGαν=δβα.We also use the notion in[1],that is,the derivatives of G with respect to the v-coordinates and z-coordinates are separated by semicolon;for instance,

    Let(M1,F1)and(M2,F2)be two strongly pseudoconvex complex Finsler manifolds with dimCM1=m and dimCM2=n,then M=M1×M2is a strongly pseudoconvex complex Finsler manifold with dimCM=m+n.

    Throughout this paper we use the natural product coordinate system on the product manifold M=M1×M2.Let(p0,q0)be a point in M,then there are coordinate chart(U,z1) and(V,z2)on M1and M2,respectively,such that p0∈U and q0∈V.Thus we obtain a coordinate chart(W,z)on M such that W=U×V and(p0,q0)∈W,and for all(p,q)∈W, z(p,q)=(z1(p),z2(q)),where π1:M1×M2→M1,π2:M1×M2→M2are natural projections.

    Let T1,0M1,T1,0M2and T1,0M be the holomorphic tangent bundles of M1,M2and M, respectively.Denote dπ1:T1,0(M1×M2)→ T1,0M1,dπ2:T1,0(M1×M2)→ T1,0M2the holomorphic tangent maps induced by π1and π2,respectively.Note that dπ1(z,v)=(z1,v1) and dπ2(z,v)=(z2,v2)for every v=(v1,v2)∈T1,0z(M1×M2)with v1=(v1,···,vm)∈T1,0z1M1and v2=(vm+1,···,vm+n)∈T1,0z2M2.Denote?M1=T1,0M1?{zero section},?M2=T1,0M2?{zero section},fM=fM1×fM2?T1,0(M1×M2)?{zero section}.

    Defnition 2.2Let(M1,F1)and(M2,F2)be two strongly pseudoconvex complex Finsler manifolds and f1:M1→(0,+∞)and f2:M2→(0,+∞)be smooth functions.The doubly warped product(abbreviated as DWP)complex Finsler manifold of(M1,F1)and(M2,F2) is the product complex manifold M=M1×M2endowed with the complex Finsler metricgiven by

    for z=(z1,z2)∈M and v=(v1,v2)∈T1,0zM?{zero section}.The functions f1and f2are called warped functions.The DWP-complex Finsler manifold of(M1,F1)and(M2,F2)is denoted by(f2M1×f1M2,F).

    It is obvious that the function F defned by(2.2)is a strongly pseudoconvex complex Finsler metric on M.Note that it is natural to ask F to be defned onfM rather than on T1,0(M1×M2)?{zero section},or onfM1×T1,0M2,or on T1,0M1×fM2,since Fiis smooth on T1,0Miif and only if Ficomes from a Hermitian metric on Mifor i=1,2.

    If either f1=1 or f2=1,but not both of them,then(f2M1×f1M2,F)becomes a warped product of complex Finsler manifolds(M1,F1)and(M2,F2).If f1≡1 and f2≡1,then (f2M1×f1M2,F)becomes a product of complex Finsler manifolds(M1,F1)and(M2,F2).If neither f1nor f2is a constant,then we call(f2M1×f1M2,F)a nontrivial(proper)DWP-complex Finsler manifold of(M1,F1)and(M2,F2).

    The local coordinates(z,v)onfM are transformed by the rules

    For?/?vα,we have

    Denote g=F21,h=F22,so that G=F2=f22g+f21h and

    The fundamental tensor matrix of F is given by

    with its inverse matrix(Gβα)given by

    Let V1,0be the holomorphic vertical vector subbundle ofwhich is locally spanned by the nature frame feldsand is called the doubly warped vertical distribution onThen,the complementary vector subbundleis locally spanned bywhereis called the doubly warped horizontal distribution onfM.Thus the holomorphic tangent bundleadmits the decomposition

    3 Connections of DWP-complex Finsler Manifold

    In complex Finsler geometry,the Chern-Finsler connection is the most often used complex Finsler connection.There are also other complex Finsler connections,such as complex Rund connection,complex Berwald connection,complex Hashiguchi connection and Rund type complex Finsler connection used in various topics[27].

    In this section we derive these connections of DWP-complex Finsler manifold,which are expressed in terms of connections of its components.

    The Chern-Finsler complex nonlinear connectionassociate to a given strongly pseudoconvex complex Finsler metric F is given by

    The Chern-Finsler connection D:X(V1,0)→ X(T?CfM ?V1,0)associated to a strongly pseudoconvex complex Finsler metric F was frst introduced in[17]and systemically studied in[1].Essentially,the Chern-Finsler connection associated to F is the Hermitian connection on the holomorphic vector bundle V1,0endowed with the Hermitian metric h·,·i induced by F. The connection 1-forms ωαβof D is of type(1,0)and are given by

    where

    and

    In the following we denote

    Note that

    Lemma 3.1Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1)and (M2,F2).Then the Chern-Finsler complex nonlinear connection coefcients associated to F are given by

    where

    ProofBy using(2.5)and(3.1),we have

    Similarly,we can obtain other equalities in Lemma 3.1.

    Using(3.3),(3.4)and Lemma 3.1,after a straightfoward computation,we have

    Proposition 3.2Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2),Γαβ;μand Γαβμare the horizontal and vertical coefcients of the Chern-Finsler connection associated to F,respectively.Then

    and

    Using(3.3)and Lemma 3.1,we have

    Proposition 3.3Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2),Γαβ;μbe the coefcients of the complex Rund connection associated to F.Then

    Next we shall derive the complex Berwald nonlinear connection coefcientswhich is obtained fromAccording to[21],the complex nonlinear connectionalways determine a complex sprayConversely,the complex spray Gαinduces another complex nonlinear connection denoted by

    which are called the complex Berwald nonlinear coefcients associated to F.Note that we always have

    The complex Berwald connectionwas frst introduced in [21],and its connection 1-form can be expressed as

    where

    By Lemma 3.1 one may easily establish the following result.

    Lemma 3.4Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1)and (M2,F2).Then the complex spray coefcients Gαassociated to Γα;μ(or equivalently Gαμ)are given by

    Using(3.8),(3.10)and Lemma 3.4,by a straight forward computation,we obtain the following result.

    Lemma 3.5Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1)and (M2,F2).Then the complex Berwald nonlinear connection coefcients Gαμare given by

    where

    Corollary 3.6Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).Then the complex Berwald connection coefcients Gαβμassociated to F are given by

    The complex Hashiguchi connectionis a complex analogue of the Hashiguchi connection in real Finsler geometry[19].Its connection 1-formsare given by

    where Gαβμare given by(3.10),Γαβμare given by(3.4)and

    Proposition 3.7Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).Then the horizontal and vertical connection coefcients of the complex Hashiguchi connection,respectively Gαβμand Γαβμare given by Proposition 3.3 and Corollary 3.6.

    In[5],Aldea and Munteanu gave the defnition of complex Landsberg space.A complex Finsler manifold(M,F)is called a complex Landsberg manifold if

    where

    Proposition 3.8Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).Then

    ProofUsing(2.4),(2.5),(3.13),(3.14)and Lemma 3.5,we have

    Similarly,we can obtain other equalities of Proposition 3.8.

    4 Holomorphic Curvature and Ricci Scalar Curvature of Doubly Warped Product Complex Finsler Manifold

    Our purpose in this section is to derive formulae of the holomorphic curvature and Ricci scalar curvature of DWP-complex Finsler manifold in terms of the holomorphic curvature and Ricci scalar curvature of its components.

    In a complex Finsler space(M,F),there are two ways of defning the holomorphic curvature of F.

    The frst method gives the holomorphic curvature on(M,F)from the Gauss curvature on the unit disc△ ?C via a holomorphic map ?:△ → M.More precisely,the holomorphic curvature is defned by KF(v)=sup{K(??G)(0)}[31].The second method to defne the holomorphic curvature on(M,F)from the curvature tensor ? of a complex Finsler connection and this was considered by Kobayashi[17],and locally expression of the holomorphic curvature of a strongly pseudoconvex Finsler metric F alongwith respect to Chern-Finsler connection D is given by Abate and Patrizio[1]:

    In[3],Aikou proved that the above two defnitions is equivalent to each other,and if F comes from a Hermitian metric on M,then the holomorphic curvature is just the holomorphic sectional curvature in the usual sense[32].

    In[27],Sun and Zhong pointed out that the holomorphic curvature of a strongly pseudoconvex Finsler metric F along a nonzero vectorwith respect to the Chern-Finsler connection D,or the complex Rund connection?D,or the complex Berwald connection?D,or the complex Hashiguchi connectionˇD,are coincide with each other.In the following,we use the Chern-Finsler connection to derive the holomorphic curvature of the DWP-complex Finsler manifold.

    Theorem 4.1Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).Then the holomorphic curvature of(M,F)along a holomorphic tangent vectorsatisfying F1(π1(v))=1 and F2(π2(v))=1 is given by

    ProofThe holomorphic curvature of the DWP-complex Finsler manifold(f2M1×f1M2, F)with respect to the Chern-Finsler connection is given by

    where in the last equality we used

    Similarly,we have

    Thus we get(4.2).

    Corollary 4.2Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).If KF1(π1(v))=KF2(π2(v))≡c,lnf1and lnf2are pluriharmonic functions on M1and M2,respectively.Then the holomorphic sectional curvature of(f2M1×f1M2,F)along v=(vi,vi′)is

    The Ricci scalar curvature of F along a nonzero vectorassociated to the Chern-Finsler connection is given by[21]:

    Theorem 4.3Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1)and (M2,F2).Then the Ricci scalar curvature of(f2M1×f1M2,F)associated to the Chern-Finsler connection is given by

    where RicF1and RicF2are Ricci scalar curvatures of(M1,F1)and(M2,F2),respectively.

    ProofUsing(4.4),we have

    Using Lemma 3.1,and notice thatit follows that

    Similar calculations gives

    Thus

    5 Doubly Warped Product of Special Complex Finsler Manifolds

    Let(M1,F1)and(M2,F2)be two K¨ahler Finsler(or weakly K¨ahler Finsler,complex Berwald,weakly complex Berwald,complex Landsberg)manifold,one may want to know whether the DWP-complex Finsler manifold(f2M1×f1M2,F)is also a K¨ahler Finsler(or weakly K¨ahler Finsler,complex Berwald,weakly complex Berwald,complex Landsberg)manifold.In this section,we shall give a complete answer to these questions.

    Defnition 5.1(see[1]) Let F be a strongly pseudoconvex complex Finsler metric on a complex manifold M.F is called a strongly K¨ahler Finsler metric ifcalled a K¨ahler Finsler metric ifcalled a weakly K¨ahler Finsler metric if

    In[13],Chen and Shen proved that a K¨ahler Finsler metric is actually a strongly K¨ahler Finsler metric.Thus there are only two K¨ahlerian notions in Finsler setting,i.e.,K¨ahler Finsler metric and weakly K¨ahler Finsler metric.

    Now,let us consider the case of K¨ahler Finsler manifolds and weakly K¨ahler Finsler manifolds.We have the following theorem.

    Theorem 5.2Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).Then(f2M1×f1M2,F)is a K¨ahler Finsler manifold if and only if(M1,F1)and (M2,F2)are K¨ahler Finsler manifolds and the functions f1and f2are positive constants.

    ProofAssume that(f2M1×f1M2,F)is a K¨ahler Finsler manifold,then Γαβ;μ=Γαμ;β.By Proposition 3.2,this is equivalent to

    Thus(M1,F1)and(M2,F2)are K¨ahler Finsler manifolds and the functions f1and f2are positive constant.

    Theorem 5.3Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of two weakly K¨ahler Finsler manifolds(M1,F1)and(M2,F2).Then(f2M1×f1M2,F)is a weakly K¨ahler Finsler manifold if and only the functions f1and f2are positive constants.

    ProofBy puttingμ=k in(5.1)and using Proposition 3.2,after a long but trivial computation,we obtain

    Similary,By puttingμ=k′in(5.1),we obtain

    By Defnition 5.1,(f2M1×f1M2,F)is a weakly K¨ahler Finsler manifold if and only if

    Note that gi(Γij;k?Γik;j)vjand f1are independent of vk′,thus diferentiating(5.2)with respect to vk′,we get

    Interchanging indices j and k in(5.2),and then contracting the obtained equality with vj,we get

    Contracting(5.3)with vk′,we get

    Now subtracting(5.6)from(5.5)and using(5.4),we get

    Since(M1,F1)and(M2,F2)are weakly K¨ahler Finsler manifolds,we have

    Thus we obtain the following diferential equation

    Note that the left hand side of(5.8)depends only on(z1,v1),while the right hand side of(5.8) depends only on(z2,v2),thus we get

    Suppose c 6=0,then

    Diferentiating the above two equations with respect to vi,vjand vi′,vj′,respectively,we get

    This is a contradiction since(gij)and(hi′j′)are positive defnite matrices.Thus it necessary that c=0,which implies that f1and f2are positive constants.

    As an immediate consequence of relations(2.4),we have

    Theorem 5.4The DWP-complex Finsler manifold(f2M1×f1M2,F)is a Hermitian manifold if and only if(M1,F1)and(M2,F2)are Hermitian manifolds.

    For the case of complex Berwald manifold,weakly complex Berwald manifold and complex Landsberg manifolds,we need the following defnitions.

    Defnition 5.5(see[4]) A complex Finsler manifold(M,F)is called a complex Berwald manifold if the horizontal connection coefcients Γαβ;μ(z,v)of the Chern-Finsler connection are independent of fbre coordinates v and its associated Hermitian metric hFis a K¨ahler metric on M.

    Remark 5.6In[2],Aikou gave the defnition of complex Berwald manifold in which there is no requirement of the K¨ahler Finsler condition.But diferent from real Finsler geometry, in complex Finsler geometry,there exists two diferent covariant derivative for Cartan tensor, Cijk|hand Cijk|h.The requirement of the K¨ahler Finsler condition in[4]implies that Cijk|h=0. Later the above defnition of complex Berwald manifold was given by Aikou himself[4],and was widely used in various topics[3,5].In this paper,complex Berwald manifold is in the sense of Aikou[4].

    Defnition 5.7(see[34]) Let F be a strongly pseudoconvex complex Finsler metric on M. If locally the connection coefcients Gαβμ(z,v)of the associated complex Berwald connection are independent of fbre coordinates v,then F is called a weakly complex Berwald metric.

    Defnition 5.8(see[5]) Let F be a complex Finsler metric on complex manifold M.F is said to be a complex Landsberg metric if it satisfes

    Theorem 5.9The DWP-complex Finsler manifold(f2M1×f1M2,F)is a complex Berwald manifold if and only if(M1,F1)and(M2,F2)are complex Berwald manifolds and the functions f1and f2are positive constants.

    ProofAccording to Theorem 5.2 and Defnition 5.5,(f2M1×f1M2,F)is a complex Berwald manifold if and only if(M1,F1)and(M2,F2)are K¨ahler manifolds,the functions f1and f2are positive constants and Γαβ;μ(z,v)=Γαβ;μ(z).Thus by the relations of the coefcient Γαβ;μof the Chern-Finsler connection in Proposition 3.2,we have

    This is equivalent to the conditions that(M1,F1)and(M2,F2)are complex Berwald manifolds and the functions f1and f2are positive constants.

    In the sense of Aikou[3,4],a complex Finsler manifold(M,F)is said to be modeled on a complex Minkowski space if the connection coefcients Γαβ;μ(z,v)of the Chern-Finsler connection depend only on the coordinates of the base manifoldSo, according to Proposition 3.2,we have

    Corollary 5.10The DWP-complex Finsler manifold(f2M1×f1M2,F)is modeled on a complex Minkowski space if and only if(M1,F1)and(M2,F2)are modeled on a complex Minkowski spaces.

    In the sense of Aikou[2],a complex Finsler manifold(M,F)is said to be complex locally Minkowski,if there exits an open coversuch that on eachthe function F is a function of the fbre-coordinate only.A complex Finsler manifold(M,F)is complex locally Minkowski if and only if it is modeled on a complex Minkowski space and the complex Rund connection(i.e.,the connection coefcients Γαβ;μ(z,v)of the associated Chern-Finsler connection)on(M,F)is holomorphic.In[4],Aikou gave an example of complex manifold which is modeled on a complex Minkowski space,but not complex locally Minkowski.

    According to Proposition 3.2,we have

    Corollary 5.11If lnf1and lnf2are pluriharmonic functions on M1and M2,respectively, then the DWP-complex Finsler manifold(f2M1×f1M2,F)is a complex locally Minkowski if and only if(M1,F1)and(M2,F2)are complex locally Minkowski manifolds.

    Theorem 5.12The DWP-complex Finsler manifold(f2M1×f1M2,F)is a weakly complex Berwald manifold if and only if(M1,F1)and(M2,F2)are weakly complex Berwald manifolds.

    ProofAccording to Defnition 5.7,(f2M1×f1M2,F)is a weakly complex Berwald manifold if and only if Gαβμ(z,v)=Gαβμ(z).Thus by the relations of the complex Berwald connection in Proposition 3.6,we have

    which is equivalent to the condition that(M1,F1)and(M2,F2)are weakly complex Berwald manifolds. ?

    Remark 5.13It was shown in[34]that the complex Wrona metric is a weakly complex Berwald metric,but not a complex Berwald metric.This assertion was proved by showing that Gα=12Γα;μvμ≡0 while Γα;μdo not vanish identically.It was also shown in[35]that there are lots of unitary invariant strongly pseudoconvex complex Finsler metric which are weakly complex Berwald metrics.Theorem 5.12 provide us an efective way to construct weakly complex Berwald manifolds.

    Theorem 5.14The DWP-complex Finsler manifold(f2M1×f1M2,F)is a complex Landsberg manifold if and only if(M1,F1)and(M2,F2)are complex Landsberg manifolds and the functions f1and f2are positive constants.

    ProofAccording to Defnition 5.8,Propositions 3.6 and 3.8,(f2M1×f1M2,F)is a complex Landsberg manifold if and only if

    which is equivalent to the condition that(M1,F1)and(M2,F2)are complex Landsberg manifolds and the functions f1and f2are positive constants.

    A complex n-dimensional complex Finsler space(M,F)is called a G-Landsberg spaces if it is complex Landsberg and the spray coefcient Gαare holomorphic with respect to v,i.e., ˙?μ(Gα)=0[5].Thus we have

    Corollary 5.15The DWP-complex Finsler manifold(f2M1×f1M2,F)is a complex GLandsberg manifold if and only if(M1,F1)and(M2,F2)are complex G-Landsberg manifolds and the functions f1and f2are positive constants.

    Remark 5.16In real Finsler Geometry,every Berwald space is a Landsberg space,the converse,however,is still an open problem[10].This problem was studied by several authors [20,25,28,29].In complex Finsler geometry,there is also notions of complex Berwald metric and complex Landsberg metric.Every complex Berwald metric is complex Landsberg metric [5].One may want to know whether every complex Landsberg metric is also a complex Berwaldmetric.By Theorems 5.9 and 5.14,it follows that these two class of manifolds are the same type complex Finsler manifolds under warped product operations,thus showing that it is impossible to construct such metrics by this method.But,if we have two complex Landsberg manifolds M1and M2which are not complex Berwald manifolds,we can use the above Theorems to produce such manifolds of dimension dimCM1+dimCM2,as follows.

    Let M1and M2be two complex Landsberg manifolds,but they are not complex Berwald manifolds.Now,for any positive constant functions f1:M1→R+and f2:M2→R+,Theorem 5.14 ensures that the DWP-complex Finsler manifold(f2M1×f1M2,F)is a complex Landsberg manifold.Theorem 5.9 guarantees that it is not a complex Berwald manifold,otherwise,M1and M2must be complex Berwald manifolds,which is a contradiction to the choice of M1and M2.

    Practical application of this method depends on the existence of a non-Berwald complex Landsberg manifold to start with.If there is,we would prefer to select one with the lowest dimension.Let us have complex Landsberg manifolds which are not Berwald,ordered according to their dimension.Then,by well-ordering principle,there exists a natural number that is the lowest dimension of such manifolds,and there exists a manifold of this type,which has this dimension.We have the following corollary of the theorems.

    Corollary 5.17Let C be the collection of complex Landsberg manifolds which are not complex Berwald manifold.Assume that C is non-empty.Let m0be the lowest dimension. Let M be a complex Finsler manifold in C with dimension m0,then M cannot be of warped product type.

    ProofLet,on the contrary,M be of warped product type,that is,M=(f2M1×f1M2,F) for some functions f1:M1→ R+and f2:M2→ R+,then,by Theorem 5.14,M1and M2are complex Landsberg manifold,and according to Theorem 5.9,M1and M2are not complex Berwald manifolds,otherwise M itself should be a complex Berwald manifold.But,as dimCM1≥1,M1itself is a member of C,whose dimension should less than m0,contradicting the choice of m0.

    6 Geodesics of Doubly Warped Product Complex Finsler Manifold

    In this section,we shall investigate geodesics of DWP-complex Finsler manifold.

    A real geodesic σα(t)with an afne parameter t of a complex Finsler manifold(M,F) satisfes the following equation[1]:

    Proposition 6.1Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1) and(M2,F2).If σ(t)=(σα(t))=(σk(t),σk′(t))is a geodesic of(f2M1×f1M2,F),then it is necessary that

    ProofBy putting α=k in(6.1),using(2.4),(2.5)and Proposition 3.2,after a long computation,we obtain

    Similary,by putting α=k′in(6.1),using(2.4),(2.5)and Proposition 3.2,we obtain

    which completes the proof.

    Corollary 6.2Let(M1×f1M2,F)be a product complex Finsler manifold of(M1,F1) and(M2,F2).If{σk(t)}and{σk′(t)}are real geodesics of F1and F2,respectively.Then {σα(t)}={σk(t),σk′(t)}is a geodesic of F if and only if f1is a positive constant function on M1.

    Theorem 6.3Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of(M1,F1)and (M2,F2).

    (i)If the warping function f1(resp.f2)is a positive constant on M1(resp.M2),then any geodesic of(M1,F1)(resp.(M2,F2))is a geodesic of(f2M1×f1M2,F),that is to say,(M1,F1) (resp.(M2,F2))is a totally geodesic subspace of the doubly warped product complex Finsler space(f2M1×f1M2,F).

    (ii)If the warping function f1(resp.f2)is a positive constant on M1(resp.M2),then the projection of any geodesic of the DWP-complex Finsler manifold(f2M1×f1M2,F)onto M1(resp.M2)is a geodesic of(M1,F1)(resp.(M2,F2)).

    ProofSince the proof of(ii)is similar to(i),we only prove(i).If(σk(t))is a geodesic of (M1,F1),then

    Consider the curve(σk(t),σk′),where σk′is a constant.We have˙σi′=0,thus the diferential equation(6.2)reduces to

    7 Projective Flatness of Doubly Warped Product Complex Finsler Manifold

    Let F(x,u)be a real Finsler metric defned on a domain D?Rn.F is called projectively fat if its geodesic are straight lines[14].This is equivalent to the following system of PDEs[15]

    where x=(x1,···,xn)∈D and u=(u1,···,un)∈TxD,F is called dually fat if and only if F satisfes[26]

    For a strongly convex complex Finsler metric,it makes sense to talk about its projectiveness.

    Let(M1,F1)and(M2,F2)be two locally projectively fat or dually fat Finsler manifold, one may want to know whether the DWP-complex Finsler manifold(f2M1×f1M2,F)is also a locally projectively fat or dually fat complex Finsler manifold.For this problem we need the following proposition.

    Proposition 7.1(see[35]) Let F be a strongly convex complex Finsler metric defned on a domain D?Cn.Then

    (i)F is locally projectively fat if and only if

    (ii)F is locally dually fat if and only if

    It is obviously that F is a strongly convex complex Finsler metric whenever F1and F2are strongly convex complex Finsler metrics.Thus it makes sense to investigate the projective fatness or dual fatness of F.

    Theorem 7.2Let(f2M1×f1M2,F)be a DWP-complex Finsler manifold of two strongly convex complex Finsler manifolds(M1,F1)and(M2,F2).

    (i)If(M1,F1)and(M2,F2)are locally projectively fat manifolds,then(f2M1×f1M2,F)is a locally projectively fat manifold if and only if the functions f1and f2are positive constants.

    Proof(i)According to Proposition 7.1,(f2M1×f1M2,F)is locally projectively fat if and only if

    Contracting(7.3)and(7.4)with respect to viand vi′,respectively,and compare the obtained equations,we get

    Using(2.2),and notice(M1,F1)and(M2,F2)are projectively fat manifolds,we obtain

    Diferentiating(7.6)with respect to vsand vt′,we get

    Contracting(7.7)with respect to vsand vt′,we get

    Since the left hand side of(7.8)depends only on(z1,v1),while the right hand side of(7.8) depends only on(z2,v2),it follows that

    which implies that the functions f1and f2are positive constants.

    (ii)According to Proposition 7.1,(f2M1×f1M2,F)is locally dually fat if and only if

    Using(2.2),and notice(M1,F1)and(M2,F2)are locally dually fat complex Finsler manifolds,we fnd that this is equivalent to

    Contracting(7.10)and(7.11)with viand vi′,respectively,we obtain

    Interchanging indices i and j of(7.13),and adding(7.12),we get

    Since the left hand side of(7.14)is conjugate to the right hand side of(7.14),thus

    is a real value function.

    [1]Abate M,Patrizio G.Finsler Metrics—A Global Approach with Applications to Geometric Function Theory. Lecture Notes in Mathematics,Volume 1591.Berlin Aeidelberg:Springer-Verlag,1994

    [2]Aikou T.On complex Finsler manifolds.Rep Fac Sci Kagoshima Univ(Math Phys&Chem),1991,24: 9–25

    [3]Aikou T.Complex manifolds modeled on a complex Minkowski space.J Math Kyoto Univ(JMKYAZ), 1998,35-1:85–103

    [4]Aikou T.Some remarks on locally conformal complex Berwald spaces.Contem Math,1996,196:109–120

    [5]Aldea N,Munteanu G.On complex Landsberg and Berwald spaces.J Geom Phys,2012,62(2):368–380

    [6]Asanov G S.Finslerian extensions of Schwarzschild metric.Fortschr Phys,1992,40:667–693

    [7]Asanov G S.Finslerian metric functions over the product R×M and their potential applications.Rep Math Phys,1998,41:117–132

    [8]Baagherzadeh Hushmandi A,Rezaii M M.On warped product Finsler spaces of Landsberg type.J Math Phys,2011,52,No.9093506.17

    [9]Baagherzadeh Hushmandi A,Rezaii M M,Morteza M.On the curvature of warped product Finsler spaces and the Laplacian of the Sasaki-Finsler metrics.J Geom Phys,2012,62(10):2077–2098

    [10]Bao D,Chern S S,Shen Z.An Introduction to Riemann-Finsler Geometry.GTM 200.Springer-Verlag, 2000

    [11]Beem J K,Ehrlich P,Powell T G.Warped product manifolds in relativity in selected studies:a volume dedicated to the memory of Albert Einstein(T.M.Rassias and G.M.Rassias eds.).Armsterdarm:North-Holland,1982:41–56

    [12]Bishop R L,O’Neill B.Manifolds of negative curvature.Trans Amer Math Soc,1969,145:1–49

    [13]Chen B,Shen Y B.K¨ahler Finsler metrics are actually strongly K¨ahler.Chin Ann Math Ser B,2009,30(2): 173–178

    [14]Chern S S,Shen Z.Riemann-Finsler geometry.World Scientifc,2005

    [15]Hamel G.¨Uber die Geometrieen in denen die Geraden die K¨urzesten sind.Math Ann,1903,57:231–264 [16]Katanaev O M,Kl¨osch T,Kummer W.Global properties of warped solutions in general relativity.Ann Physics,1999,276:191–222

    [17]Kobayashi S.Negative vector bundles and complex Finsler structures.Nagoya Math J,1975,57:153–166 [18]Kozma L,Peter I R,Varga C.Warped product of Finsler-manifolds.Ann Univ Sci Budapest,2001,44: 157

    [19]Matsumoto M.Foundations of Finsler Geometry and Special Finsler Spaces.Kaiseisha Press,1986

    [20]Matsumoto M.Remarks on Berwald and Landsberg spaces,in Finsler Geometry.Contem Math,1996,196: 79–82

    [21]Munteanu G.Complex Spaces in Finsler,Lagrange and Hamilton Geometries.Kluwer Academic Publishers, 2004

    [22]O’Neill B.Semi-Riemannian Geometry.New York:Academic Publisher,1983

    [23]Peyghan E,Tayebi A.On doubly warped product Finsler manifolds.Nonlinear Anal Real World Appl, 2012,13(4):1703–1720

    [24]Rund H.The curvature theory of direction-dependent connections on complex manifolds.Tensor N S,1972, 24:189–205

    [25]Shen Z.On a class of Landsberg metrics in Finsler geometry.Can J Math,2009,61(6):1357–1374

    [26]Shen Z.Riemann-Finsler geometry with applications to information geometry.Chin Ann Math Ser B,2006, 27(1):73–94

    [27]Sun L,Zhong C.Characterizations of complex Finsler connections and weakly complex Berwald metrics. Diferential Geom Appl,2013,31:648–671

    [28]Szabso Z I.All regular Landsberg metrics are Berwald.Ann Global Anal Geom,2008,34(4):381–386

    [29]Szabso Z I.Correction to all regular Landsberg metrics are Berwald.Ann Global Anal Geom,2009,35(3): 227–230

    [30]Unal B.Doubly Warped Products.Difer Geom Appl,2001,15(3):253–263

    [31]Wong B.On the holomorphic curvature of some intrinsic metrics.Proc Amer Math Soc,1977,65:57–61

    [32]Wu H.A remark on holomorphic sectional curvature.Indiana Univ Math J,1973,22:1103–1108

    [33]Wu Z,Zhong C.Some results on product complex Finsler manifolds.Acta Math Sci,2011,31B(4):1541–1552

    [34]Zhong C.On real and complex Berwald connections associated to strongly convex weakly K¨ahler-Finsler metric.Diferential Geom Appl,2011,29:388–408

    [35]Zhong C.On unitary invariant strongly pseudoconvex complex Finsler metrics.Diferential Geom Appl, 2015,40:159–186

    ?Received May 11,2015;revised December 22,2015.This work is supported by Program for New Century Excellent Talents in University(NCET-13-0510);National Natural Science Foundation of China(11271304, 11571288,11461064);the Fujian Province Natural Science Funds for Distinguished Young Scholar(2013J06001); the Scientifc Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry.

    猜你喜歡
    何勇
    樂壇持刀傷人事件:搖滾巨星淪落“垃圾場”
    Experimental study on the parameter optimization and application of a packed-bed dielectric barrier discharge reactor in diesel particulate filter regeneration
    Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma
    漁歌子·端午龍舟·珠村車陂
    嶺南音樂(2021年3期)2021-07-12 13:00:16
    Measurement of time-varying electron density of the plasma generated from a small-size cylindrical RDX explosion by Rayleigh microwave scattering
    雨的味道
    從妻子到“母親”,6年呵護讓倒下的丈夫“站”起來
    勵志!養(yǎng)蝦連續(xù)虧5年,這個老板如何成功逆襲?
    Structure Design of Shaped Charge for Requirements of Concrete Crater Diameter
    『武林高手』成才記
    一二三四社区在线视频社区8| 国产一区二区三区在线臀色熟女| 香蕉av资源在线| 国内揄拍国产精品人妻在线| 99re在线观看精品视频| 国产一区二区在线观看日韩 | 日本熟妇午夜| 久久久久亚洲av毛片大全| 午夜免费观看网址| 亚洲五月天丁香| 又爽又黄无遮挡网站| 久久久久久久久中文| 久久香蕉精品热| 国产一区在线观看成人免费| 亚洲欧美日韩卡通动漫| 精品99又大又爽又粗少妇毛片 | av视频在线观看入口| 午夜激情欧美在线| 一区二区三区国产精品乱码| 又粗又爽又猛毛片免费看| 久久久成人免费电影| 一夜夜www| 桃色一区二区三区在线观看| 亚洲无线观看免费| 亚洲国产精品999在线| 欧美日韩中文字幕国产精品一区二区三区| 一进一出抽搐动态| 午夜日韩欧美国产| 最好的美女福利视频网| 国产精品av久久久久免费| 久99久视频精品免费| 男女那种视频在线观看| 国产一区二区三区视频了| 久久中文看片网| 色精品久久人妻99蜜桃| 黑人欧美特级aaaaaa片| 变态另类成人亚洲欧美熟女| 在线免费观看的www视频| 嫩草影院入口| 制服人妻中文乱码| av在线蜜桃| 91麻豆精品激情在线观看国产| 免费搜索国产男女视频| 久久久国产成人免费| 后天国语完整版免费观看| 亚洲成av人片在线播放无| 麻豆国产av国片精品| 国产成人福利小说| 网址你懂的国产日韩在线| 最新美女视频免费是黄的| 狂野欧美白嫩少妇大欣赏| 精品熟女少妇八av免费久了| 精品乱码久久久久久99久播| 美女午夜性视频免费| 国产高潮美女av| 久久人人精品亚洲av| www.999成人在线观看| 午夜福利在线观看吧| 99热这里只有精品一区 | 亚洲成人中文字幕在线播放| 久久亚洲真实| 丰满人妻熟妇乱又伦精品不卡| 黑人操中国人逼视频| 999久久久国产精品视频| 久久久久久久久久黄片| 亚洲欧美日韩高清专用| 国产av麻豆久久久久久久| 1000部很黄的大片| 精品久久久久久久毛片微露脸| 操出白浆在线播放| 久久久久免费精品人妻一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久久精品吃奶| 中文在线观看免费www的网站| 网址你懂的国产日韩在线| 国产不卡一卡二| 岛国在线免费视频观看| 在线播放国产精品三级| 成年版毛片免费区| 国内少妇人妻偷人精品xxx网站 | 超碰成人久久| 国产高清激情床上av| 亚洲国产欧美一区二区综合| 99热这里只有是精品50| 一区二区三区高清视频在线| or卡值多少钱| 亚洲avbb在线观看| 婷婷精品国产亚洲av| 在线观看一区二区三区| 最近视频中文字幕2019在线8| 国产黄a三级三级三级人| 美女免费视频网站| 国内精品一区二区在线观看| 99久国产av精品| 国产精品久久视频播放| 99久久精品热视频| 少妇丰满av| 男女下面进入的视频免费午夜| 国内少妇人妻偷人精品xxx网站 | 岛国在线观看网站| 亚洲午夜精品一区,二区,三区| 美女大奶头视频| 国产成人精品无人区| 亚洲国产精品久久男人天堂| 色哟哟哟哟哟哟| 长腿黑丝高跟| 精品久久蜜臀av无| 999久久久精品免费观看国产| 天堂动漫精品| 日本黄色片子视频| 日韩欧美 国产精品| 久久亚洲精品不卡| 午夜精品久久久久久毛片777| 亚洲 欧美一区二区三区| 18禁观看日本| 91久久精品国产一区二区成人 | 国产高清三级在线| 日韩精品青青久久久久久| 舔av片在线| 亚洲国产欧美人成| 国内毛片毛片毛片毛片毛片| 欧美黑人巨大hd| 久99久视频精品免费| 欧美中文综合在线视频| 国产综合懂色| 蜜桃久久精品国产亚洲av| 国产成人一区二区三区免费视频网站| 亚洲五月婷婷丁香| 一边摸一边抽搐一进一小说| 狂野欧美白嫩少妇大欣赏| 熟女少妇亚洲综合色aaa.| 亚洲在线观看片| 两性午夜刺激爽爽歪歪视频在线观看| 国产极品精品免费视频能看的| av中文乱码字幕在线| 久久精品夜夜夜夜夜久久蜜豆| 欧美午夜高清在线| 国产成人精品无人区| 久久久国产成人免费| 亚洲第一欧美日韩一区二区三区| 国产成人精品久久二区二区免费| 成年女人看的毛片在线观看| 黄色女人牲交| 久久久精品欧美日韩精品| 色精品久久人妻99蜜桃| 精品午夜福利视频在线观看一区| 久久精品国产综合久久久| 三级男女做爰猛烈吃奶摸视频| 又粗又爽又猛毛片免费看| 日本 av在线| 久久中文字幕一级| 精品久久久久久成人av| 99久久久亚洲精品蜜臀av| 最近视频中文字幕2019在线8| 久久久久国产一级毛片高清牌| 亚洲av五月六月丁香网| 久久久水蜜桃国产精品网| 国产淫片久久久久久久久 | 香蕉国产在线看| 91久久精品国产一区二区成人 | 国产激情偷乱视频一区二区| 男人舔女人下体高潮全视频| 一级作爱视频免费观看| 欧美日韩瑟瑟在线播放| 国产午夜精品久久久久久| 日本黄色片子视频| 久久精品91蜜桃| 国产亚洲欧美在线一区二区| 亚洲avbb在线观看| 中文亚洲av片在线观看爽| 九色成人免费人妻av| 国内精品久久久久久久电影| 亚洲欧美精品综合一区二区三区| 成年女人永久免费观看视频| www国产在线视频色| 又紧又爽又黄一区二区| 哪里可以看免费的av片| 老司机福利观看| 小说图片视频综合网站| 欧美日韩中文字幕国产精品一区二区三区| 国产精品久久电影中文字幕| 99久久久亚洲精品蜜臀av| 日韩欧美免费精品| 久久久精品大字幕| 色噜噜av男人的天堂激情| 禁无遮挡网站| 在线十欧美十亚洲十日本专区| 国产精品久久久久久精品电影| 99精品久久久久人妻精品| 欧美乱色亚洲激情| 亚洲精品美女久久av网站| 欧美中文日本在线观看视频| 99久久久亚洲精品蜜臀av| 少妇裸体淫交视频免费看高清| 日韩欧美在线二视频| 我的老师免费观看完整版| 日韩欧美免费精品| 一级毛片女人18水好多| 久久亚洲精品不卡| aaaaa片日本免费| 激情在线观看视频在线高清| 淫秽高清视频在线观看| 久久热在线av| 日韩 欧美 亚洲 中文字幕| 欧美乱妇无乱码| 看黄色毛片网站| 国产一区在线观看成人免费| 午夜激情欧美在线| 国产精品久久久久久久电影 | 精品无人区乱码1区二区| 欧美不卡视频在线免费观看| or卡值多少钱| 99热这里只有是精品50| 午夜a级毛片| 别揉我奶头~嗯~啊~动态视频| 99国产精品一区二区三区| 1024香蕉在线观看| 欧美一级毛片孕妇| 日韩欧美国产一区二区入口| 欧美乱妇无乱码| 特级一级黄色大片| 色综合站精品国产| 亚洲成a人片在线一区二区| 丁香六月欧美| 亚洲精品一卡2卡三卡4卡5卡| www日本在线高清视频| 久久国产乱子伦精品免费另类| 中文字幕熟女人妻在线| 亚洲人与动物交配视频| 麻豆一二三区av精品| 成人av一区二区三区在线看| 长腿黑丝高跟| 99在线视频只有这里精品首页| 午夜久久久久精精品| 国产亚洲精品久久久久久毛片| 国产精品免费一区二区三区在线| 黄片大片在线免费观看| 一本精品99久久精品77| 日本与韩国留学比较| 桃红色精品国产亚洲av| 亚洲va日本ⅴa欧美va伊人久久| 精品乱码久久久久久99久播| 一卡2卡三卡四卡精品乱码亚洲| 亚洲一区二区三区色噜噜| 亚洲七黄色美女视频| 精品国产乱子伦一区二区三区| 亚洲国产精品sss在线观看| 久久久久九九精品影院| 欧美日本视频| 女生性感内裤真人,穿戴方法视频| 色视频www国产| 久久精品91蜜桃| 亚洲精品中文字幕一二三四区| 99热这里只有是精品50| 九九久久精品国产亚洲av麻豆 | 三级男女做爰猛烈吃奶摸视频| 最近视频中文字幕2019在线8| 一本精品99久久精品77| 一区福利在线观看| 一进一出抽搐动态| 999久久久精品免费观看国产| 观看美女的网站| 国产高清三级在线| 日韩欧美一区二区三区在线观看| 久久九九热精品免费| 搞女人的毛片| 黄色视频,在线免费观看| 国产高清三级在线| 国产主播在线观看一区二区| 亚洲第一欧美日韩一区二区三区| 亚洲专区中文字幕在线| 国产欧美日韩一区二区精品| 国产视频一区二区在线看| 天天添夜夜摸| 一级毛片高清免费大全| 日本精品一区二区三区蜜桃| 亚洲天堂国产精品一区在线| 久久精品aⅴ一区二区三区四区| aaaaa片日本免费| 亚洲中文字幕一区二区三区有码在线看 | 久久精品国产99精品国产亚洲性色| 国内精品美女久久久久久| 欧美在线一区亚洲| 日本熟妇午夜| 在线观看美女被高潮喷水网站 | 久久久色成人| 国产黄片美女视频| 日本免费a在线| 看免费av毛片| 99精品欧美一区二区三区四区| 欧美另类亚洲清纯唯美| 91字幕亚洲| 一本久久中文字幕| 在线a可以看的网站| 黄频高清免费视频| 成人永久免费在线观看视频| 舔av片在线| 精品国内亚洲2022精品成人| 国产高清视频在线观看网站| 国产 一区 欧美 日韩| 国产又色又爽无遮挡免费看| 性欧美人与动物交配| 18禁观看日本| 久99久视频精品免费| 亚洲人成网站在线播放欧美日韩| 男女之事视频高清在线观看| 国产伦一二天堂av在线观看| 亚洲性夜色夜夜综合| 脱女人内裤的视频| 亚洲国产欧洲综合997久久,| 美女 人体艺术 gogo| 熟女电影av网| 亚洲五月天丁香| 免费看光身美女| 中文字幕熟女人妻在线| 人人妻人人看人人澡| 88av欧美| 一本精品99久久精品77| 亚洲美女视频黄频| 法律面前人人平等表现在哪些方面| av中文乱码字幕在线| 在线观看免费午夜福利视频| 999久久久精品免费观看国产| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区不卡视频| 亚洲av日韩精品久久久久久密| 一本精品99久久精品77| 午夜免费观看网址| 亚洲精品456在线播放app | 成熟少妇高潮喷水视频| 亚洲国产精品sss在线观看| 国产精品 国内视频| 久久久精品大字幕| 美女大奶头视频| 18美女黄网站色大片免费观看| 日韩欧美国产在线观看| 亚洲真实伦在线观看| 亚洲七黄色美女视频| 制服人妻中文乱码| 久久久国产欧美日韩av| 亚洲国产欧美一区二区综合| 中文字幕高清在线视频| 久久这里只有精品中国| 国产成人一区二区三区免费视频网站| 网址你懂的国产日韩在线| www.999成人在线观看| aaaaa片日本免费| 欧美日韩精品网址| 露出奶头的视频| 欧美一级毛片孕妇| 久久久久久九九精品二区国产| av在线天堂中文字幕| 高清在线国产一区| 亚洲美女黄片视频| 两性夫妻黄色片| netflix在线观看网站| av欧美777| tocl精华| 每晚都被弄得嗷嗷叫到高潮| 国产精品美女特级片免费视频播放器 | 国产高清有码在线观看视频| 国产精品国产高清国产av| 日日干狠狠操夜夜爽| 两性午夜刺激爽爽歪歪视频在线观看| 最近最新中文字幕大全免费视频| 岛国在线观看网站| 欧美成人性av电影在线观看| 手机成人av网站| 啪啪无遮挡十八禁网站| 国产精品99久久99久久久不卡| 一个人观看的视频www高清免费观看 | 中文字幕人成人乱码亚洲影| 亚洲国产中文字幕在线视频| 色综合亚洲欧美另类图片| 丰满人妻熟妇乱又伦精品不卡| 久久这里只有精品中国| 国产又黄又爽又无遮挡在线| 91麻豆精品激情在线观看国产| 99久久成人亚洲精品观看| 国产高清激情床上av| 熟女少妇亚洲综合色aaa.| 国产又色又爽无遮挡免费看| 国产久久久一区二区三区| 草草在线视频免费看| 国产激情久久老熟女| 草草在线视频免费看| 国内久久婷婷六月综合欲色啪| 草草在线视频免费看| 国内久久婷婷六月综合欲色啪| 黄色女人牲交| 九色国产91popny在线| 国产成年人精品一区二区| 欧美一级a爱片免费观看看| 中文字幕人妻丝袜一区二区| 国产伦精品一区二区三区四那| 久久久久久国产a免费观看| 少妇的逼水好多| 亚洲无线在线观看| 又黄又粗又硬又大视频| 免费搜索国产男女视频| 亚洲熟女毛片儿| 免费观看的影片在线观看| 色哟哟哟哟哟哟| av女优亚洲男人天堂 | 99久国产av精品| 日韩 欧美 亚洲 中文字幕| 熟女少妇亚洲综合色aaa.| 国产精品av视频在线免费观看| 亚洲第一电影网av| 88av欧美| 亚洲中文日韩欧美视频| 国产伦人伦偷精品视频| 精品福利观看| 性色avwww在线观看| 999久久久精品免费观看国产| 国产欧美日韩一区二区精品| 国产精品久久久久久亚洲av鲁大| 亚洲精品456在线播放app | 免费在线观看日本一区| 午夜福利免费观看在线| 不卡av一区二区三区| 91久久精品国产一区二区成人 | 又粗又爽又猛毛片免费看| aaaaa片日本免费| 亚洲欧美日韩无卡精品| 99热这里只有精品一区 | 午夜福利成人在线免费观看| 欧美午夜高清在线| 淫妇啪啪啪对白视频| 免费av毛片视频| 99久国产av精品| 波多野结衣高清无吗| 男人和女人高潮做爰伦理| h日本视频在线播放| 91av网站免费观看| 亚洲国产欧美网| 天堂√8在线中文| 级片在线观看| 国产伦精品一区二区三区视频9 | 最近在线观看免费完整版| 婷婷精品国产亚洲av| 午夜亚洲福利在线播放| 韩国av一区二区三区四区| 99在线人妻在线中文字幕| 中文字幕最新亚洲高清| 99久久精品热视频| 国产综合懂色| av国产免费在线观看| 国产成人aa在线观看| 日韩中文字幕欧美一区二区| 99久久无色码亚洲精品果冻| 国产精品乱码一区二三区的特点| 淫秽高清视频在线观看| 国产探花在线观看一区二区| 欧美黄色片欧美黄色片| 久久久久精品国产欧美久久久| 无遮挡黄片免费观看| 在线观看免费午夜福利视频| 黄色 视频免费看| 又大又爽又粗| 国语自产精品视频在线第100页| 91av网站免费观看| 在线观看舔阴道视频| 18禁美女被吸乳视频| 亚洲欧美精品综合一区二区三区| 精品欧美国产一区二区三| 波多野结衣高清无吗| 亚洲精品456在线播放app | 脱女人内裤的视频| 国产精品女同一区二区软件 | 久久午夜亚洲精品久久| 神马国产精品三级电影在线观看| 91在线观看av| 欧美zozozo另类| 全区人妻精品视频| 国产成人av教育| 搡老岳熟女国产| 精品久久久久久久久久久久久| 免费高清视频大片| 久久精品国产综合久久久| 69av精品久久久久久| 一区二区三区激情视频| 18禁黄网站禁片午夜丰满| 亚洲国产精品999在线| 在线播放国产精品三级| 女生性感内裤真人,穿戴方法视频| 一本综合久久免费| 久久久久国内视频| 好男人电影高清在线观看| 中出人妻视频一区二区| 丰满人妻一区二区三区视频av | 久久久久国产精品人妻aⅴ院| 成人无遮挡网站| 国内少妇人妻偷人精品xxx网站 | 88av欧美| 亚洲无线观看免费| 国产精品久久视频播放| 日韩免费av在线播放| 久久精品国产99精品国产亚洲性色| 九九久久精品国产亚洲av麻豆 | 日韩 欧美 亚洲 中文字幕| 九色国产91popny在线| 视频区欧美日本亚洲| 少妇熟女aⅴ在线视频| www.www免费av| 精品电影一区二区在线| 国产v大片淫在线免费观看| 色吧在线观看| 久久精品国产综合久久久| 天天躁日日操中文字幕| 精品电影一区二区在线| 熟女少妇亚洲综合色aaa.| 亚洲熟妇中文字幕五十中出| 国产免费男女视频| 国产亚洲精品久久久com| 国产三级中文精品| 国产精品久久电影中文字幕| 19禁男女啪啪无遮挡网站| 一个人看视频在线观看www免费 | 最新美女视频免费是黄的| 淫秽高清视频在线观看| 免费av不卡在线播放| 可以在线观看的亚洲视频| 中文字幕人成人乱码亚洲影| 啦啦啦观看免费观看视频高清| 免费观看人在逋| 亚洲中文字幕日韩| 99久久精品国产亚洲精品| 久久婷婷人人爽人人干人人爱| 国产精品野战在线观看| 色播亚洲综合网| 久久久久久人人人人人| 亚洲第一欧美日韩一区二区三区| 深夜精品福利| 亚洲一区二区三区不卡视频| 美女cb高潮喷水在线观看 | 高清在线国产一区| 一个人免费在线观看的高清视频| 亚洲专区国产一区二区| 很黄的视频免费| 日韩欧美一区二区三区在线观看| 国产成人精品久久二区二区免费| 精品久久久久久久末码| 成人国产一区最新在线观看| 成人三级做爰电影| 国产成人系列免费观看| 亚洲在线观看片| 黄频高清免费视频| 999久久久精品免费观看国产| 性欧美人与动物交配| 丰满人妻一区二区三区视频av | 变态另类成人亚洲欧美熟女| 精品无人区乱码1区二区| 国产精品久久久久久精品电影| 日韩欧美在线乱码| 日韩高清综合在线| 国产男靠女视频免费网站| 国产aⅴ精品一区二区三区波| 极品教师在线免费播放| 欧美日韩综合久久久久久 | 日本黄色视频三级网站网址| xxxwww97欧美| 美女高潮喷水抽搐中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区精品| 男女下面进入的视频免费午夜| 国产伦精品一区二区三区四那| 欧美黑人巨大hd| 男人舔奶头视频| 欧美大码av| 午夜亚洲福利在线播放| 1000部很黄的大片| 国产成人啪精品午夜网站| 午夜福利免费观看在线| 熟女电影av网| 亚洲第一欧美日韩一区二区三区| 变态另类丝袜制服| 网址你懂的国产日韩在线| 精品无人区乱码1区二区| 色吧在线观看| 日本熟妇午夜| 女警被强在线播放| 亚洲激情在线av| 天堂av国产一区二区熟女人妻| 久久天躁狠狠躁夜夜2o2o| 99国产极品粉嫩在线观看| 久久人妻av系列| 国产高清有码在线观看视频| 亚洲专区中文字幕在线| 天堂影院成人在线观看| 制服丝袜大香蕉在线| 日韩欧美 国产精品| svipshipincom国产片| 久久中文字幕人妻熟女| 日韩中文字幕欧美一区二区| 欧美一级毛片孕妇| 国产精品日韩av在线免费观看| 欧美日韩综合久久久久久 | 99久久久亚洲精品蜜臀av| 午夜成年电影在线免费观看| 欧美性猛交╳xxx乱大交人| 欧美日韩黄片免| www.精华液| 欧美日韩中文字幕国产精品一区二区三区| 小说图片视频综合网站| 又爽又黄无遮挡网站| 国产一区二区在线av高清观看| 在线十欧美十亚洲十日本专区| 18禁裸乳无遮挡免费网站照片| 91字幕亚洲| 亚洲avbb在线观看| 精品国产亚洲在线| 色综合站精品国产| 老司机深夜福利视频在线观看| 成人午夜高清在线视频|