• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resonance and antiresonance characteristics in linearly delayed Maryland model

    2022-12-28 09:52:50HsinchenYu于心澄DongBai柏棟PeishanHe何佩珊XiaopingZhang張小平ZhongzhouRen任中洲andQiangZheng鄭強(qiáng)
    Chinese Physics B 2022年12期
    關(guān)鍵詞:中洲張小平

    Hsinchen Yu(于心澄) Dong Bai(柏棟) Peishan He(何佩珊)Xiaoping Zhang(張小平) Zhongzhou Ren(任中洲) and Qiang Zheng(鄭強(qiáng))

    1State Key Laboratory of Lunar and Planetary Sciences,Macau University of Science and Technology,Macau 999078,China

    2CNSA Macau Center for Space Exploration and Science,Macau,China

    3Department of Physics,Nanjing University,Nanjing 210008,China

    4School of Physics Science and Engineering,Tongji University,Shanghai 200092,China

    5Key Laboratory of Advanced Micro-Structure Materials(MOE),Tongji University,Shanghai 200092,China

    6School of Physical Science and Technology,Tiangong University,Tianjin 300387,China

    Keywords: quantum chaos,dynamical localization,resonance and topology

    1. Introduction

    The quantum kicked rotor (QKR) model is a prototypical model in the quantum chaos area.[1–15]The QKR has been realized by many successful experiments.[13,16–27]Based on the original QKR model, the Maryland model was firstly introduced in the 1980s.[4–7]In the Maryland model, the mass termmequals zero, and the free Hamiltonian of the rotor is proportional to the angular momentum. Although the Maryland model has been studied since the 1980s,previous studies focused on the periodically kicked Maryland model. Those studies considered the original Maryland model,[4–7]noise influences,[28–35]dissipation,[35–38]nonlinearity,[39–47]superballistic transportation[48]and many-body localization.[49]

    In 1982, Fishman, Grempel, and Prange[2]firstly found the relationship between the dynamical evolution of the original Maryland model over time and the static electron problem in the one-dimensional (1D) tight-binding lattice. However,the non-periodically kicked Maryland model is hard to be related to the periodic lattices in nature.So,the non-periodically kicked Maryland model failed to raise people’s attention. Due to the optical lattice studied and applied in the area of the quantum simulation and the cold atom, the artificial lattice is realized in the optical lattice.[50–54]By operating the particular magnetic field on the spin-1/2 particle and controlling the pulsed optical lattice, the realization of the non-periodically kicked Maryland model is possible in the optical lattice system.

    In the original Maryland model, the periodic evolution of the angular momentum spread appears with irrationalα.Compared to the other cases of the QRKR,the massless case of the QRKR (Maryland model) shows the pattern of the periodic evolution.[48]In this paper, we aim to check whether the periodic kicks raise the periodic evolution in the Maryland model. Therefore,the linearly delayed quantum relativistic Maryland model (LDQRMM), a non-periodically kicked Maryland model, is studied. In the LDQRMM, the kicking potential is not uniform but linearly delayed over time.

    In our previous work,[55]the angular momentum spread of the LDQRMM has been found to have the “stable–jump–stable–jump” pattern. The expectation value of ?p2increases or decreases significantly after a particular number of kicks are performed on the rotor. If the“stable–jump–stable–jump”condition is not satisfied, the angular momentum spread will vibrate until the next “stable–jump–stable–jump” condition is satisfied. Although the “stable–jump–stable–jump” pattern explains the local periodic jumps of the LDQRMM, the long-time transportation characteristics of the angular momentum spread can not be explained by the“stable–jump–stable–jump”pattern.Due to the intrinsic characteristics of long-term transportation in the LDQRMM,our objective in this paper is to interpret the long-term transportation characteristics in the LDQRMM.This work can help one understand the evolution of the angular momentum spread in a non-periodically kicked Maryland model,particularly in the LDQRMM.

    The framework of this paper is listed below. In Section 2, a non-periodically kicked Maryland model is introduced as the LDQRMM. The spread of the angular momentum in the LDQRMM is found to be related to the evolution of the characteristic sumS(n) withnin the complex number space. In Section 3, the linearly delayed classical Maryland model(LDCMM)is introduced. We calculate the ensemble average of the angular momentum of the LDCMM. We find that the evolution of the ensemble average of the angular momentum in LDCMM is also related to the characteristic sum. In Section 4, the numerical results of the LDQRMM and LDCMM are shown, respectively. In Section 5, different evolution modes of the characteristic sumS(n) are classified and analyzed with different system parameters,αqandd. In Section 6,we devise experiment proposals to realize the LDQRMM with the optical lattice technology. We discuss the corresponding relationship between the LDQRMM and a spin-1/2 particle in an external magnetic field pulsed 1D lattice. In Section 7,our work in this paper is briefly concluded.

    2. Linearly delayed quantum relativistic Maryland model

    In this section,we introduce the linearly delayed quantum relativistic Maryland model (LDQRMM). In the LDQRMM,the kicking potential is not uniform but linearly delayed over time. The Hamiltonian operator of the LDQRMM reads It is the Hamiltonian operator of a 1D free Dirac rotor kicked by aδ-function potential sequence. 2παis the effective speed of light. The kicking potential is a linearly delayed sequence over time.qis a parameter that determines the period of the function sin in the angular coordinate.w(l)is the internal time between thel-th and(l+1)-th kick,which is linearly delayed as the time of kicks,l,increases,that is,w(l)=1+(l ?1)/d.In the LDQRMM, the free Hamiltonian of the LDQRMM is massless. ?pis the dimensionless angular momentum operator which reads as ?p=?i?/?θ. The parameterK=kTR/ˉh,

    whereRis the radius of the 1D ring,kis the kick strength of the kicking potential,andTis the unit of time.

    In the LDQRMM,the evolution of the kicked rotor is related to the propagator operator ?F(n), wherenis the time of kicks. The propagator operator ?F(n)following the(n ?1)-th kick in the LDQRMM reads

    In the angle coordinate representation, the wave function following then-th kick readsΨn+1(θ).Ψn+1(θ)is given by operating the bar of the ?θcoordinate eigenstate〈θ|on the quantum state|Ψn+1〉,

    To study the dynamical evolution characteristic of the LDQRMM,we calculate the angular momentum spread based on the expression of the wave function in Eq.(5). The angular momentum spread ofΨn(θ)is calculated below:

    Based on Eq. (6), the characteristic sum directly reflects the resonance and antiresonance characteristic of the angular momentum spread of the corresponding LDQRMM system.The algebraic analysis of the characteristic sum with parameternwill be the key point to understanding the corresponding physical picture of the angular momentum spread.

    3. Linearly delayed classical Maryland model

    In this section,we introduce the LDCMM.The LDCMM is a classical model that corresponds to the LDQRMM that we have introduced in the above section. The Hamiltonian of the LDCMM reads

    whereθnandpnare the angle coordinate and angular momenta of the LDCMM following thenth kick,respectively. The initial angle coordinate and angular momenta areθ0andp0. According to Eq.(8),

    Re(eiqθ0S(n)) represents the real number component of the complex number eiqθ0S(n). According to Eq. (10), it is obvious that the variation in the angular momentum after then-th kick is proportional to the real number component of eiqθ0S(n).

    To study the quantum-classical correspondence between the LDQRMM and the LDCMM, we select a special kicked rotor ensemble in the LDCMM, which corresponds to a pure angular momentum eigenstate in the LDQRMM.The ensemble of the LDCMM consists of kicked rotors with the same value of the initial angular momentum 0, but different initial angular coordinatesθ0randomly taken from 0 to 2π.The average angular momentum spread of this ensemble after then-th kick reads Compared with Eq. (6) in the LDQRMM, the spread of the angular momentum in the LDQRMM and its corresponding classical model(LDCMM)is the same. The evolutions of the angular momentum of the LDQRMM and the corresponding LDCMM are all principally influenced by the mathematical properties of the characteristic sumS(n)in the complex number space.

    4. Numerical simulations and results

    In Sections 2 and 3, we have discussed the evolution of angular momentum in the LDQRMM and LDCMM.This section calculates some results of the average angular momentum spread of the kicked rotors in the LDQRMM and LDCMM.The numerical simulations in this section are based on the equations and discussions in Sections 2 and 3.

    4.1. Classical dynamics

    The standard map of the LDCMM has been shown in Eq. (9). The results of the LDCMM are based on Eq. (9).In this subsection,we discuss the numerical results of the LDCMM.

    In Fig.1,we select three representative cases to compare and discuss the LDCMM trajectories with different system parameters. The initial angular coordinate and the angular momentum of the rotors that we select in Fig.1 areπand 0, respectively. In panels (a)–(c), several discrete “l(fā)evels” of the angular momentum emerge on a single trajectory. The evolution trajectories of the angular momentum and angular coordinate oscillate at those“l(fā)evels”or jump between those“l(fā)evels”. It is called the“stable–jump–stable–jump”pattern.[55]In panel (b), one notices that the evolutionary trajectory is dramatically different from those in panels(a)and(c). The total number of angular momentum“l(fā)evels”in panel(b)is infinite.Therefore,the evolution of angular momentum at these levels is unbounded in phase space. The ensemble average of the angular momentum is bounded in panel (b). It is consistent with the discussion of the resonance modes of the characteristic sumS(n) in Section 5. However, the angular momentum values periodically jump between the two levels of angular momentum in panel (a). The ensemble average of the angular momentum spreads is localized. In panel (c), the single trajectory is similar to the single trajectory in panel(a). However,the angular momentum levels in panel(c)are not strictly axisymmetric along a particular axis, like those in panel (a).The reason is that the corresponding evolution modes in panels(a)and(c)belong to different classes of homeomorphisms.However, all of them belong to the antiresonance mode. So although their trajectories are bounded and closed, panels(a)and (c) show some differences. In the next section, we will explain those differences by analyzing the characteristic sum.

    Fig.1. The revolution trajectories of the angular coordinate and the angular momentum in the phase space. The initial angular coordinate and the angular momentum are π and 0,respectively. In panel(a),the system parameters are α =2/3,d=20000,q=1,and K=1.6. In panel(b),d=20002. In panel(c),d=20000/3. The other parameters in panels(b)–(c)are the same as those in panel(a). The x-axis is the angular coordinate. The y-axis is the angular momentum. The colors of the evolution track represent the kicking time. The maximum kicking time is 105. The angular momentum and the angular coordinate are shown in a dimensionless unit.

    4.2. Quantum dynamics

    In the LDQRMM, the evolution of the wave function is calculated by operating the Floquet operator on the wave function. The Floquet operator of the LDQRMM is given in Eq. (2), which can be separated into a free Hamiltonian propagator operator exp[?i(2πα?p+Mσz)w(n)] and a kicking propagator operator exp[?iKsin(q?θ)]. The numerical calculations separate a single kick into three steps. Firstly,the discrete Fourier transformation is operated on the initial wave function of the rotor to switch the wave function to the angular momentum representation. The next step is to operate the free Hamiltonian propagator operator on the wave function in the angular momentum representation. In this step, the ?poperator is substituted for the eigenvalues. Finally,we perform the inverse Fourier transformation to switch it back to the angular coordinate representation and operate the“δ-function”potential propagator operator on it. Through these three steps, the operation of a single kicking process is performed on the rotor.

    Fig. 2. Panels (a)–(c) show the angular momentum spread 〈p2〉 with different linearly delayed increases. Panel (d) shows the probability density distributions of the cases in panels (a)–(c) after the 8000th kick. In panel (a), d equals to 2000. In panel (b), d =2001. The other parameters are listed below. K=1.6,α =3,and q=1. In panel(c),α =5/3,K=1.6,q=1,and d=2000/3. In panels(a)–(c),the solid black lines show the ensemble average of the angular momentum of the LDQRMM,and the solid red lines are the results of the LDCMM.The angular momentum spread shown is in a dimensionless unit.

    In the previous subsection,we study the classical dynamical characteristics of the LDCMM through the simulations of the trajectories of the kicked rotors in the phase space. In the LDCMM, the trajectories of the angular momentum and coordinates are related to the ensemble average of the angular momentum spread. The angular momentum spread of the LDQRMM and LDCMM are calculated in Sections 2 and 3,respectively. The comparison indicates the quantum–classical correspondence between the LDQRMM and LDCMM. In this subsection, the average angular momentum spread in the LDQRMM and LDCMM will be exhibited. The numerical results in Fig.2 are consistent with the analytical discussions in Sections 2 and 3.

    The numerical results of the LDQRMM and LDCMM are exhibited in Fig.2. In our numerical calculation,the LDCMM ensemble consists of 103kicked rotors.The initial coordinates of these kicked rotors in the phase space are(θ0,p0). The initial angular coordinateθ0is a random number taken from the values ranging from 0 to 2π. The initial angular momentump0is set as 0. The initial quantum state of the LDQRMM is the angular momentum eigenvector with the eigenvalue 0.The antiresonance condition has been discussed in Section 5.d/gcd{αq,d}∈E is satisfied in panel(a)of Fig.2. The evolution of the angular momentum spread is periodic. Whend=2001,d/gcd{αq,d}∈O. The increase of the angular momentum spread is quadratic in panel (b). Panel (c) shows the evolution of the spread of the angular momentum in the antiresonance case with fractional system parameters.

    The numerical results of the angular momentum spread in the LDCMM and the LDQRMM do not show a significant difference. The spread of the angular momentum of the kicked rotors in the LDQRMM and LDCMM is consistent with the convergence property of the characteristic sumS(n) in the complex number space.

    5. Classifications and discussion

    Based on the discussions in Sections 2 and 3, we have known that the characteristic sumS(n)strongly dominates the spread of the angular momentum in the LDQRMM and LDCMM. Therefore, the analysis of the characteristic sumS(n)in the complex number space is necessary for understanding the evolution characteristics of the angular momentum spread in the LDQRMM and LDCMM. In this section, we discuss the classification of the characteristic sumS(n). This classification is based on the resonance and antiresonance characteristics of the characteristic sum with different parameters.In Subsection 5.1, the characteristic sum evolution with the integer system parameters (αqandd) will be discussed. In Subsection 5.2, a special antiresonance mode of the characteristic sumS(n) with fractional values ofαqanddwill be discussed. We argue that a topological difference exists between the antiresonance modes introduced in the subsections.We will discuss them in the following subsections.

    5.1. Resonance and antiresonance modes with integer number parameters

    The values of the characteristic sumS(n) with different system parameters are shown in Figs.3 and 4,respectively. In Fig.3, the characteristic sumS(n)periodically evolves in the complex number space asnincreases. However, the magnitude of the characteristic sum (|S(n)|)is linearly divergent as the variablenincreases in Fig.4. The evolution of the characteristic sum in the complex number space shows a significant difference.

    Fig.3.The characteristic sum S(n)with α=3,q=1,and d=20000 in the complex number space.The colors represent n,corresponding to the number of terms to be summed in the calculation of the characteristic sum S(n).

    In Fig. 3,S(n)evolves along the same trajectory and returns to the original position in the complex number space.Based on Fig.3,this antisymmetry of the characteristic sum is deduced in Eq.(12). We consider the characteristic sumS(n)having this antisymmetry whennis equal to a number betweenkandk+u.tis an integer number betweenkandk+u. The antisymmetry of the characteristic sum reads

    Whenαqanddare integer numbers, we simplify the above equation and get the following result:

    where Z and O represent the set of integers and odd numbers, respectively. According to Eq. (15), we know thatαq(u+2k)/d ∈Z andαq(u+2k)(u+1)/d ∈O. Therefore,u+1∈O. Becauseu+1∈O,we deduce thatu+2k ∈E. Becauseαq(u+2k)/d ∈O in Eq. (15),d/gcd{αq,d}∈E. In a word, the antisymmetric structure of the characteristic sum appears when

    E is the set of the even numbers. gcd{αq,d}is the largest common divisor ofαqandd. Under this condition,the angular momentum evolution of the corresponding LDQRMM and LDCMM is periodic in time. Equation (16) is the condition of the antiresonance mode of the characteristic sumS(n)with integer parametersαqandd.

    For the resonance mode of the characteristic sum with integer parameters, the evolution ofS(n) is unbounded in the complex number space asnincreases. Based on the characteristic of the characteristic sum shown in Fig. 4, the geometric symmetry in the complex number space is concluded as

    wheretis an integer number betweenkandu+k.kandu+kare arbitrary integers. We take the definition of the characteristic sumS(n)into it and then get the following equation:

    Because Eq. (19) must be satisfied for all integers ranging fromktou+k,and exp{i[2παql(l ?1)/2d]}is a complex number that is not zero. The resonance condition is deduced as

    We discuss the conditions in Eq.(20)with two possible cases.In the first case, we suppose thatuis an even number. Sou+2k ?1∈O andαq(u+2k ?1)/d ∈Z. Therefore, we deduced/gcd{αq,d} ∈O. In the second case,uis supposed to be an odd number. Sou+2k ∈O. According to

    αq(u+2k)(u+2k ?1)/d ∈E andαq(u+2k ?1)/d ∈Z,αq(u+2k ?1)/d ∈E. Ifd/gcd{αq,d}∈E, thenαq(u+2k ?1)/d ∈O. This result contracts with Eq. (20). Sod/gcd{αq,d}must∈O. Based on the above discussions,the antiresonance condition reads

    Fig.4. The characteristic sum S(n)with α =3,q=1,and d=20001.The colors represent n, corresponding to the number of terms to be summed in the calculation of the characteristic sum S(n).

    In this section, we have considered all cases of the characteristic sum with integer parametersαqandd. Thed/gcd{αq,d}is odd or even determines the resonance or antiresonance properties of the characteristic sumS(n) in the complex number space.

    5.2. Antiresonance mode with fractional number parameters

    In the above subsections, we have discussed the resonance and antiresonance modes of the characteristic sumS(n)with different integer parameters. In this subsection, we will discuss an antiresonance mode with fractional number parameters. In Fig.5,we plot the evolution of the characteristic sum with this antiresonance mode. In Fig.5,the characteristic sumS(n) shows the rotational symmetry. The characteristic sum evolution is periodic,S(n)=S(n+uT), whereTis the least period to let the whole image invariant under a rotation operation.uis the order of the rotational symmetry.

    Fig. 5. The characteristic sum S(n) with α = 5/3, q = 1, and d =80000/3. The colors represent n,corresponding to the number of terms to be summed in the calculation of the characteristic sum S(n).

    The rotational symmetry reads

    whereaeiθ0is the position of the center of symmetry. eiφis the rotational operator.φis the least invariant angle. The least invariant angle means the least angle to hold the rotation invariance in the complex number space. For example,the least invariant angle depicted in Fig.5 isπ/3.Tis the least rotation period.

    The characteristic sumS(j+nT)reads

    Ifnφis a multiple of 2π,thenS(j+nT)=S(j). The leastnφis the dynamical evolution period of the fractional resonance case. Through lettingn=1 in Eq.(23),we have the following equations:

    After subtracting equations in Eq. (24) and substituting the characteristic sum expression forS(j) andS(j+1), respectively,

    and canceling out the similar terms in the above equation,we get

    Equation(26)is the antiresonance condition of the characteristic sum with fractional values ofαqandd.

    6. Experiment proposal

    In this section,the experiment proposals for the LDQRM will be introduced. In Ref.[49],several experiment proposals have been devised to check the numerical results of the single QRKR and the coupled QRKR. The experimental proposals in this paper refer to their experiment proposals and modify them. Based on the Floquet operator expression in Eq. (2),one notices that the quantum dynamics are similar after exchanging the free Hamiltonian and the kicking potential in the Floquet operator.[49]In their experimental proposals,the original kicking potential is swapped for the free Hamiltonian. The swapping LDQRM Hamiltonian reads According to Eq. (3), the swapping exchanges the operating sequence of the free Hamiltonian part and the kicking potential part of the Floquet operator.

    The experimental proposals proposed in this section include the realizations of the original LDQRMM and the swapping Hamiltonian of the LDQRMM in the novel optical lattice system, pulsed with the external magnetic field. In the first proposed experiment,the spin-1/2 particle hops in the 1D optical lattice,periodically pulsed by an external magnetic field.The 1D single-band tight-binding lattice provides the discrete lattice coordinates corresponding to the discrete dimensionless angular momentum eigenvalues in the LDQRMM. Table 1 summarizes the corresponding relationship between the LDQRMM and the spin-1/2 particle model mentioned here.

    Table 1. Corresponding relationship.

    In the table,ais the lattice constant. The quasimomentum in the first Brillouin zone is indexed ask. The quasi-momentum in the experiment corresponds to the angular coordinatexin the LDQRMM.The eigenvalue of the angular momentum operator ?pin the LDQRMM corresponds to the index of the real space sitejin the 1D tight-binding lattice.μis the magnetic moment of the spin-1/2 particle.Bx(1)is thexcomponent of the magnetic field in the 1D lattice where the lattice index is 1.Bx(j)is thexcomponent of the magnetic field at the site of the 1D lattice indexed withj.Bx(j)=jBx(1).Tis the jumping energy that corresponds to the kicking strengthkin the LDQRMM. The Hamiltonian of the experiment system is

    TheHmagnis the Hamiltonian of the first experiment system.irepresents the time of kicks.jrepresents the number of lattice sites. Unlike the experimental proposal designed for the original Maryland model,the experimental proposal in this paper adjusts the magnitude of the external magnetic field for the time of kicks.w(i) is set to increase linearly over timeithroughw(i)=1+(i?1)/d. The magnitude of the magnetic field is proportional tow(i).

    As we have mentioned in this section,after the exchange of the free and kicking part of the Hamiltonian,the dynamical evolution pattern is similar.Hmagnis the swapping Hamiltonian of the LDQRMM. The Hamiltonian of another experimental proposal readsHpl,which describes a spin-1/2 particle that is in the constant magnetic field, pulsed with an optical lattice potential. The Hamiltonian reads

    wherew(l) is the sum of the linearly delayed increases, andSxis the first component of the Pauli matrix operator. To prevent the free Hamiltonian return to the quadratic kinetic energy form,the kicking operation is simulated by switching the deep lattice to the shallow one back and forth instead of completely turning on and off.[49]

    In summary, the LDQRMM experiment proposals include two operating experiment frameworks. The first framework performs a linearly increasing magnetic field on a spin-1/2 particle in the optical lattice. The second proposal holds a constant magnetic field and lets spin-1/2 particles linearly delayed pulsed by an optical lattice potential.

    7. Conclusion

    This paper has discussed the evolution characteristics of the spread of angular momentum in the LDQRMM and LDCMM, including the resonance and antiresonance phenomenon with different system parameters. Our conclusions are listed below. Compared to the other cases of QRKR dynamical localization,the massless case(the Maryland model)shows the periodic evolution of the spread of the angular momentum.[48]To answer whether periodic kicks cause a periodic change of the angular momentum in the Maryland model,we have considered the LDQRMM,a non-periodically kicked Maryland model, in this paper. We found that the resonance and antiresonance phenomenon of the angular momentum spread exist in the LDQRMM. In Sections 2–5, the resonance and antiresonance phenomenon in the LDQRMM are interpreted through classifications and discussions of the characteristic sum. In the LDQRMM,the antiresonance phenomenon appears with rational number parameters. It shows that the antiresonance phenomenon in the LDQRMM is more complex than that in the original Maryland model. The topology difference between different antiresonance cases emerges in the LDQRMM. It is also absent in a periodically kicked Maryland model.

    Moreover, our work in this paper predicts some localization phenomena in the corresponding 1D tight-binding lattice. We argue that the LDQRMM can be realized by hopping spin-1/2 particles in a 1D tight-binding lattice. This 1D tightbinding lattice is pulsed with a linearly delayed magnetic field in thex-direction. The wave function spread of a spin-1/2 particle in the optical lattice corresponds to the evolution of the angular momentum spread in the LDQRMM.

    Acknowledgements

    Project supported by the Science and Technology Development Fund (FDCT) of Macau, China (Grant Nos.0014/2022/A1 and 0042/2018/A2)and the National Natural Science Foundation of China (Grant Nos. 11761161001,12035011,and 11975167).

    猜你喜歡
    中洲張小平
    中國古村落——黎川縣中洲村
    2019~2021年杭州市水痘流行病學(xué)特征
    奧運(yùn)冠軍張小平告別領(lǐng)獎臺12 年一刻沒離開拳擊
    北廣人物(2020年51期)2021-01-10 11:26:08
    跌倒是最好的考試
    做人與處世(2020年3期)2020-03-07 05:23:55
    Two New Hyperon Coupling Models in the Light of the Massive Neutron Star PSR J0348+0432?
    β?-Decay Half-Lives for Waiting Point Nuclei Around N= 126?
    Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system?
    α Decays in Superstrong Static Electric Fields?
    人頭費(fèi)
    短篇小說(2018年11期)2018-07-12 16:14:45
    人頭費(fèi)
    最好的美女福利视频网| 免费观看精品视频网站| 亚洲av片天天在线观看| 嫩草影视91久久| 色吧在线观看| 夜夜爽天天搞| 人妻久久中文字幕网| 一本综合久久免费| 午夜福利高清视频| 美女高潮喷水抽搐中文字幕| 久久久久国内视频| 精品日产1卡2卡| 窝窝影院91人妻| 欧美日韩瑟瑟在线播放| 精品免费久久久久久久清纯| 国产精品自产拍在线观看55亚洲| 综合色av麻豆| 免费观看人在逋| www.www免费av| 在线观看美女被高潮喷水网站 | 国产高清有码在线观看视频| 舔av片在线| 成在线人永久免费视频| 久久精品综合一区二区三区| 久久天堂一区二区三区四区| 国产av不卡久久| 亚洲狠狠婷婷综合久久图片| 国产精品精品国产色婷婷| 亚洲av熟女| 禁无遮挡网站| 国产麻豆成人av免费视频| 人妻丰满熟妇av一区二区三区| 麻豆成人av在线观看| 婷婷六月久久综合丁香| 免费观看的影片在线观看| 伦理电影免费视频| 国产午夜福利久久久久久| 久久天堂一区二区三区四区| 久久久久九九精品影院| 黄色丝袜av网址大全| 国语自产精品视频在线第100页| 巨乳人妻的诱惑在线观看| 我要搜黄色片| 99热这里只有精品一区 | 国产精品日韩av在线免费观看| 男人和女人高潮做爰伦理| xxx96com| 国内少妇人妻偷人精品xxx网站 | 免费无遮挡裸体视频| 99re在线观看精品视频| 免费看十八禁软件| 国产探花在线观看一区二区| 一进一出抽搐gif免费好疼| 国产精品久久久久久精品电影| 午夜a级毛片| 黑人操中国人逼视频| 国产精品99久久久久久久久| 国产黄片美女视频| 成人特级黄色片久久久久久久| 757午夜福利合集在线观看| 麻豆成人av在线观看| 我的老师免费观看完整版| 波多野结衣高清作品| 给我免费播放毛片高清在线观看| 午夜久久久久精精品| 国产精品亚洲一级av第二区| 久久久水蜜桃国产精品网| 99在线视频只有这里精品首页| 精品一区二区三区av网在线观看| 波多野结衣高清无吗| 综合色av麻豆| 成熟少妇高潮喷水视频| 一区二区三区激情视频| 国产三级黄色录像| 亚洲精品456在线播放app | 国产精品精品国产色婷婷| 国产视频内射| 国产黄片美女视频| 国产欧美日韩精品亚洲av| 99精品久久久久人妻精品| 看免费av毛片| 国产三级在线视频| 日本 欧美在线| 国产高清videossex| 国产亚洲精品久久久久久毛片| 色吧在线观看| 精品一区二区三区四区五区乱码| 欧美日本视频| www日本黄色视频网| 国产精品久久久久久人妻精品电影| 99热这里只有精品一区 | 亚洲av熟女| 午夜成年电影在线免费观看| 国产午夜福利久久久久久| 亚洲熟妇熟女久久| 久久久久性生活片| 国产精品乱码一区二三区的特点| 99热只有精品国产| 成人性生交大片免费视频hd| 99国产精品一区二区三区| 一区福利在线观看| 99riav亚洲国产免费| 亚洲在线自拍视频| 亚洲乱码一区二区免费版| 少妇裸体淫交视频免费看高清| 精品久久蜜臀av无| 日本黄色视频三级网站网址| 亚洲熟妇中文字幕五十中出| 国产精品亚洲av一区麻豆| 亚洲国产精品合色在线| 久久99热这里只有精品18| 黄片大片在线免费观看| 9191精品国产免费久久| 色综合站精品国产| 无人区码免费观看不卡| 手机成人av网站| 婷婷六月久久综合丁香| 国产真实乱freesex| 9191精品国产免费久久| 一进一出好大好爽视频| av女优亚洲男人天堂 | 男女视频在线观看网站免费| 天堂影院成人在线观看| 成人av一区二区三区在线看| 噜噜噜噜噜久久久久久91| 成人鲁丝片一二三区免费| 欧美精品啪啪一区二区三区| 欧美黑人欧美精品刺激| 女人被狂操c到高潮| 国产精品99久久99久久久不卡| 国产精品,欧美在线| 熟女人妻精品中文字幕| 老司机在亚洲福利影院| 哪里可以看免费的av片| 美女高潮的动态| 精品福利观看| 九九热线精品视视频播放| 欧美一级毛片孕妇| 我的老师免费观看完整版| 中文字幕熟女人妻在线| 欧美大码av| 九九在线视频观看精品| 亚洲国产看品久久| 国产精品亚洲美女久久久| 免费看光身美女| ponron亚洲| 丰满人妻一区二区三区视频av | 9191精品国产免费久久| h日本视频在线播放| 日韩欧美 国产精品| 亚洲激情在线av| 精品免费久久久久久久清纯| 一本久久中文字幕| 免费看日本二区| 国产高清videossex| 少妇的逼水好多| 亚洲成人免费电影在线观看| 亚洲成人精品中文字幕电影| 九色成人免费人妻av| 久久亚洲真实| 18禁黄网站禁片午夜丰满| 欧美日韩亚洲国产一区二区在线观看| 国产精品亚洲美女久久久| 色在线成人网| 99riav亚洲国产免费| 一区二区三区国产精品乱码| 国产精品久久久久久精品电影| 成人性生交大片免费视频hd| 一二三四在线观看免费中文在| 日韩三级视频一区二区三区| 中出人妻视频一区二区| 日韩免费av在线播放| 观看美女的网站| 中文在线观看免费www的网站| 欧美一区二区精品小视频在线| 91av网站免费观看| 欧美最黄视频在线播放免费| 久久亚洲精品不卡| 国产真实乱freesex| 日韩国内少妇激情av| 在线免费观看的www视频| 美女 人体艺术 gogo| 岛国在线观看网站| 久久久久久大精品| 黑人欧美特级aaaaaa片| 精华霜和精华液先用哪个| 日本一二三区视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品美女久久av网站| 老司机午夜福利在线观看视频| 午夜两性在线视频| 精品免费久久久久久久清纯| 真人做人爱边吃奶动态| 色综合亚洲欧美另类图片| 亚洲人成电影免费在线| 国产毛片a区久久久久| 欧美黑人欧美精品刺激| 国产精品久久电影中文字幕| 99国产极品粉嫩在线观看| 亚洲精华国产精华精| 日日摸夜夜添夜夜添小说| www日本黄色视频网| 欧美色视频一区免费| 一个人看视频在线观看www免费 | 国产麻豆成人av免费视频| 手机成人av网站| 国产一区二区在线av高清观看| 国产v大片淫在线免费观看| 午夜福利在线观看免费完整高清在 | 在线十欧美十亚洲十日本专区| 精品乱码久久久久久99久播| 色av中文字幕| 午夜影院日韩av| 性色avwww在线观看| 黑人操中国人逼视频| 欧美午夜高清在线| 色综合欧美亚洲国产小说| 三级国产精品欧美在线观看 | 日韩中文字幕欧美一区二区| 久久久久久久精品吃奶| 国产伦在线观看视频一区| 岛国视频午夜一区免费看| 少妇的丰满在线观看| 欧美日韩黄片免| 一夜夜www| 亚洲欧美日韩高清在线视频| 丰满的人妻完整版| 91麻豆av在线| 国产av在哪里看| 久久九九热精品免费| 成人高潮视频无遮挡免费网站| 久久久水蜜桃国产精品网| 国产精品久久电影中文字幕| 国产成人系列免费观看| 精品无人区乱码1区二区| 熟女电影av网| a级毛片在线看网站| 亚洲午夜理论影院| 99在线人妻在线中文字幕| 99热这里只有精品一区 | 真人一进一出gif抽搐免费| 757午夜福利合集在线观看| 亚洲国产欧美人成| 日本一本二区三区精品| 国产精品久久久人人做人人爽| 夜夜夜夜夜久久久久| 精品国产超薄肉色丝袜足j| 欧美成人性av电影在线观看| 久久久久久久久中文| 黄片小视频在线播放| 婷婷丁香在线五月| 无遮挡黄片免费观看| 男人和女人高潮做爰伦理| 又黄又爽又免费观看的视频| 俄罗斯特黄特色一大片| 在线国产一区二区在线| 成年女人永久免费观看视频| 亚洲熟妇熟女久久| 国产在线精品亚洲第一网站| 国产又色又爽无遮挡免费看| 午夜激情福利司机影院| 亚洲成人久久性| 欧美xxxx黑人xx丫x性爽| 91九色精品人成在线观看| 国产蜜桃级精品一区二区三区| 很黄的视频免费| 亚洲精品在线美女| 亚洲五月天丁香| 国产精品99久久久久久久久| 国产精品精品国产色婷婷| 亚洲欧美日韩高清在线视频| 久久久久久久久久黄片| 亚洲欧洲精品一区二区精品久久久| 午夜免费成人在线视频| 国产成人av教育| 成人特级黄色片久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文日韩欧美视频| 99在线人妻在线中文字幕| av黄色大香蕉| 黄色女人牲交| 国产成人啪精品午夜网站| 人人妻人人澡欧美一区二区| 中文字幕精品亚洲无线码一区| 亚洲 欧美 日韩 在线 免费| 久久精品91无色码中文字幕| 国产精品98久久久久久宅男小说| 岛国在线免费视频观看| 欧美绝顶高潮抽搐喷水| 国产精品精品国产色婷婷| 可以在线观看毛片的网站| 久久亚洲精品不卡| 日韩有码中文字幕| www.自偷自拍.com| 欧美日韩中文字幕国产精品一区二区三区| 美女扒开内裤让男人捅视频| 黄色 视频免费看| 国产精品爽爽va在线观看网站| 色综合欧美亚洲国产小说| 在线十欧美十亚洲十日本专区| 日韩成人在线观看一区二区三区| 亚洲av电影在线进入| 18禁黄网站禁片午夜丰满| 特级一级黄色大片| 国内少妇人妻偷人精品xxx网站 | 久久香蕉国产精品| 亚洲精品久久国产高清桃花| 黄色丝袜av网址大全| 欧美日韩综合久久久久久 | 少妇丰满av| 久久久久久久精品吃奶| 成人三级做爰电影| 全区人妻精品视频| 婷婷六月久久综合丁香| 久久亚洲真实| 看免费av毛片| 99国产极品粉嫩在线观看| cao死你这个sao货| 一本一本综合久久| 国产激情欧美一区二区| 日韩欧美 国产精品| 制服丝袜大香蕉在线| 久久伊人香网站| 亚洲精品在线美女| 国产精品爽爽va在线观看网站| 精品久久蜜臀av无| 国产极品精品免费视频能看的| 噜噜噜噜噜久久久久久91| 国产亚洲欧美98| 欧美日韩综合久久久久久 | 啦啦啦观看免费观看视频高清| 18禁国产床啪视频网站| 最新美女视频免费是黄的| 亚洲美女视频黄频| 黄色丝袜av网址大全| 国内揄拍国产精品人妻在线| 久久伊人香网站| 少妇丰满av| 婷婷丁香在线五月| 精品国产三级普通话版| 丰满人妻熟妇乱又伦精品不卡| 一a级毛片在线观看| 久久久国产成人精品二区| 人人妻,人人澡人人爽秒播| 亚洲成人久久爱视频| 1000部很黄的大片| 一进一出抽搐动态| 人人妻,人人澡人人爽秒播| 热99re8久久精品国产| 悠悠久久av| 最近在线观看免费完整版| 国内精品美女久久久久久| 美女cb高潮喷水在线观看 | 亚洲欧美激情综合另类| 精品人妻1区二区| 国产成人一区二区三区免费视频网站| 日本五十路高清| 免费在线观看亚洲国产| 人人妻人人澡欧美一区二区| 国产视频内射| 美女免费视频网站| 欧美极品一区二区三区四区| 久久婷婷人人爽人人干人人爱| 日本在线视频免费播放| 国产精品免费一区二区三区在线| 久久人妻av系列| 精品乱码久久久久久99久播| 免费观看精品视频网站| 亚洲av日韩精品久久久久久密| 一级毛片高清免费大全| 久久久精品欧美日韩精品| 久久精品国产综合久久久| 亚洲狠狠婷婷综合久久图片| 搞女人的毛片| 久久亚洲真实| 国产精品久久久久久久电影 | 一级毛片女人18水好多| 视频区欧美日本亚洲| 在线国产一区二区在线| 欧美日韩乱码在线| 免费无遮挡裸体视频| 啪啪无遮挡十八禁网站| 女同久久另类99精品国产91| 成年人黄色毛片网站| 999精品在线视频| 一级作爱视频免费观看| 波多野结衣高清无吗| 亚洲成a人片在线一区二区| 色在线成人网| www.精华液| 婷婷六月久久综合丁香| 国产在线精品亚洲第一网站| 久久香蕉国产精品| 欧美日韩国产亚洲二区| 日日干狠狠操夜夜爽| 亚洲午夜精品一区,二区,三区| 一个人观看的视频www高清免费观看 | 热99在线观看视频| 欧美大码av| 国产高清视频在线观看网站| 一区二区三区国产精品乱码| 日本免费a在线| 日韩国内少妇激情av| 欧美在线一区亚洲| 亚洲人成网站在线播放欧美日韩| 香蕉国产在线看| 不卡一级毛片| 热99re8久久精品国产| 人人妻人人澡欧美一区二区| 欧美日韩亚洲国产一区二区在线观看| 1024香蕉在线观看| 美女被艹到高潮喷水动态| 亚洲av日韩精品久久久久久密| 在线观看舔阴道视频| 男女之事视频高清在线观看| av福利片在线观看| 男人和女人高潮做爰伦理| 日韩免费av在线播放| 狂野欧美白嫩少妇大欣赏| 亚洲真实伦在线观看| 老司机午夜福利在线观看视频| 午夜a级毛片| 天堂影院成人在线观看| 床上黄色一级片| 精品人妻1区二区| av片东京热男人的天堂| 一区福利在线观看| 亚洲在线自拍视频| 国产一区二区三区在线臀色熟女| 欧美日韩瑟瑟在线播放| 午夜免费激情av| 1000部很黄的大片| 夜夜夜夜夜久久久久| 午夜福利欧美成人| 国产高清三级在线| 亚洲av免费在线观看| 99热精品在线国产| 琪琪午夜伦伦电影理论片6080| 亚洲国产欧美网| 亚洲欧美一区二区三区黑人| 在线a可以看的网站| 亚洲色图 男人天堂 中文字幕| 久久精品人妻少妇| 特大巨黑吊av在线直播| 国产精品,欧美在线| 国产精品电影一区二区三区| 麻豆国产97在线/欧美| 韩国av一区二区三区四区| 亚洲av第一区精品v没综合| 亚洲精品一卡2卡三卡4卡5卡| 两性夫妻黄色片| 亚洲自拍偷在线| 国产麻豆成人av免费视频| 久久欧美精品欧美久久欧美| 校园春色视频在线观看| 亚洲国产欧洲综合997久久,| 中文资源天堂在线| 中亚洲国语对白在线视频| 日本黄大片高清| 很黄的视频免费| 亚洲国产看品久久| 夜夜躁狠狠躁天天躁| 国产精品爽爽va在线观看网站| 99国产精品99久久久久| 岛国在线免费视频观看| 精品国产超薄肉色丝袜足j| 国产成人一区二区三区免费视频网站| 日韩 欧美 亚洲 中文字幕| 真实男女啪啪啪动态图| 一个人免费在线观看的高清视频| 成人国产综合亚洲| 国产亚洲精品久久久com| 999久久久国产精品视频| 美女高潮的动态| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩高清在线视频| 日韩欧美免费精品| 网址你懂的国产日韩在线| 精品欧美国产一区二区三| 亚洲真实伦在线观看| 亚洲精品乱码久久久v下载方式 | 操出白浆在线播放| 国产一区在线观看成人免费| 久久热在线av| 天天添夜夜摸| 小说图片视频综合网站| 午夜福利视频1000在线观看| 午夜福利在线观看免费完整高清在 | 久久性视频一级片| 小说图片视频综合网站| 丝袜人妻中文字幕| 成年版毛片免费区| cao死你这个sao货| av福利片在线观看| 亚洲七黄色美女视频| 中文资源天堂在线| 午夜福利免费观看在线| 精品久久久久久久久久免费视频| 精品乱码久久久久久99久播| 中文字幕最新亚洲高清| 1024香蕉在线观看| 天堂影院成人在线观看| 一进一出好大好爽视频| 国产高清videossex| 免费av毛片视频| 成人18禁在线播放| 热99在线观看视频| 日韩欧美在线二视频| 九九久久精品国产亚洲av麻豆 | 日韩国内少妇激情av| 制服丝袜大香蕉在线| 国产精品99久久久久久久久| 国产黄色小视频在线观看| 一个人看视频在线观看www免费 | 亚洲欧美日韩卡通动漫| 免费在线观看日本一区| 成年版毛片免费区| 两个人视频免费观看高清| 免费看光身美女| 国产精品av久久久久免费| 99精品在免费线老司机午夜| 国产精品,欧美在线| 国产精品永久免费网站| 日韩欧美一区二区三区在线观看| 午夜福利成人在线免费观看| 宅男免费午夜| 91九色精品人成在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美一区二区精品小视频在线| 精品午夜福利视频在线观看一区| 美女高潮喷水抽搐中文字幕| 免费在线观看视频国产中文字幕亚洲| 俺也久久电影网| 欧美日本亚洲视频在线播放| 高清在线国产一区| 国产午夜精品久久久久久| www日本在线高清视频| 欧美成狂野欧美在线观看| 国产精品久久久av美女十八| 精品国产乱子伦一区二区三区| 亚洲七黄色美女视频| 精品一区二区三区视频在线观看免费| 最新在线观看一区二区三区| 美女黄网站色视频| 欧美绝顶高潮抽搐喷水| 最近在线观看免费完整版| 午夜福利欧美成人| 真人做人爱边吃奶动态| 免费看十八禁软件| 亚洲精品一区av在线观看| 久久热在线av| 18禁美女被吸乳视频| 亚洲中文字幕一区二区三区有码在线看 | 亚洲无线观看免费| 亚洲五月婷婷丁香| 丁香欧美五月| 欧美最黄视频在线播放免费| 99久久无色码亚洲精品果冻| 97碰自拍视频| 最近最新中文字幕大全电影3| 极品教师在线免费播放| 亚洲中文字幕一区二区三区有码在线看 | 国内少妇人妻偷人精品xxx网站 | 哪里可以看免费的av片| 免费无遮挡裸体视频| 国产成人av教育| 欧美午夜高清在线| 亚洲自偷自拍图片 自拍| 麻豆成人午夜福利视频| 日本 av在线| 亚洲成av人片在线播放无| 男插女下体视频免费在线播放| 丁香欧美五月| 国产1区2区3区精品| 亚洲精品久久国产高清桃花| 日韩欧美精品v在线| 免费在线观看日本一区| 嫩草影院入口| 免费看a级黄色片| 亚洲av成人精品一区久久| 欧美激情在线99| 此物有八面人人有两片| 观看免费一级毛片| 日日干狠狠操夜夜爽| 伊人久久大香线蕉亚洲五| 中文在线观看免费www的网站| 搡老妇女老女人老熟妇| 成人av一区二区三区在线看| 成人18禁在线播放| 日本免费a在线| 日韩免费av在线播放| 国产人伦9x9x在线观看| 精品免费久久久久久久清纯| 国产乱人视频| 亚洲天堂国产精品一区在线| 亚洲精品中文字幕一二三四区| 大型黄色视频在线免费观看| 亚洲天堂国产精品一区在线| 91在线精品国自产拍蜜月 | 亚洲九九香蕉| 悠悠久久av| 亚洲欧洲精品一区二区精品久久久| 黄频高清免费视频| 国内少妇人妻偷人精品xxx网站 | 国产精品爽爽va在线观看网站| 亚洲 欧美 日韩 在线 免费| 校园春色视频在线观看| 成在线人永久免费视频| 悠悠久久av| 国产人伦9x9x在线观看| 日日干狠狠操夜夜爽| 婷婷精品国产亚洲av在线| 久久久精品大字幕| 夜夜爽天天搞| 午夜福利18|