• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations

    2022-12-28 09:54:18ZhanglinHou侯章林JieliWang王杰利YingZeng曾穎ZhiyuanZhao趙志遠(yuǎn)XingHuang黃興KunZhao趙坤andFangfuYe葉方富
    Chinese Physics B 2022年12期
    關(guān)鍵詞:黃興志遠(yuǎn)

    Zhanglin Hou(侯章林) Jieli Wang(王杰利) Ying Zeng(曾穎) Zhiyuan Zhao(趙志遠(yuǎn))Xing Huang(黃興) Kun Zhao(趙坤) and Fangfu Ye(葉方富)

    1Wenzhou Institute,University of Chinese Academy of Sciences,Wenzhou 325001,China

    2Key Laboratory of Systems Bioengineering(Ministry of Education),School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    3School of Physical Science,University of Chinese Academy of Sciences,Beijing 100049,China

    4Research Center of Computational Physics,School of Mathematics and Physics,Mianyang Teachers’College,Mianyang 621000,China

    5Sichuan Provincial People’s Hospital,University of Electronic Science and Technology of China,Chengdu 610054,China

    6Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Chengdu 610054,China

    7Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    8Songshan Lake Materials Laboratory,Dongguan 523808,China

    9Oujiang Laboratory(Zhejiang Laboratory for Regenerative Medicine,Vision and Brain Health),Wenzhou 325001,China

    Keywords: two-dimensional melting, phase transition, molecular-orientational forming liquid crystal, local environment,melting mechanism

    1. Introduction

    Understanding two-dimensional (2D) melting is a longterm subject in condensed matter and statistical physics.[1,2]In late 1950s,Bernal introduced geometrical degrees of freedom to understand the entropy differences between solid and liquid phases, which has opened a door for an intuitive understanding of 2D melting.[3,4]Afterwards, motivated by the absence of true long-range order in two dimensions,[5]Berezinskii,[6,7]as well as Kosterlitz, Thouless, Halperin, Nelson and Young,developed a novel theory (BKTHNY theory) for 2D melting based on the evolution of topological defects in systems,[2,8–13]which states a two-step melting process:the unbinding of pairs of dislocations drives a continuous transition from solid to liquid crystal phase (x-atic), and subsequently, the dissociation of pairs of disclinations(i.e.single dislocations)drives the second continuous transition from liquid crystal phase to isotropic fluid. The BKTHNY theory strongly inspires researchers to investigate 2D melting behavior.[14–28]On the other hand,with the advances of detection and analysis techniques,other transition behaviors that the BKTHNY mechanism cannot cover have also been discovered,[19,22,24–26,28–34]suggesting that our understanding of 2D melting is still not complete.

    The melting mechanism suggested by the BKTHNY theory have been tested in different particle systems,[2,8–10,24,28]and three types of 2D melting scenarios have been revealed up to date,[17,19,22,26,28,35–37]which are a first-order transition directly from solid to isotropic fluid, a two-step melting with a continuous solid-to-liquid crystal transition and a firstorder liquid crystal-isotropic fluid transition, and a two-step melting with continuous transitions for both solid-liquid crystal and liquid crystal-isotropic fluid. For example, both hard disks[19,22,35]and regular polygons with an edge numbern ≥7[28]show a two-step melting behavior including a continuous solid-hexatic transition and a weakly first-order hexatic-fluid transition, which is different from the BKTHNY theory. By contrast,melting of hard hexagons fully obeys the BKTHNY theory as investigated by Andersonet al.[28]These results imply that the melting transition is closely related to the symmetries of particle shape and their assembled structures.[28,31]However, the underlying mechanism is still unclear. Particularly,how the melting mechanism is affected by the symmetry of initial crystal configurations remains largely unknown.

    In this work, by performing Monte Carlo (MC) simulations, we systematically studied the melting behavior of 60?hard rhombs[see Fig.1(a)]in a square box. This system has two types of crystal structures including a complex hexagonal crystal [cHX, Fig. 1(b)] whose primitive cell contains three rhombs, and a simple rhombic crystal [RB, Fig. 1(c)] whose primitive cell contains just one rhomb. Both cHX and RB structures are able to fully cover the surface (i.e., the packing density is 1). In addition, because rhombs have internal angles of 60?and 120?,if only centers of particles are considered, the RB has the same symmetry as a hexagonal crystal,

    whereas cHX has a symmetry of honey-comb lattice (i.e., a symmetry of inverse-hexagonal lattice). Thus,this 60?rhomb system provides an ideal platform to investigate the dependence of the melting mechanism on initial crystal structures.Our results show that the local environment of particles is a key factor in 2D phase transitions and the melting behavior is initial-configuration-dependent. Our findings would benefit a better understanding of 2D melting.

    This paper is organized as the follows: In Section 2, we introduce the simulation methods used in this work. In Section 3,the results are shown and discussed. Lastly,the conclusion is given in Section 4.

    2. Simulation methods

    3. Results and discussion

    3.1. Simulation results: initial-configuration-dependent melting behavior

    Fig.1.Schematic illustration of simulation models and typical configurations of each phase obtained from Monte Carlo(MC)NPT ensembles. (a)Sketch of a 60?rhomb with an edge length L.(b)Illustration of a complex hexagonal crystal(cHX,green rhomb indicating a primitive cell of the lattice)that can be viewed as an assembled structure of a three-particle-based hexagonal unit(red hexagon). (c)Illustration of a simple rhombic crystal(RB,green rhomb indicating a primitive cell of the lattice) constructed by single particle unit(red rhomb). (d)–(g)Snapshots of I,Hmo, RB and cHX phases. I:isotropic fluid, Hmo: hexatic in molecular-orientational order. Insets at the lower left corners: FFTs of corresponding snapshots.

    For both initial structures of cHX and RB crystals, systems melt first from a crystal to an intermediate liquid crystal phase Hmoand subsequently from the Hmoto an I phase.Transitions for both steps seem to be continuous.Thus,the melting transitions in both cHX and RB systems are consistent with the BKTHNY theory.[2,8,9,11,28]Although the phase sequence is similar during melting transition in the cHX and RB systems,they do show a different solid–Hmotransition point, which isφA=0.812 for the cHX system andφA=0.828 for the RB system. Apparently, such a difference in the transition point results from the different initial crystal structures.

    Fig. 2. Monte Carlo simulation results of the cHX system using NPT ensembles. (a) Equation of state and (b) order parameters including 2-, 4-, and 6-fold molecular orientational orders Φ2, Φ4, and Φ6, 4- and 6-fold bond orientational orders Ψ4 and Ψ6, and translational order with cHX lattice ScHX. The vertical dashed lines indicate the cHX–Hmo and Hmo–I transition points. [(c),(d)]Spatial correlation functions of 6-fold molecular orientational orderand translational order gcHX. Green dashed lines in(c)and(d)decay as r?1/4 and r?1/3, which are the BKTHNY predictions on liquid crystal-isotropic fluid and solid-liquid crystal transition points for gmo6 and gs,respectively.

    Fig. 3. Monte Carlo simulation results of the RB system using NPT ensembles. (a) Equation of state and (b) order parameters including 2-, 4-, and 6-fold molecular orientational orders Φ2, Φ4, and Φ6, 4- and 6-fold bond orientational orders Ψ4 and Ψ6, and translational order with RB lattice SRB. The vertical dashed lines indicate the RB–Hmo and Hmo–I transition points. [(c), (d)] Spatial correlation functions of 6-fold molecular orientational orderand translational order gRB. Green dashed lines in(c)and(d)decay as r?1/4 and r?1/3,which are the BKTHNY predictions on liquid crystal-isotropic fluid and solid-liquid crystal transition points for nd gs,respectively.

    3.2. Definition of LPC-4NNs

    To further understand the mechanism underlying the observed different melting behaviors, we employed an analysis based on local polymorphic configurations (LPCs). The LPC method has been used to analyze the glass transition in Penrose-kite systems[39]and to understand the emergent tetratic order in hard kite systems,[38]suggesting that it could be used to analyze the phase behavior of anisotropic particles.By applying the LPC method to the rhomb system, rhombic particles are first classified based on their local environment formed by their four nearest neighbors,i.e.,LPC-4NNs. Here,four nearest neighbors are chosen in view of the structural characteristics of cHX and RB lattices as well as the mechanical stability of edge-edge contact between neighboring particles. For each selected particle, its neighboring particle with a relative pointing angle between them being around 60?/120?or 0?/180?is categorized as a 60?/120?or 0?/180?neighbor,respectively; while a neighbor with a relative pointing angle being out of 60?/120?and 0?/180?is categorized as a fluctuating neighbor.Then,for the selected particle,based on the category information of its 4 nearest neighbors,it can be classified into one of six types with each one having a different LPC-4NN [Fig.4(a)]: Types 1–5 have zero to four 0?/180?neighbors,respectively. Type 6 has 2 or more fluctuating neighbors,and particles of type 6 are called disordered particles (DPs).For simplicity,for particles that have one fluctuating neighbor,the threshold value for judging 60?/120?or 0?/180?neighbors is increased from 15?to 30?,and the fluctuating neighbor under the threshold value of 15?was re-categorized under the threshold value of 30?, so that these particles can be classified into one of types 1–5 (see details in the supplementary information and Fig. S3). Figure 4(b) shows a representative configuration of the cHX system in which particles are colored according to their LPC-4NNs.

    Fig. 4. The model of LPC-4NNs and a representative configuration with particles colored according to LPC-4NNs. (a) Schematic graphs showing six types of LPC-4NNs.Brown and dark violet dashed rectangle illustrate type 1(consistent with cHX structure)and type 5(consistent with RB structure), respectively. Green dashed rhombs in LPC-4NNs: indicating that its neighboring rhombs can slide along the edge of the target particle to the position of the green dashed rhomb without changing the type of LPC-4NN. (b) A representative configuration at φA=0.800 in the cHX system,in which particles are colored by their LPC-4NN types. Colors of the six LPC-4NN types are same as in(a).

    3.3. Partial translational and molecular-orientational orders: effect of each type of LPC-4NN on melting

    LPC-4NNs provide an intuitive view of local environment around target particles, which can be closely related to the global order of the system.[38,39]Based on LPC-4NNs,we measured the partial translational and molecular orientational orders for the particles that have the same type of LPC-4NNs.The results are shown in Fig. 5. The global orders obtained from all particles of the system (i.e., no matter what is type of particle’s LPC-4NN)are also shown,which can be used as references to judge the contribution of the particles with certain type of LPC-4NNs. We can see that in the cHX system[Fig. 5(a)], before melting, the globalScHXbegins to drop as soon as non-type-1 particles appear. Moreover, after type-2 particles appear, the partialScHXof them is roughly equal to the globalScHX. Then in the Hmoregion,as the global translational order has been destroyed,the measured globalScHXdecays quickly to below 0.4.Compared with the globalScHX,the partialScHX’s of type-1 and type-4 particles are higher whereas the partialScHX’s of type-3 and type-6 particles are lower,indicating that type-3 and type-6 particles are more detrimental than type-1 and type-4 particles in destroying the translational order of the system.Interestingly,for the whole crystal region,the partialScHXof type-1 particles seems to keep constant and exhibits a plateau. These results suggest that, when the system melts from cHX, the generation of other LPC-4NNs different from type 1 will reduce the globalScHX, though it has little effect on the remaining structures formed by type-1 particles. By contrast, for the RB system [Fig. 5(c)], before melting the globalSRBis roughly equal to the partialSRBof type-5 particles even when non-type-5 particles appear, indicating the dominant role of type-5 particles in the system.Near the RB–Hmotransition,type-4 and type-5 particles contribute positively while those of types 1–3 contribute negatively to the global order. In the crystal region,the overall trend of the partialSRBfrom type-5 particles shows a gradually decrease with decreasingφA. In both systems, near and above solid–Hmotransitions,the number of DPs is too few(less than 1%)to get statistically meaningful results.

    Similar analysis for the 6-fold molecular orientational orderΦ6has also been performed[Figs.5(b)and 5(d)],and the results show that near Hmo–I transition,Φ6is mainly destroyed by DPs. This is same for the cHX and RB systems, as is expected.

    Fig. 5. Translational order [(a), (c)] and 6-fold molecular orientational order [(b), (d)] measured for each type of particle at different φA.Cyan-filled region indicates the global order of the system. Results shown in the figure are averaged over more than 100 particles for each type of particle. The dashed lines indicate the transition points.

    3.4. Proliferation of point/line defects induces the cHX–Hmo/RB–Hmo transitions

    To further elucidate the roles of different LPC-4NNs in the melting transitions, we tracked the evolution of different LPC-4NNs during the melting of the two systems. The results are shown in Fig. 6. For the cHX–Hmotransition, at the beginning(e.g., atφA=0.844), particles mostly belong to type 1 [Fig. 6(b)]. Type-2 and type-3 particles can be observed sporadically and often appear in a form of point-like groups[e.g.,isolated star-like clusters in Figs.6(b)and 6(c)]consisting of three type-3 and six type-2 particles. AsφAdecreases toφA=0.825 [Fig. 6(c)], the amount of type-2 and type-3 particles increases, so more point-like groups are formed and some neighboring groups connect to each other to form bigger clusters. Then, atφA=0.805, the system melts into Hmophase. The numbers of both type-2 and type-3 particles reach a peak [Fig. 6(a)], and these particles connect to form a big cluster that can percolate the system [Fig. 6(d)]. Other types of particles also appear inside the big cluster. In contrast,the evolution of LPC-4NNs shows a different pattern during the RB–Hmotransition. AtφA=0.837[Fig.6(g)]where the system is still in RB phase, most particles belong to type 5, but particles of types 1–4 can emerge and often appear simultaneously. However, different from the point-like groups observed in the cHX system, these particles of types 1–4 form line-shaped clusters in the RB system. At a lowerφA=0.830[Fig.6(h)],with more non-type-5 particles appear,the number of line-shaped clusters increases and they begin to crosslink to form a big network, which can percolate the system even when the system is still in the RB phase. Then atφA=0.823[Fig.6(i)],the expanded network essentially covers the majority of particles and the system melts into Hmophase. For both systems,as the system continues to melt,more and more DPs appear [Figs. 6(e) and 6(j)], which destroy theΦ6order and drive the system from Hmoto I phase.

    The observed different evolution patterns of LPC-4NNs seem to suggest that the generation mechanisms of the cHX melting and RB melting for the LPC-4NNs that are not consistent with the crystal structures (hence defects associated) are different. To better illustrate this point,we consider defects in the two systems. As shown in Fig.7(a),in the cHX structure,if a three-particle-based hexagonal unit(red dashed hexagon)rotates±π/3, it will generate six type-2 particles and three type 3-1 particles. Then, when two such rotated hexagonal units are neighbors,type 3-2 and type 3-3 particles are created.Similarly, type-4 and type-5 particles can be generated when three and four such rotated hexagonal units come to close with each other. Since all other types of LPC-4NN except type 1 are not compatible with the crystal structure, these generated particles of types 2–5 thus contribute to the defects of the system and drive the melting of cHX. Based on this picture, in the context of occurrence probability,the generation of different LPC-4NNs is sequential in the cHX system where type 2 and type 3-1 appear first,next followed in turn by type 3-2 and type 3-3,type 4 and type 5. This sequential generation is also consistent with the evolution curves of different LPC-4NNs shown in Fig.6(a).

    Fig.6. Evolution of melting process characterized by types of particles according to LPC-4NNs. [(a),(f)]The fraction of of particles of types 1–6 as a function of packing fraction in the cHX system(a)and the RB system(f). The colored backgrounds represent different phase windows shown in Figs.2 and 3. Representative configurations of the cHX system(b)–(e)and the RB system(g)–(j)with particles colored by its type based on LPC-4NNs.

    In contrast, in the RB structure, most LPC-4NNs that are not compatible with the RB structure are associated with twinning-like line defects. For example, Fig. 7(b) top shows some typical line defects of 60?rhombs, in which particles of type 1, type 2, type 3-1, type 3-3 and type-4 are found.When more than 2 line defects meet, type 3-2 particles can be generated [Fig. 7(b) bottom]. Thus, during the melting of the RB structure,all types of LPC-4NNs that are not compatible with the crystal structure can appear simultaneously[consistent with the evolution curves shown in Fig. 6(f)], which can work synergistically in disrupting the crystal structures and drive the RB–Hmotransition. This is different from the sequential appearance of defect-associated LPC-4NNs in the cHX case. Such differences also result in different solid–Hmotransition points shown in Figs.2 and 3,where RB–Hmotransition happens earlier(i.e.,at higherφA)than cHX–Hmotransition. This is because the RB–Hmotransition is more sensitive to any type of defect-associated LPC-4NNs as these LPC-4NNs occur simultaneously, whereas for the cHX–Hmotransition, the sequential appearance of defect-associated LPC-4NNs leads to a gradual reduction of crystal orders and thus pushes the transition point to a lowerφA. We would like to point out that all these aforementioned analyses are based on defects that are loosely indicated by those LPC-4NNs that are not consistent with crystal structures. They are not equivalent to typically used dislocations and disclinations that are rigorously defined. Thus,to quantitatively characterize the defects identified in this work(e.g.,core energies of defects)and interactions between defects, new methods need to be developed,which are beyond the scope of this study.

    Fig.7. Illustration of the generation mechanisms of LPC-4NNs in the cHX system (a) and RB system (b). (a) In the cHX system, rotation of a three-particle-based hexagonal unit (red dashed hexagon) excites LPC-4NNs of types 2 and 3-1(green rectangle),and several neighboring rotated units can excite LPC-4NNs of type 3-2, type 3-3, type 4 and type 5. (b)Illustration of twinning-like line defects including LPC-4NNs of type 1, type 2, type 3-1, type 3-3 and type 4 (top) in the RB system. When more than two line defects meet, type 3-2 LPC-4NN(bottom)can be generated.

    4. Conclusion

    In summary, by MC simulations, we have studied the melting behavior of 60?rhombs from two different initial crystal structures, cHX and RB. Using the LPC-based analysis method, we found that the mechanisms of the meltings of two systems are different although both of them obey the BKTHNY theory. In the cHX melting, the proliferation of point defects formed by LPC-4NNs of types 2–6 that are not compatible with the cHX crystal structure drives the cHX–Hmotransition; whereas in the RB melting, line defects consisting of LPC-4NNs of types 1–4 and type 6 that are not compatible with the RB crystal structure are responsible for destroying the crystal order and lead to the RB–Hmotransition.Moreover,defect-associated LPC-4NNs are generated sequentially in the cHX system while they can be generated simultaneously in the RB system. These differences also correlate to the observed different solid–Hmotransition point which isφA=0.812 for the cHX–Hmotransition andφA=0.828 for the RB–Hmotransition. We note that here we mainly focus on the defects mediated solid–Hmotransitions. In principle,similar analysis can also be performed for the Hmo–I transition.However,such analysis will require a new way to detect Hmoassociated disclinations(e.g.,±1/6 disclinations). Moreover,there is no difference between the Hmo–I transition of the cHX and RB systems. Given such considerations,it is more appropriate to leave such defect analysis for the Hmo–I transition in future work.

    The different melting manners in the cHX and RB systems reveal the important role of local environment formed by neighboring particles,which leads to the initial-configurationdependent behavior in our work. Thus,the phase behavior of 2D anisotropic particles is not only dependent on the details of particle-self,e.g.,shape and symmetry,but also on the initial configuration preset in the system. The results obtained in this study brings new challenges and opportunities for understanding 2D melting on the theoretical level and demonstrates the potential of the LPC-based analysis method as a powerful technique in understanding the phase behavior of anisotropic particles.Based on LPC,it may also help to control the assembled structures in a condensation process(which is the reverse of the expansion process used in MC simulations),by manipulating the evolution pathways of LPCs. With the advances in the fabrication of anisotropic colloids,for example,through lithographic techniques,[40]we would expect that controlled assembling through such LPC-based regulations can be tested experimentally in the future.

    Acknowledgements

    We thank the Post-Doctor Association of WIUCAS.This work was carried out at the National Supercomputer Center in Tianjin and the calculations were performed on TianHe-1(A).

    Project supported by the National Natural Science Foundation of China(Grant Nos.11874277,21621004,12104453,and 12090054)and the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33030300).

    猜你喜歡
    黃興志遠(yuǎn)
    Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications
    游黃興公園
    黃興:具有真知遠(yuǎn)識(shí)的政治家
    公民與法治(2022年1期)2022-07-26 05:58:12
    數(shù)形結(jié)合方法在高中數(shù)學(xué)教學(xué)中的應(yīng)用
    呼志遠(yuǎn)美術(shù)作品
    黃興:為“親人”奔跑的“小幺妹”
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    香噴噴的年喲
    Functional Equivalence Theory and Its Limitations in Translation
    學(xué)周刊(2015年1期)2015-07-09 22:04:00
    Analysis and implementation of FURLS algorithm for active vibration control system with positive feedback①
    内射极品少妇av片p| 此物有八面人人有两片| 香蕉av资源在线| 亚洲狠狠婷婷综合久久图片| 国产美女午夜福利| 99热这里只有是精品50| 国产精品亚洲一级av第二区| eeuss影院久久| 变态另类丝袜制服| 青草久久国产| 色尼玛亚洲综合影院| 欧美高清成人免费视频www| 亚洲国产高清在线一区二区三| 少妇人妻一区二区三区视频| 舔av片在线| 午夜福利视频1000在线观看| 国产又黄又爽又无遮挡在线| 在线天堂最新版资源| 国产极品精品免费视频能看的| 在线观看av片永久免费下载| 人人妻人人看人人澡| 深夜精品福利| 91麻豆精品激情在线观看国产| 美女黄网站色视频| 成年女人永久免费观看视频| 欧美性感艳星| 精品免费久久久久久久清纯| 日韩欧美精品免费久久 | 亚洲狠狠婷婷综合久久图片| 麻豆国产97在线/欧美| 国产男靠女视频免费网站| 国产精品98久久久久久宅男小说| 国产精品99久久久久久久久| 亚洲专区国产一区二区| 亚洲欧美日韩高清在线视频| 成人亚洲精品av一区二区| 国产精品永久免费网站| 国产又黄又爽又无遮挡在线| 最近最新中文字幕大全电影3| 法律面前人人平等表现在哪些方面| 欧美成人免费av一区二区三区| 中文字幕精品亚洲无线码一区| 久久草成人影院| 99久久成人亚洲精品观看| 91麻豆av在线| www.熟女人妻精品国产| 天堂av国产一区二区熟女人妻| 熟女电影av网| 中文亚洲av片在线观看爽| 免费在线观看影片大全网站| 国产午夜福利久久久久久| 国内少妇人妻偷人精品xxx网站| 国产极品精品免费视频能看的| 国产极品精品免费视频能看的| 精品国产超薄肉色丝袜足j| 在线观看免费视频日本深夜| 亚洲精品在线美女| ponron亚洲| av天堂在线播放| 亚洲国产精品sss在线观看| 成人三级黄色视频| 久久这里只有精品中国| 久久久久久久久久黄片| 麻豆国产97在线/欧美| 在线观看美女被高潮喷水网站 | 男人舔奶头视频| 日韩欧美精品v在线| 亚洲精品粉嫩美女一区| 国产精品美女特级片免费视频播放器| 国产综合懂色| 色哟哟哟哟哟哟| 丰满的人妻完整版| 久久久久九九精品影院| 国产高清videossex| 少妇高潮的动态图| 少妇丰满av| 69人妻影院| 天天添夜夜摸| 日韩有码中文字幕| 国产亚洲精品综合一区在线观看| 欧美+亚洲+日韩+国产| 有码 亚洲区| 午夜福利在线观看吧| 欧美另类亚洲清纯唯美| 亚洲国产精品合色在线| 一进一出好大好爽视频| 桃红色精品国产亚洲av| 两个人看的免费小视频| 日本黄大片高清| 婷婷六月久久综合丁香| 男人的好看免费观看在线视频| 在线播放国产精品三级| 国产一级毛片七仙女欲春2| 他把我摸到了高潮在线观看| 午夜免费激情av| 日本在线视频免费播放| 黄色成人免费大全| 国产欧美日韩一区二区三| 午夜福利在线观看吧| 国产在视频线在精品| 黄色日韩在线| 18禁国产床啪视频网站| 国产亚洲精品久久久com| 啦啦啦韩国在线观看视频| 人妻夜夜爽99麻豆av| 久久精品影院6| 在线观看免费午夜福利视频| 国产伦在线观看视频一区| av天堂在线播放| 日韩欧美免费精品| 亚洲男人的天堂狠狠| 国产精品99久久99久久久不卡| 久久亚洲精品不卡| 久久久色成人| 好看av亚洲va欧美ⅴa在| 97碰自拍视频| 日韩欧美免费精品| 蜜桃久久精品国产亚洲av| 欧美+日韩+精品| 精品国产超薄肉色丝袜足j| 美女黄网站色视频| 亚洲欧美激情综合另类| 搞女人的毛片| 婷婷六月久久综合丁香| 最近最新免费中文字幕在线| 啦啦啦韩国在线观看视频| 欧美一区二区精品小视频在线| 男女床上黄色一级片免费看| bbb黄色大片| 日韩欧美在线乱码| 亚洲美女黄片视频| 夜夜爽天天搞| 国产在线精品亚洲第一网站| av天堂在线播放| 狠狠狠狠99中文字幕| 欧美成人免费av一区二区三区| 激情在线观看视频在线高清| 中文字幕人妻丝袜一区二区| 在线看三级毛片| 亚洲无线观看免费| 搡女人真爽免费视频火全软件 | 丁香六月欧美| 国产成人系列免费观看| 最后的刺客免费高清国语| 欧美一级a爱片免费观看看| 日韩欧美 国产精品| 久久久国产精品麻豆| 桃色一区二区三区在线观看| 国内精品一区二区在线观看| 他把我摸到了高潮在线观看| 黄色片一级片一级黄色片| 欧美日本视频| www.色视频.com| 十八禁人妻一区二区| 99热这里只有是精品50| 欧美日本亚洲视频在线播放| 最近最新免费中文字幕在线| 小蜜桃在线观看免费完整版高清| 午夜福利欧美成人| 中亚洲国语对白在线视频| 精品久久久久久久久久久久久| 中文亚洲av片在线观看爽| 老汉色av国产亚洲站长工具| x7x7x7水蜜桃| 国产精品一区二区三区四区免费观看 | 丝袜美腿在线中文| 中文字幕久久专区| 丁香欧美五月| 午夜精品在线福利| 欧美日韩国产亚洲二区| 国产真人三级小视频在线观看| 91久久精品国产一区二区成人 | 久久精品国产自在天天线| 色播亚洲综合网| 法律面前人人平等表现在哪些方面| 一区二区三区激情视频| 欧美一区二区国产精品久久精品| 蜜桃久久精品国产亚洲av| 欧美三级亚洲精品| 噜噜噜噜噜久久久久久91| 老司机午夜福利在线观看视频| 国产黄片美女视频| 色综合站精品国产| 久久久久精品国产欧美久久久| 午夜福利在线观看免费完整高清在 | 亚洲国产欧美人成| 亚洲精品乱码久久久v下载方式 | 亚洲精品456在线播放app | 免费av观看视频| 亚洲国产精品999在线| 国产精品 国内视频| xxx96com| 久久国产乱子伦精品免费另类| 亚洲国产精品成人综合色| 黑人欧美特级aaaaaa片| 日韩欧美精品v在线| 精品久久久久久久末码| 国产探花在线观看一区二区| 欧美日本亚洲视频在线播放| 中亚洲国语对白在线视频| 中文字幕久久专区| 国产三级在线视频| 国产成人影院久久av| 成人一区二区视频在线观看| 日韩 欧美 亚洲 中文字幕| 午夜老司机福利剧场| 免费人成在线观看视频色| av中文乱码字幕在线| 天堂动漫精品| 91麻豆精品激情在线观看国产| 亚洲欧美日韩东京热| 757午夜福利合集在线观看| 国内少妇人妻偷人精品xxx网站| 日本 av在线| 国产一区二区激情短视频| 亚洲av免费高清在线观看| 中文字幕精品亚洲无线码一区| 日韩大尺度精品在线看网址| av天堂中文字幕网| 国产不卡一卡二| av视频在线观看入口| 老司机午夜十八禁免费视频| 黄色丝袜av网址大全| aaaaa片日本免费| 午夜久久久久精精品| 日韩欧美在线乱码| 全区人妻精品视频| 最新中文字幕久久久久| 搡老妇女老女人老熟妇| 久久午夜亚洲精品久久| 亚洲人与动物交配视频| 国产 一区 欧美 日韩| 夜夜躁狠狠躁天天躁| 久久精品91蜜桃| 国产精品一及| 99久久无色码亚洲精品果冻| 国产成人欧美在线观看| 国产伦在线观看视频一区| 亚洲欧美日韩无卡精品| 欧美成人性av电影在线观看| 中出人妻视频一区二区| 欧美绝顶高潮抽搐喷水| 97人妻精品一区二区三区麻豆| 午夜福利视频1000在线观看| 精品福利观看| 搡老妇女老女人老熟妇| 亚洲国产日韩欧美精品在线观看 | 精品午夜福利视频在线观看一区| 国产精品综合久久久久久久免费| 免费看十八禁软件| 又黄又爽又免费观看的视频| 欧美性猛交╳xxx乱大交人| 亚洲天堂国产精品一区在线| 男人舔女人下体高潮全视频| 最新在线观看一区二区三区| 一进一出抽搐gif免费好疼| 日日干狠狠操夜夜爽| 日日夜夜操网爽| 男人舔女人下体高潮全视频| 中文字幕精品亚洲无线码一区| 小说图片视频综合网站| 一夜夜www| 免费观看精品视频网站| 国产蜜桃级精品一区二区三区| 国产真实乱freesex| 亚洲最大成人中文| 久久精品综合一区二区三区| 一本精品99久久精品77| 亚洲精品成人久久久久久| 久久九九热精品免费| 成人永久免费在线观看视频| 国产黄a三级三级三级人| 特大巨黑吊av在线直播| 99国产极品粉嫩在线观看| 国产精品久久视频播放| 老司机深夜福利视频在线观看| 波多野结衣高清作品| 亚洲男人的天堂狠狠| 久久久久亚洲av毛片大全| 国模一区二区三区四区视频| 欧美+日韩+精品| 琪琪午夜伦伦电影理论片6080| 黄色丝袜av网址大全| 亚洲欧美日韩无卡精品| 欧美色欧美亚洲另类二区| 亚洲人成网站在线播放欧美日韩| 欧美成人性av电影在线观看| 亚洲一区二区三区不卡视频| 国产国拍精品亚洲av在线观看 | 国产三级中文精品| 久久久色成人| 亚洲 欧美 日韩 在线 免费| 亚洲黑人精品在线| 老司机深夜福利视频在线观看| 99在线人妻在线中文字幕| 精品久久久久久成人av| 欧美日本亚洲视频在线播放| 一进一出抽搐动态| 一区二区三区高清视频在线| 十八禁人妻一区二区| 一本综合久久免费| 国产亚洲欧美在线一区二区| 亚洲av成人精品一区久久| 啦啦啦免费观看视频1| 亚洲人与动物交配视频| 亚洲成人久久性| 精品久久久久久久末码| 亚洲色图av天堂| 香蕉丝袜av| 国产色婷婷99| 国产精品,欧美在线| 91麻豆av在线| 精品久久久久久,| 可以在线观看的亚洲视频| 麻豆成人av在线观看| 国产黄色小视频在线观看| 国产av麻豆久久久久久久| 久久久久久久久大av| 少妇的丰满在线观看| 精品国产亚洲在线| 亚洲精品久久国产高清桃花| 一个人看视频在线观看www免费 | 亚洲专区国产一区二区| 最近最新中文字幕大全免费视频| 亚洲国产欧美网| 中文字幕人妻丝袜一区二区| 观看免费一级毛片| 九九久久精品国产亚洲av麻豆| 欧美丝袜亚洲另类 | 国产成+人综合+亚洲专区| 久久精品影院6| 级片在线观看| 久久久成人免费电影| e午夜精品久久久久久久| 1000部很黄的大片| 一本一本综合久久| 精品国产亚洲在线| 午夜免费激情av| 成年版毛片免费区| 亚洲欧美日韩卡通动漫| 又黄又爽又免费观看的视频| 叶爱在线成人免费视频播放| 免费一级毛片在线播放高清视频| 一二三四社区在线视频社区8| 日韩欧美国产在线观看| 日本 av在线| 国产成人欧美在线观看| 最好的美女福利视频网| 三级毛片av免费| 两个人的视频大全免费| 男人和女人高潮做爰伦理| av福利片在线观看| 最近最新免费中文字幕在线| 变态另类成人亚洲欧美熟女| 午夜免费激情av| 国内精品一区二区在线观看| 天美传媒精品一区二区| 久久精品亚洲精品国产色婷小说| 一个人免费在线观看的高清视频| netflix在线观看网站| 久久香蕉国产精品| 国产探花在线观看一区二区| 亚洲国产欧洲综合997久久,| 淫妇啪啪啪对白视频| 黄色女人牲交| 国产成人啪精品午夜网站| 成人特级黄色片久久久久久久| 男女之事视频高清在线观看| 搞女人的毛片| 精品免费久久久久久久清纯| 成人永久免费在线观看视频| 少妇裸体淫交视频免费看高清| 看片在线看免费视频| 变态另类丝袜制服| 国产激情偷乱视频一区二区| 久久久成人免费电影| 亚洲男人的天堂狠狠| 一级a爱片免费观看的视频| 日本黄色片子视频| 中文字幕人成人乱码亚洲影| 内地一区二区视频在线| 精品久久久久久,| 首页视频小说图片口味搜索| 国产成人系列免费观看| 一卡2卡三卡四卡精品乱码亚洲| 少妇人妻一区二区三区视频| 国产单亲对白刺激| 亚洲欧美日韩无卡精品| 亚洲第一欧美日韩一区二区三区| 啦啦啦免费观看视频1| 又爽又黄无遮挡网站| 村上凉子中文字幕在线| 性欧美人与动物交配| 女人高潮潮喷娇喘18禁视频| av片东京热男人的天堂| 亚洲乱码一区二区免费版| 欧美丝袜亚洲另类 | 国产99白浆流出| 午夜免费激情av| 中文资源天堂在线| 久久精品影院6| 亚洲av成人精品一区久久| 久久亚洲精品不卡| 国产精品美女特级片免费视频播放器| 人妻夜夜爽99麻豆av| 真人一进一出gif抽搐免费| 免费在线观看影片大全网站| 亚洲人成电影免费在线| 午夜福利在线在线| 久久草成人影院| 亚洲国产精品sss在线观看| 国产成人欧美在线观看| 国产一区二区在线观看日韩 | 日韩精品青青久久久久久| 在线免费观看不下载黄p国产 | 夜夜看夜夜爽夜夜摸| 高清毛片免费观看视频网站| 日韩中文字幕欧美一区二区| 真人一进一出gif抽搐免费| 身体一侧抽搐| 麻豆成人午夜福利视频| 国产精品综合久久久久久久免费| 欧美日韩福利视频一区二区| 久久香蕉精品热| av中文乱码字幕在线| 深爱激情五月婷婷| 国产av麻豆久久久久久久| 成人特级av手机在线观看| 午夜福利成人在线免费观看| 午夜a级毛片| 夜夜夜夜夜久久久久| 女人高潮潮喷娇喘18禁视频| 少妇人妻精品综合一区二区 | 国产综合懂色| 亚洲精品美女久久久久99蜜臀| 熟女少妇亚洲综合色aaa.| 神马国产精品三级电影在线观看| 亚洲第一欧美日韩一区二区三区| 国产乱人视频| 99久久精品国产亚洲精品| ponron亚洲| aaaaa片日本免费| 蜜桃亚洲精品一区二区三区| 三级国产精品欧美在线观看| 中亚洲国语对白在线视频| netflix在线观看网站| 俄罗斯特黄特色一大片| 日日夜夜操网爽| 久久久国产精品麻豆| 中文字幕久久专区| 久久99热这里只有精品18| 黄色丝袜av网址大全| 五月伊人婷婷丁香| 欧美日韩亚洲国产一区二区在线观看| 久久国产乱子伦精品免费另类| 成年人黄色毛片网站| 国产高清视频在线播放一区| 国模一区二区三区四区视频| 夜夜看夜夜爽夜夜摸| 一个人观看的视频www高清免费观看| 午夜日韩欧美国产| 综合色av麻豆| 99精品在免费线老司机午夜| 国产精品三级大全| 精品久久久久久久久久免费视频| 91久久精品电影网| 色视频www国产| 我的老师免费观看完整版| 一进一出抽搐动态| 中文亚洲av片在线观看爽| 亚洲国产色片| 成年女人看的毛片在线观看| 日韩有码中文字幕| 欧美+日韩+精品| 91久久精品国产一区二区成人 | 九九在线视频观看精品| 午夜精品久久久久久毛片777| 亚洲中文字幕日韩| 操出白浆在线播放| 12—13女人毛片做爰片一| 久久久久性生活片| 国产乱人视频| 亚洲aⅴ乱码一区二区在线播放| 久久久久国产精品人妻aⅴ院| 听说在线观看完整版免费高清| 国产精品乱码一区二三区的特点| 天天添夜夜摸| 看免费av毛片| 偷拍熟女少妇极品色| 中文字幕高清在线视频| 久久久久久久精品吃奶| 日本熟妇午夜| 免费看十八禁软件| 亚洲精品一卡2卡三卡4卡5卡| tocl精华| 在线观看免费视频日本深夜| 啪啪无遮挡十八禁网站| 999久久久精品免费观看国产| 99riav亚洲国产免费| 在线十欧美十亚洲十日本专区| 午夜福利免费观看在线| 国产色爽女视频免费观看| 国产欧美日韩精品亚洲av| 中文字幕人妻熟人妻熟丝袜美 | 99精品久久久久人妻精品| 精品国产亚洲在线| 久久久国产成人精品二区| 欧美日本亚洲视频在线播放| 蜜桃久久精品国产亚洲av| 18禁黄网站禁片免费观看直播| 久久久久精品国产欧美久久久| 国产免费av片在线观看野外av| 真人一进一出gif抽搐免费| 午夜影院日韩av| av片东京热男人的天堂| 久久这里只有精品中国| 亚洲avbb在线观看| 哪里可以看免费的av片| 免费观看精品视频网站| 少妇裸体淫交视频免费看高清| 91在线观看av| 国产精品久久久人人做人人爽| 中文字幕久久专区| АⅤ资源中文在线天堂| 久久精品亚洲精品国产色婷小说| 国内毛片毛片毛片毛片毛片| 手机成人av网站| 欧美成人性av电影在线观看| 亚洲国产高清在线一区二区三| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av在线| xxxwww97欧美| 国产免费av片在线观看野外av| 日本三级黄在线观看| 欧美av亚洲av综合av国产av| 欧美另类亚洲清纯唯美| 成年女人永久免费观看视频| www日本在线高清视频| 亚洲七黄色美女视频| av福利片在线观看| 最后的刺客免费高清国语| 国内精品一区二区在线观看| 成年人黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 国产单亲对白刺激| 嫩草影视91久久| 天天躁日日操中文字幕| 成人高潮视频无遮挡免费网站| 五月玫瑰六月丁香| 伊人久久精品亚洲午夜| 一个人观看的视频www高清免费观看| 91久久精品电影网| 欧美一级毛片孕妇| 国产精品,欧美在线| 久久精品亚洲精品国产色婷小说| 亚洲国产精品成人综合色| av在线蜜桃| 91麻豆av在线| 日韩欧美三级三区| 久久伊人香网站| 一进一出好大好爽视频| 看免费av毛片| 免费看美女性在线毛片视频| 757午夜福利合集在线观看| 亚洲最大成人手机在线| 精品人妻1区二区| 级片在线观看| 每晚都被弄得嗷嗷叫到高潮| 婷婷丁香在线五月| 日本 av在线| 丁香六月欧美| 99国产精品一区二区蜜桃av| 久久精品国产亚洲av涩爱 | 十八禁人妻一区二区| 99国产精品一区二区三区| 岛国在线免费视频观看| 99国产精品一区二区三区| 国产精品一区二区三区四区久久| 欧美色欧美亚洲另类二区| 久久中文看片网| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲av不卡在线观看| 在线观看av片永久免费下载| 国内精品久久久久久久电影| 18禁国产床啪视频网站| 国产成人av激情在线播放| 观看美女的网站| 成人国产综合亚洲| 国产精品久久久人人做人人爽| 看免费av毛片| 18美女黄网站色大片免费观看| 一级黄色大片毛片| 51国产日韩欧美| 欧美av亚洲av综合av国产av| 99精品久久久久人妻精品| 国产男靠女视频免费网站| 级片在线观看| 亚洲熟妇中文字幕五十中出| 白带黄色成豆腐渣| 99riav亚洲国产免费| 一进一出抽搐gif免费好疼| 黄色片一级片一级黄色片| 91麻豆精品激情在线观看国产| 国产精品美女特级片免费视频播放器| 久久婷婷人人爽人人干人人爱| 精品人妻一区二区三区麻豆 | 午夜福利在线观看免费完整高清在 | 亚洲av成人av| 亚洲国产欧美网| 久久精品国产清高在天天线| 国内精品久久久久精免费| 国产精品亚洲一级av第二区| 一本久久中文字幕| 身体一侧抽搐| 别揉我奶头~嗯~啊~动态视频|