• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations

    2022-12-28 09:54:18ZhanglinHou侯章林JieliWang王杰利YingZeng曾穎ZhiyuanZhao趙志遠(yuǎn)XingHuang黃興KunZhao趙坤andFangfuYe葉方富
    Chinese Physics B 2022年12期
    關(guān)鍵詞:黃興志遠(yuǎn)

    Zhanglin Hou(侯章林) Jieli Wang(王杰利) Ying Zeng(曾穎) Zhiyuan Zhao(趙志遠(yuǎn))Xing Huang(黃興) Kun Zhao(趙坤) and Fangfu Ye(葉方富)

    1Wenzhou Institute,University of Chinese Academy of Sciences,Wenzhou 325001,China

    2Key Laboratory of Systems Bioengineering(Ministry of Education),School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    3School of Physical Science,University of Chinese Academy of Sciences,Beijing 100049,China

    4Research Center of Computational Physics,School of Mathematics and Physics,Mianyang Teachers’College,Mianyang 621000,China

    5Sichuan Provincial People’s Hospital,University of Electronic Science and Technology of China,Chengdu 610054,China

    6Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Chengdu 610054,China

    7Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    8Songshan Lake Materials Laboratory,Dongguan 523808,China

    9Oujiang Laboratory(Zhejiang Laboratory for Regenerative Medicine,Vision and Brain Health),Wenzhou 325001,China

    Keywords: two-dimensional melting, phase transition, molecular-orientational forming liquid crystal, local environment,melting mechanism

    1. Introduction

    Understanding two-dimensional (2D) melting is a longterm subject in condensed matter and statistical physics.[1,2]In late 1950s,Bernal introduced geometrical degrees of freedom to understand the entropy differences between solid and liquid phases, which has opened a door for an intuitive understanding of 2D melting.[3,4]Afterwards, motivated by the absence of true long-range order in two dimensions,[5]Berezinskii,[6,7]as well as Kosterlitz, Thouless, Halperin, Nelson and Young,developed a novel theory (BKTHNY theory) for 2D melting based on the evolution of topological defects in systems,[2,8–13]which states a two-step melting process:the unbinding of pairs of dislocations drives a continuous transition from solid to liquid crystal phase (x-atic), and subsequently, the dissociation of pairs of disclinations(i.e.single dislocations)drives the second continuous transition from liquid crystal phase to isotropic fluid. The BKTHNY theory strongly inspires researchers to investigate 2D melting behavior.[14–28]On the other hand,with the advances of detection and analysis techniques,other transition behaviors that the BKTHNY mechanism cannot cover have also been discovered,[19,22,24–26,28–34]suggesting that our understanding of 2D melting is still not complete.

    The melting mechanism suggested by the BKTHNY theory have been tested in different particle systems,[2,8–10,24,28]and three types of 2D melting scenarios have been revealed up to date,[17,19,22,26,28,35–37]which are a first-order transition directly from solid to isotropic fluid, a two-step melting with a continuous solid-to-liquid crystal transition and a firstorder liquid crystal-isotropic fluid transition, and a two-step melting with continuous transitions for both solid-liquid crystal and liquid crystal-isotropic fluid. For example, both hard disks[19,22,35]and regular polygons with an edge numbern ≥7[28]show a two-step melting behavior including a continuous solid-hexatic transition and a weakly first-order hexatic-fluid transition, which is different from the BKTHNY theory. By contrast,melting of hard hexagons fully obeys the BKTHNY theory as investigated by Andersonet al.[28]These results imply that the melting transition is closely related to the symmetries of particle shape and their assembled structures.[28,31]However, the underlying mechanism is still unclear. Particularly,how the melting mechanism is affected by the symmetry of initial crystal configurations remains largely unknown.

    In this work, by performing Monte Carlo (MC) simulations, we systematically studied the melting behavior of 60?hard rhombs[see Fig.1(a)]in a square box. This system has two types of crystal structures including a complex hexagonal crystal [cHX, Fig. 1(b)] whose primitive cell contains three rhombs, and a simple rhombic crystal [RB, Fig. 1(c)] whose primitive cell contains just one rhomb. Both cHX and RB structures are able to fully cover the surface (i.e., the packing density is 1). In addition, because rhombs have internal angles of 60?and 120?,if only centers of particles are considered, the RB has the same symmetry as a hexagonal crystal,

    whereas cHX has a symmetry of honey-comb lattice (i.e., a symmetry of inverse-hexagonal lattice). Thus,this 60?rhomb system provides an ideal platform to investigate the dependence of the melting mechanism on initial crystal structures.Our results show that the local environment of particles is a key factor in 2D phase transitions and the melting behavior is initial-configuration-dependent. Our findings would benefit a better understanding of 2D melting.

    This paper is organized as the follows: In Section 2, we introduce the simulation methods used in this work. In Section 3,the results are shown and discussed. Lastly,the conclusion is given in Section 4.

    2. Simulation methods

    3. Results and discussion

    3.1. Simulation results: initial-configuration-dependent melting behavior

    Fig.1.Schematic illustration of simulation models and typical configurations of each phase obtained from Monte Carlo(MC)NPT ensembles. (a)Sketch of a 60?rhomb with an edge length L.(b)Illustration of a complex hexagonal crystal(cHX,green rhomb indicating a primitive cell of the lattice)that can be viewed as an assembled structure of a three-particle-based hexagonal unit(red hexagon). (c)Illustration of a simple rhombic crystal(RB,green rhomb indicating a primitive cell of the lattice) constructed by single particle unit(red rhomb). (d)–(g)Snapshots of I,Hmo, RB and cHX phases. I:isotropic fluid, Hmo: hexatic in molecular-orientational order. Insets at the lower left corners: FFTs of corresponding snapshots.

    For both initial structures of cHX and RB crystals, systems melt first from a crystal to an intermediate liquid crystal phase Hmoand subsequently from the Hmoto an I phase.Transitions for both steps seem to be continuous.Thus,the melting transitions in both cHX and RB systems are consistent with the BKTHNY theory.[2,8,9,11,28]Although the phase sequence is similar during melting transition in the cHX and RB systems,they do show a different solid–Hmotransition point, which isφA=0.812 for the cHX system andφA=0.828 for the RB system. Apparently, such a difference in the transition point results from the different initial crystal structures.

    Fig. 2. Monte Carlo simulation results of the cHX system using NPT ensembles. (a) Equation of state and (b) order parameters including 2-, 4-, and 6-fold molecular orientational orders Φ2, Φ4, and Φ6, 4- and 6-fold bond orientational orders Ψ4 and Ψ6, and translational order with cHX lattice ScHX. The vertical dashed lines indicate the cHX–Hmo and Hmo–I transition points. [(c),(d)]Spatial correlation functions of 6-fold molecular orientational orderand translational order gcHX. Green dashed lines in(c)and(d)decay as r?1/4 and r?1/3, which are the BKTHNY predictions on liquid crystal-isotropic fluid and solid-liquid crystal transition points for gmo6 and gs,respectively.

    Fig. 3. Monte Carlo simulation results of the RB system using NPT ensembles. (a) Equation of state and (b) order parameters including 2-, 4-, and 6-fold molecular orientational orders Φ2, Φ4, and Φ6, 4- and 6-fold bond orientational orders Ψ4 and Ψ6, and translational order with RB lattice SRB. The vertical dashed lines indicate the RB–Hmo and Hmo–I transition points. [(c), (d)] Spatial correlation functions of 6-fold molecular orientational orderand translational order gRB. Green dashed lines in(c)and(d)decay as r?1/4 and r?1/3,which are the BKTHNY predictions on liquid crystal-isotropic fluid and solid-liquid crystal transition points for nd gs,respectively.

    3.2. Definition of LPC-4NNs

    To further understand the mechanism underlying the observed different melting behaviors, we employed an analysis based on local polymorphic configurations (LPCs). The LPC method has been used to analyze the glass transition in Penrose-kite systems[39]and to understand the emergent tetratic order in hard kite systems,[38]suggesting that it could be used to analyze the phase behavior of anisotropic particles.By applying the LPC method to the rhomb system, rhombic particles are first classified based on their local environment formed by their four nearest neighbors,i.e.,LPC-4NNs. Here,four nearest neighbors are chosen in view of the structural characteristics of cHX and RB lattices as well as the mechanical stability of edge-edge contact between neighboring particles. For each selected particle, its neighboring particle with a relative pointing angle between them being around 60?/120?or 0?/180?is categorized as a 60?/120?or 0?/180?neighbor,respectively; while a neighbor with a relative pointing angle being out of 60?/120?and 0?/180?is categorized as a fluctuating neighbor.Then,for the selected particle,based on the category information of its 4 nearest neighbors,it can be classified into one of six types with each one having a different LPC-4NN [Fig.4(a)]: Types 1–5 have zero to four 0?/180?neighbors,respectively. Type 6 has 2 or more fluctuating neighbors,and particles of type 6 are called disordered particles (DPs).For simplicity,for particles that have one fluctuating neighbor,the threshold value for judging 60?/120?or 0?/180?neighbors is increased from 15?to 30?,and the fluctuating neighbor under the threshold value of 15?was re-categorized under the threshold value of 30?, so that these particles can be classified into one of types 1–5 (see details in the supplementary information and Fig. S3). Figure 4(b) shows a representative configuration of the cHX system in which particles are colored according to their LPC-4NNs.

    Fig. 4. The model of LPC-4NNs and a representative configuration with particles colored according to LPC-4NNs. (a) Schematic graphs showing six types of LPC-4NNs.Brown and dark violet dashed rectangle illustrate type 1(consistent with cHX structure)and type 5(consistent with RB structure), respectively. Green dashed rhombs in LPC-4NNs: indicating that its neighboring rhombs can slide along the edge of the target particle to the position of the green dashed rhomb without changing the type of LPC-4NN. (b) A representative configuration at φA=0.800 in the cHX system,in which particles are colored by their LPC-4NN types. Colors of the six LPC-4NN types are same as in(a).

    3.3. Partial translational and molecular-orientational orders: effect of each type of LPC-4NN on melting

    LPC-4NNs provide an intuitive view of local environment around target particles, which can be closely related to the global order of the system.[38,39]Based on LPC-4NNs,we measured the partial translational and molecular orientational orders for the particles that have the same type of LPC-4NNs.The results are shown in Fig. 5. The global orders obtained from all particles of the system (i.e., no matter what is type of particle’s LPC-4NN)are also shown,which can be used as references to judge the contribution of the particles with certain type of LPC-4NNs. We can see that in the cHX system[Fig. 5(a)], before melting, the globalScHXbegins to drop as soon as non-type-1 particles appear. Moreover, after type-2 particles appear, the partialScHXof them is roughly equal to the globalScHX. Then in the Hmoregion,as the global translational order has been destroyed,the measured globalScHXdecays quickly to below 0.4.Compared with the globalScHX,the partialScHX’s of type-1 and type-4 particles are higher whereas the partialScHX’s of type-3 and type-6 particles are lower,indicating that type-3 and type-6 particles are more detrimental than type-1 and type-4 particles in destroying the translational order of the system.Interestingly,for the whole crystal region,the partialScHXof type-1 particles seems to keep constant and exhibits a plateau. These results suggest that, when the system melts from cHX, the generation of other LPC-4NNs different from type 1 will reduce the globalScHX, though it has little effect on the remaining structures formed by type-1 particles. By contrast, for the RB system [Fig. 5(c)], before melting the globalSRBis roughly equal to the partialSRBof type-5 particles even when non-type-5 particles appear, indicating the dominant role of type-5 particles in the system.Near the RB–Hmotransition,type-4 and type-5 particles contribute positively while those of types 1–3 contribute negatively to the global order. In the crystal region,the overall trend of the partialSRBfrom type-5 particles shows a gradually decrease with decreasingφA. In both systems, near and above solid–Hmotransitions,the number of DPs is too few(less than 1%)to get statistically meaningful results.

    Similar analysis for the 6-fold molecular orientational orderΦ6has also been performed[Figs.5(b)and 5(d)],and the results show that near Hmo–I transition,Φ6is mainly destroyed by DPs. This is same for the cHX and RB systems, as is expected.

    Fig. 5. Translational order [(a), (c)] and 6-fold molecular orientational order [(b), (d)] measured for each type of particle at different φA.Cyan-filled region indicates the global order of the system. Results shown in the figure are averaged over more than 100 particles for each type of particle. The dashed lines indicate the transition points.

    3.4. Proliferation of point/line defects induces the cHX–Hmo/RB–Hmo transitions

    To further elucidate the roles of different LPC-4NNs in the melting transitions, we tracked the evolution of different LPC-4NNs during the melting of the two systems. The results are shown in Fig. 6. For the cHX–Hmotransition, at the beginning(e.g., atφA=0.844), particles mostly belong to type 1 [Fig. 6(b)]. Type-2 and type-3 particles can be observed sporadically and often appear in a form of point-like groups[e.g.,isolated star-like clusters in Figs.6(b)and 6(c)]consisting of three type-3 and six type-2 particles. AsφAdecreases toφA=0.825 [Fig. 6(c)], the amount of type-2 and type-3 particles increases, so more point-like groups are formed and some neighboring groups connect to each other to form bigger clusters. Then, atφA=0.805, the system melts into Hmophase. The numbers of both type-2 and type-3 particles reach a peak [Fig. 6(a)], and these particles connect to form a big cluster that can percolate the system [Fig. 6(d)]. Other types of particles also appear inside the big cluster. In contrast,the evolution of LPC-4NNs shows a different pattern during the RB–Hmotransition. AtφA=0.837[Fig.6(g)]where the system is still in RB phase, most particles belong to type 5, but particles of types 1–4 can emerge and often appear simultaneously. However, different from the point-like groups observed in the cHX system, these particles of types 1–4 form line-shaped clusters in the RB system. At a lowerφA=0.830[Fig.6(h)],with more non-type-5 particles appear,the number of line-shaped clusters increases and they begin to crosslink to form a big network, which can percolate the system even when the system is still in the RB phase. Then atφA=0.823[Fig.6(i)],the expanded network essentially covers the majority of particles and the system melts into Hmophase. For both systems,as the system continues to melt,more and more DPs appear [Figs. 6(e) and 6(j)], which destroy theΦ6order and drive the system from Hmoto I phase.

    The observed different evolution patterns of LPC-4NNs seem to suggest that the generation mechanisms of the cHX melting and RB melting for the LPC-4NNs that are not consistent with the crystal structures (hence defects associated) are different. To better illustrate this point,we consider defects in the two systems. As shown in Fig.7(a),in the cHX structure,if a three-particle-based hexagonal unit(red dashed hexagon)rotates±π/3, it will generate six type-2 particles and three type 3-1 particles. Then, when two such rotated hexagonal units are neighbors,type 3-2 and type 3-3 particles are created.Similarly, type-4 and type-5 particles can be generated when three and four such rotated hexagonal units come to close with each other. Since all other types of LPC-4NN except type 1 are not compatible with the crystal structure, these generated particles of types 2–5 thus contribute to the defects of the system and drive the melting of cHX. Based on this picture, in the context of occurrence probability,the generation of different LPC-4NNs is sequential in the cHX system where type 2 and type 3-1 appear first,next followed in turn by type 3-2 and type 3-3,type 4 and type 5. This sequential generation is also consistent with the evolution curves of different LPC-4NNs shown in Fig.6(a).

    Fig.6. Evolution of melting process characterized by types of particles according to LPC-4NNs. [(a),(f)]The fraction of of particles of types 1–6 as a function of packing fraction in the cHX system(a)and the RB system(f). The colored backgrounds represent different phase windows shown in Figs.2 and 3. Representative configurations of the cHX system(b)–(e)and the RB system(g)–(j)with particles colored by its type based on LPC-4NNs.

    In contrast, in the RB structure, most LPC-4NNs that are not compatible with the RB structure are associated with twinning-like line defects. For example, Fig. 7(b) top shows some typical line defects of 60?rhombs, in which particles of type 1, type 2, type 3-1, type 3-3 and type-4 are found.When more than 2 line defects meet, type 3-2 particles can be generated [Fig. 7(b) bottom]. Thus, during the melting of the RB structure,all types of LPC-4NNs that are not compatible with the crystal structure can appear simultaneously[consistent with the evolution curves shown in Fig. 6(f)], which can work synergistically in disrupting the crystal structures and drive the RB–Hmotransition. This is different from the sequential appearance of defect-associated LPC-4NNs in the cHX case. Such differences also result in different solid–Hmotransition points shown in Figs.2 and 3,where RB–Hmotransition happens earlier(i.e.,at higherφA)than cHX–Hmotransition. This is because the RB–Hmotransition is more sensitive to any type of defect-associated LPC-4NNs as these LPC-4NNs occur simultaneously, whereas for the cHX–Hmotransition, the sequential appearance of defect-associated LPC-4NNs leads to a gradual reduction of crystal orders and thus pushes the transition point to a lowerφA. We would like to point out that all these aforementioned analyses are based on defects that are loosely indicated by those LPC-4NNs that are not consistent with crystal structures. They are not equivalent to typically used dislocations and disclinations that are rigorously defined. Thus,to quantitatively characterize the defects identified in this work(e.g.,core energies of defects)and interactions between defects, new methods need to be developed,which are beyond the scope of this study.

    Fig.7. Illustration of the generation mechanisms of LPC-4NNs in the cHX system (a) and RB system (b). (a) In the cHX system, rotation of a three-particle-based hexagonal unit (red dashed hexagon) excites LPC-4NNs of types 2 and 3-1(green rectangle),and several neighboring rotated units can excite LPC-4NNs of type 3-2, type 3-3, type 4 and type 5. (b)Illustration of twinning-like line defects including LPC-4NNs of type 1, type 2, type 3-1, type 3-3 and type 4 (top) in the RB system. When more than two line defects meet, type 3-2 LPC-4NN(bottom)can be generated.

    4. Conclusion

    In summary, by MC simulations, we have studied the melting behavior of 60?rhombs from two different initial crystal structures, cHX and RB. Using the LPC-based analysis method, we found that the mechanisms of the meltings of two systems are different although both of them obey the BKTHNY theory. In the cHX melting, the proliferation of point defects formed by LPC-4NNs of types 2–6 that are not compatible with the cHX crystal structure drives the cHX–Hmotransition; whereas in the RB melting, line defects consisting of LPC-4NNs of types 1–4 and type 6 that are not compatible with the RB crystal structure are responsible for destroying the crystal order and lead to the RB–Hmotransition.Moreover,defect-associated LPC-4NNs are generated sequentially in the cHX system while they can be generated simultaneously in the RB system. These differences also correlate to the observed different solid–Hmotransition point which isφA=0.812 for the cHX–Hmotransition andφA=0.828 for the RB–Hmotransition. We note that here we mainly focus on the defects mediated solid–Hmotransitions. In principle,similar analysis can also be performed for the Hmo–I transition.However,such analysis will require a new way to detect Hmoassociated disclinations(e.g.,±1/6 disclinations). Moreover,there is no difference between the Hmo–I transition of the cHX and RB systems. Given such considerations,it is more appropriate to leave such defect analysis for the Hmo–I transition in future work.

    The different melting manners in the cHX and RB systems reveal the important role of local environment formed by neighboring particles,which leads to the initial-configurationdependent behavior in our work. Thus,the phase behavior of 2D anisotropic particles is not only dependent on the details of particle-self,e.g.,shape and symmetry,but also on the initial configuration preset in the system. The results obtained in this study brings new challenges and opportunities for understanding 2D melting on the theoretical level and demonstrates the potential of the LPC-based analysis method as a powerful technique in understanding the phase behavior of anisotropic particles.Based on LPC,it may also help to control the assembled structures in a condensation process(which is the reverse of the expansion process used in MC simulations),by manipulating the evolution pathways of LPCs. With the advances in the fabrication of anisotropic colloids,for example,through lithographic techniques,[40]we would expect that controlled assembling through such LPC-based regulations can be tested experimentally in the future.

    Acknowledgements

    We thank the Post-Doctor Association of WIUCAS.This work was carried out at the National Supercomputer Center in Tianjin and the calculations were performed on TianHe-1(A).

    Project supported by the National Natural Science Foundation of China(Grant Nos.11874277,21621004,12104453,and 12090054)and the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33030300).

    猜你喜歡
    黃興志遠(yuǎn)
    Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications
    游黃興公園
    黃興:具有真知遠(yuǎn)識(shí)的政治家
    公民與法治(2022年1期)2022-07-26 05:58:12
    數(shù)形結(jié)合方法在高中數(shù)學(xué)教學(xué)中的應(yīng)用
    呼志遠(yuǎn)美術(shù)作品
    黃興:為“親人”奔跑的“小幺妹”
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    香噴噴的年喲
    Functional Equivalence Theory and Its Limitations in Translation
    學(xué)周刊(2015年1期)2015-07-09 22:04:00
    Analysis and implementation of FURLS algorithm for active vibration control system with positive feedback①
    91精品国产九色| 精品国产露脸久久av麻豆| 国产免费一级a男人的天堂| 美女国产视频在线观看| 久久综合国产亚洲精品| 水蜜桃什么品种好| 九九爱精品视频在线观看| 久久国产精品男人的天堂亚洲 | 国产亚洲欧美精品永久| 26uuu在线亚洲综合色| 国产一区二区在线观看av| 丰满人妻一区二区三区视频av| 亚洲一级一片aⅴ在线观看| 精品午夜福利在线看| 各种免费的搞黄视频| 有码 亚洲区| 综合色丁香网| 我要看黄色一级片免费的| 秋霞在线观看毛片| 日韩精品免费视频一区二区三区 | 久久久a久久爽久久v久久| 亚洲av二区三区四区| 少妇被粗大猛烈的视频| 一级毛片久久久久久久久女| 久热久热在线精品观看| 午夜福利,免费看| 汤姆久久久久久久影院中文字幕| 亚洲av电影在线观看一区二区三区| 亚洲精品日本国产第一区| 观看免费一级毛片| 久久国产精品大桥未久av | 亚洲三级黄色毛片| 国产有黄有色有爽视频| 一区二区av电影网| 亚洲欧美日韩卡通动漫| 男人狂女人下面高潮的视频| 五月开心婷婷网| 3wmmmm亚洲av在线观看| 视频中文字幕在线观看| 热re99久久精品国产66热6| 亚洲精品一二三| 亚洲av国产av综合av卡| 国产亚洲午夜精品一区二区久久| 国产精品国产三级国产专区5o| 国产精品人妻久久久久久| 美女大奶头黄色视频| 少妇的逼好多水| 在线 av 中文字幕| 日本欧美视频一区| 久久人妻熟女aⅴ| 丰满人妻一区二区三区视频av| 亚洲va在线va天堂va国产| 乱码一卡2卡4卡精品| 色网站视频免费| 国产一区二区在线观看av| 王馨瑶露胸无遮挡在线观看| 午夜影院在线不卡| 中文字幕人妻丝袜制服| 18禁裸乳无遮挡动漫免费视频| 亚洲综合精品二区| 91成人精品电影| 女人久久www免费人成看片| 午夜av观看不卡| 人人妻人人添人人爽欧美一区卜| 黑人巨大精品欧美一区二区蜜桃 | 欧美激情国产日韩精品一区| 亚洲熟女精品中文字幕| 日本爱情动作片www.在线观看| 久热久热在线精品观看| 成年人免费黄色播放视频 | 国产乱来视频区| 97超碰精品成人国产| 欧美亚洲 丝袜 人妻 在线| 中国国产av一级| a级毛色黄片| 亚洲久久久国产精品| 欧美日韩视频精品一区| 日本av手机在线免费观看| 久久精品久久久久久久性| 久久久久久久久久成人| 日本色播在线视频| av在线播放精品| 欧美成人午夜免费资源| av福利片在线观看| 我的女老师完整版在线观看| 狂野欧美激情性bbbbbb| 亚洲精华国产精华液的使用体验| 欧美日韩精品成人综合77777| 久久 成人 亚洲| 国产深夜福利视频在线观看| 国产女主播在线喷水免费视频网站| 日韩大片免费观看网站| 噜噜噜噜噜久久久久久91| 51国产日韩欧美| 熟女av电影| 欧美精品一区二区免费开放| 啦啦啦视频在线资源免费观看| 久久久久久人妻| 黄色一级大片看看| 国产一区二区在线观看av| 夜夜骑夜夜射夜夜干| 十八禁网站网址无遮挡 | 国产日韩欧美在线精品| 日韩欧美 国产精品| 日本猛色少妇xxxxx猛交久久| 亚洲人与动物交配视频| 国产伦理片在线播放av一区| 少妇人妻 视频| 久久午夜福利片| 日日啪夜夜爽| 日韩av不卡免费在线播放| 搡老乐熟女国产| 另类精品久久| 最近中文字幕2019免费版| 黑人高潮一二区| 黄色视频在线播放观看不卡| 国产精品99久久久久久久久| 国产精品国产三级国产av玫瑰| 成年人午夜在线观看视频| 国产午夜精品一二区理论片| 最新中文字幕久久久久| 99九九在线精品视频 | 偷拍熟女少妇极品色| 三上悠亚av全集在线观看 | 国产中年淑女户外野战色| 久久亚洲国产成人精品v| 3wmmmm亚洲av在线观看| 欧美日韩国产mv在线观看视频| 亚洲第一av免费看| 亚洲精品乱码久久久久久按摩| 国产日韩一区二区三区精品不卡 | 日韩av免费高清视频| 日本猛色少妇xxxxx猛交久久| 成人18禁高潮啪啪吃奶动态图 | 色视频在线一区二区三区| 日韩 亚洲 欧美在线| 亚洲国产毛片av蜜桃av| 女性生殖器流出的白浆| 一区二区三区精品91| 有码 亚洲区| 热99国产精品久久久久久7| 内地一区二区视频在线| 国产成人一区二区在线| 日韩av不卡免费在线播放| 久久人人爽人人爽人人片va| 久久国内精品自在自线图片| av黄色大香蕉| 成人免费观看视频高清| 97超视频在线观看视频| 少妇 在线观看| 亚洲国产日韩一区二区| 丰满人妻一区二区三区视频av| 亚洲欧美一区二区三区国产| av有码第一页| 丰满乱子伦码专区| 国产精品蜜桃在线观看| 精品国产一区二区三区久久久樱花| 国产成人精品婷婷| 麻豆乱淫一区二区| 精品酒店卫生间| 爱豆传媒免费全集在线观看| 性色av一级| 黄色日韩在线| 色哟哟·www| 如何舔出高潮| 国产精品一区二区性色av| 亚洲欧洲精品一区二区精品久久久 | 99久久中文字幕三级久久日本| 日韩 亚洲 欧美在线| 日韩,欧美,国产一区二区三区| 七月丁香在线播放| 国产成人aa在线观看| 日韩,欧美,国产一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 国产成人aa在线观看| 免费大片黄手机在线观看| 十分钟在线观看高清视频www | 免费观看av网站的网址| 日韩强制内射视频| 蜜桃久久精品国产亚洲av| 久久99一区二区三区| 免费大片18禁| 中文字幕久久专区| 中文欧美无线码| 99九九在线精品视频 | 男男h啪啪无遮挡| 夜夜爽夜夜爽视频| 91aial.com中文字幕在线观看| 欧美日韩国产mv在线观看视频| 赤兔流量卡办理| 日韩不卡一区二区三区视频在线| 一级黄片播放器| 亚洲成色77777| 国产精品三级大全| 中文字幕亚洲精品专区| 人妻夜夜爽99麻豆av| 欧美日韩视频高清一区二区三区二| 日本91视频免费播放| 这个男人来自地球电影免费观看 | 十八禁高潮呻吟视频 | 国产成人精品久久久久久| 精品午夜福利在线看| 成人二区视频| 日本黄大片高清| 黄色怎么调成土黄色| 一级爰片在线观看| 国产精品成人在线| 精品卡一卡二卡四卡免费| 亚洲人成网站在线观看播放| 99久久中文字幕三级久久日本| 人妻系列 视频| 黑丝袜美女国产一区| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| a级毛片在线看网站| 91久久精品国产一区二区成人| 男人添女人高潮全过程视频| 日本色播在线视频| 曰老女人黄片| 熟女电影av网| 国产精品久久久久久av不卡| 国产探花极品一区二区| 亚洲国产欧美在线一区| 亚洲国产欧美日韩在线播放 | 国产亚洲一区二区精品| 你懂的网址亚洲精品在线观看| 久久午夜综合久久蜜桃| 乱码一卡2卡4卡精品| av播播在线观看一区| 亚洲四区av| 大香蕉久久网| 亚洲精品国产成人久久av| 不卡视频在线观看欧美| 自拍欧美九色日韩亚洲蝌蚪91 | 99热网站在线观看| 韩国av在线不卡| 夜夜看夜夜爽夜夜摸| 人人妻人人添人人爽欧美一区卜| 国产精品国产av在线观看| 国产伦精品一区二区三区视频9| 久久精品夜色国产| 成人亚洲欧美一区二区av| 偷拍熟女少妇极品色| 欧美一级a爱片免费观看看| 最黄视频免费看| a 毛片基地| 久久久久久久久久久免费av| 久久久久人妻精品一区果冻| 日韩视频在线欧美| 草草在线视频免费看| 国产乱来视频区| 日本-黄色视频高清免费观看| 精品少妇久久久久久888优播| 美女中出高潮动态图| 草草在线视频免费看| 麻豆精品久久久久久蜜桃| 国产有黄有色有爽视频| av国产精品久久久久影院| 午夜免费观看性视频| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦啦在线视频资源| 国产精品一区二区性色av| 亚洲高清免费不卡视频| 日日摸夜夜添夜夜添av毛片| 国产精品欧美亚洲77777| av在线app专区| 亚洲精品日韩av片在线观看| 丰满饥渴人妻一区二区三| 日本免费在线观看一区| 国产精品免费大片| 国产亚洲一区二区精品| 亚洲三级黄色毛片| 国产精品一区二区性色av| 激情五月婷婷亚洲| 观看免费一级毛片| 26uuu在线亚洲综合色| 国产精品国产三级国产专区5o| 亚洲国产精品一区二区三区在线| 婷婷色综合www| 女人久久www免费人成看片| 国产日韩一区二区三区精品不卡 | 欧美激情国产日韩精品一区| 9色porny在线观看| a级一级毛片免费在线观看| 97超视频在线观看视频| 免费黄网站久久成人精品| 久久99蜜桃精品久久| 久久久久精品性色| 国产有黄有色有爽视频| 国产成人a∨麻豆精品| 欧美+日韩+精品| av一本久久久久| 99热这里只有是精品50| 日韩制服骚丝袜av| 91精品国产九色| 汤姆久久久久久久影院中文字幕| 狂野欧美白嫩少妇大欣赏| 天堂中文最新版在线下载| 亚洲成人手机| 欧美激情极品国产一区二区三区 | 国产亚洲午夜精品一区二区久久| 国产淫语在线视频| av免费在线看不卡| 亚洲精品乱码久久久v下载方式| 亚洲欧美精品专区久久| 国产精品99久久99久久久不卡 | 国产精品免费大片| 国产精品麻豆人妻色哟哟久久| 精品国产一区二区久久| 美女视频免费永久观看网站| 日日啪夜夜撸| 麻豆精品久久久久久蜜桃| 男的添女的下面高潮视频| 大香蕉97超碰在线| 精品国产一区二区三区久久久樱花| 免费观看无遮挡的男女| 国产精品99久久久久久久久| 人人妻人人添人人爽欧美一区卜| 欧美激情国产日韩精品一区| 久久人人爽av亚洲精品天堂| 熟女av电影| 丰满乱子伦码专区| h视频一区二区三区| 亚洲自偷自拍三级| 中文在线观看免费www的网站| 亚洲美女视频黄频| 中文字幕制服av| 国产一区二区三区av在线| 秋霞在线观看毛片| 久久免费观看电影| 男人爽女人下面视频在线观看| 亚洲电影在线观看av| 国模一区二区三区四区视频| 久久久久久久久久人人人人人人| 大片免费播放器 马上看| 少妇高潮的动态图| 久久精品久久精品一区二区三区| 黄色一级大片看看| 国产高清有码在线观看视频| 五月开心婷婷网| 亚洲欧美日韩卡通动漫| 看免费成人av毛片| 视频中文字幕在线观看| 亚洲性久久影院| 噜噜噜噜噜久久久久久91| av视频免费观看在线观看| 国产亚洲欧美精品永久| 成人综合一区亚洲| 中文精品一卡2卡3卡4更新| 观看免费一级毛片| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美亚洲二区| www.色视频.com| 久久精品国产a三级三级三级| 亚洲av成人精品一二三区| 熟妇人妻不卡中文字幕| 视频区图区小说| 熟妇人妻不卡中文字幕| 久久久久精品久久久久真实原创| 久久久久久久久久久丰满| 少妇人妻 视频| 亚洲美女搞黄在线观看| 亚洲怡红院男人天堂| 亚洲人成网站在线播| 3wmmmm亚洲av在线观看| 亚洲精品国产av蜜桃| 观看av在线不卡| 欧美日韩亚洲高清精品| 五月伊人婷婷丁香| 国产91av在线免费观看| 日韩不卡一区二区三区视频在线| 新久久久久国产一级毛片| 日日撸夜夜添| 夜夜爽夜夜爽视频| 国产男女内射视频| 一级爰片在线观看| 2018国产大陆天天弄谢| 久久精品熟女亚洲av麻豆精品| 一边亲一边摸免费视频| 久久精品熟女亚洲av麻豆精品| 日本猛色少妇xxxxx猛交久久| 国产欧美日韩精品一区二区| 伦理电影免费视频| a级片在线免费高清观看视频| av天堂久久9| 午夜免费男女啪啪视频观看| 亚洲av男天堂| 99热这里只有是精品在线观看| 国产av精品麻豆| 最近中文字幕高清免费大全6| 国产成人freesex在线| av国产精品久久久久影院| 国产在线免费精品| 毛片一级片免费看久久久久| 久久国产精品大桥未久av | 国产极品天堂在线| 妹子高潮喷水视频| 成人黄色视频免费在线看| 亚洲精品456在线播放app| 看非洲黑人一级黄片| 蜜桃久久精品国产亚洲av| 菩萨蛮人人尽说江南好唐韦庄| 中文在线观看免费www的网站| 爱豆传媒免费全集在线观看| 99久久精品一区二区三区| 激情五月婷婷亚洲| 色5月婷婷丁香| 最近中文字幕高清免费大全6| 少妇高潮的动态图| 成人无遮挡网站| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品一区蜜桃| 十分钟在线观看高清视频www | 九九久久精品国产亚洲av麻豆| 中文字幕人妻熟人妻熟丝袜美| 国产欧美另类精品又又久久亚洲欧美| 午夜免费观看性视频| 国产精品一区二区在线不卡| 黄色配什么色好看| 亚洲婷婷狠狠爱综合网| 大陆偷拍与自拍| 午夜老司机福利剧场| 寂寞人妻少妇视频99o| 欧美精品亚洲一区二区| 国产亚洲5aaaaa淫片| 亚洲精品中文字幕在线视频 | 国产69精品久久久久777片| 一区在线观看完整版| 黑人巨大精品欧美一区二区蜜桃 | 少妇人妻 视频| 精品亚洲成国产av| 一级a做视频免费观看| 18+在线观看网站| 日本av手机在线免费观看| 久久久国产精品麻豆| 性色avwww在线观看| 国产精品一区二区性色av| 免费黄色在线免费观看| av免费观看日本| 老熟女久久久| 国产国拍精品亚洲av在线观看| 两个人免费观看高清视频 | 全区人妻精品视频| 亚洲国产精品成人久久小说| 中文欧美无线码| 高清毛片免费看| 国产精品国产三级国产av玫瑰| av专区在线播放| 久久综合国产亚洲精品| 看十八女毛片水多多多| 日日爽夜夜爽网站| 国产精品国产av在线观看| 五月玫瑰六月丁香| 51国产日韩欧美| 亚洲成人av在线免费| 中国三级夫妇交换| 久久国产精品男人的天堂亚洲 | av又黄又爽大尺度在线免费看| 免费观看的影片在线观看| 精品酒店卫生间| 天美传媒精品一区二区| 国产毛片在线视频| 一区二区三区免费毛片| 美女大奶头黄色视频| 免费看av在线观看网站| 国产成人免费观看mmmm| 成人午夜精彩视频在线观看| 亚洲精品久久午夜乱码| 免费观看av网站的网址| 国产精品国产三级国产专区5o| 欧美bdsm另类| 男人添女人高潮全过程视频| 少妇裸体淫交视频免费看高清| 色94色欧美一区二区| 老司机影院成人| 汤姆久久久久久久影院中文字幕| 亚洲不卡免费看| 高清av免费在线| 麻豆成人av视频| av国产久精品久网站免费入址| 人妻夜夜爽99麻豆av| 色视频www国产| 少妇人妻久久综合中文| av专区在线播放| 久久99热这里只频精品6学生| 插逼视频在线观看| 久久精品国产亚洲网站| 亚洲欧洲国产日韩| 久久婷婷青草| 亚洲,一卡二卡三卡| 肉色欧美久久久久久久蜜桃| 三级国产精品片| 日韩精品有码人妻一区| 美女中出高潮动态图| 欧美日韩视频高清一区二区三区二| 成人亚洲欧美一区二区av| 水蜜桃什么品种好| 免费播放大片免费观看视频在线观看| 成人综合一区亚洲| 最近中文字幕高清免费大全6| 免费观看av网站的网址| 啦啦啦啦在线视频资源| 国产精品国产三级国产av玫瑰| 日韩在线高清观看一区二区三区| 久久午夜福利片| 男女啪啪激烈高潮av片| 国产深夜福利视频在线观看| 97在线视频观看| 女人久久www免费人成看片| 成年人午夜在线观看视频| 亚洲精品日韩av片在线观看| 在线观看一区二区三区激情| 9色porny在线观看| 欧美日韩一区二区视频在线观看视频在线| 99热这里只有是精品在线观看| 少妇人妻久久综合中文| 亚洲精品一二三| 成人无遮挡网站| freevideosex欧美| av在线app专区| 噜噜噜噜噜久久久久久91| 欧美最新免费一区二区三区| 97精品久久久久久久久久精品| 日韩精品有码人妻一区| 80岁老熟妇乱子伦牲交| 美女福利国产在线| 久久免费观看电影| 国产在线一区二区三区精| 伦理电影免费视频| 欧美日韩综合久久久久久| 久久精品国产亚洲网站| 中国三级夫妇交换| 在线精品无人区一区二区三| 国产精品久久久久成人av| 亚洲精品,欧美精品| 观看免费一级毛片| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩在线播放| 欧美成人精品欧美一级黄| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av免费高清在线观看| 街头女战士在线观看网站| 丁香六月天网| 欧美日韩视频高清一区二区三区二| 日本-黄色视频高清免费观看| 亚洲精品中文字幕在线视频 | 高清在线视频一区二区三区| 我要看日韩黄色一级片| 肉色欧美久久久久久久蜜桃| 国产一级毛片在线| 九色成人免费人妻av| 欧美激情极品国产一区二区三区 | av不卡在线播放| 91aial.com中文字幕在线观看| 99热这里只有是精品50| 亚洲色图综合在线观看| 日韩人妻高清精品专区| 国产乱人偷精品视频| 黑人猛操日本美女一级片| 国产男女超爽视频在线观看| 丰满饥渴人妻一区二区三| 国产精品人妻久久久影院| 成年人免费黄色播放视频 | 免费观看在线日韩| 91精品国产九色| 日本猛色少妇xxxxx猛交久久| 色94色欧美一区二区| 麻豆乱淫一区二区| 亚洲自偷自拍三级| 亚洲中文av在线| 国产中年淑女户外野战色| 我的女老师完整版在线观看| 精品少妇黑人巨大在线播放| 下体分泌物呈黄色| 亚洲伊人久久精品综合| 欧美+日韩+精品| av女优亚洲男人天堂| 亚洲国产av新网站| 人人妻人人爽人人添夜夜欢视频 | 九九在线视频观看精品| 在线观看www视频免费| 又粗又硬又长又爽又黄的视频| 女性生殖器流出的白浆| a级毛色黄片| 亚洲av福利一区| av有码第一页| 国产乱来视频区| 亚洲av福利一区| 久久久国产精品麻豆| 久久99热6这里只有精品| 中文精品一卡2卡3卡4更新| 国产白丝娇喘喷水9色精品| 少妇熟女欧美另类| 黑人高潮一二区| 女性生殖器流出的白浆| 麻豆精品久久久久久蜜桃| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人aa在线观看| 国产成人免费观看mmmm| 久久鲁丝午夜福利片| 99热6这里只有精品| 国产精品人妻久久久影院| 久久久久久久久久久免费av| 韩国高清视频一区二区三区| 国产亚洲欧美精品永久| 黑丝袜美女国产一区| 91精品国产九色| 国产亚洲最大av| 亚洲欧美一区二区三区黑人 | 国国产精品蜜臀av免费| 全区人妻精品视频| 狠狠精品人妻久久久久久综合| 亚洲精品国产成人久久av| 国产成人精品久久久久久|