• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis and implementation of FURLS algorithm for active vibration control system with positive feedback①

    2015-04-17 05:33:39GaoZhiyuan高志遠ZhuXiaojinZhangHeshengLuoCongLiMingdong
    High Technology Letters 2015年2期
    關鍵詞:志遠

    Gao Zhiyuan (高志遠), Zhu Xiaojin, Zhang Hesheng, Luo Cong, Li Mingdong

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P.R.China)

    ?

    Analysis and implementation of FURLS algorithm for active vibration control system with positive feedback①

    Gao Zhiyuan (高志遠), Zhu Xiaojin②, Zhang Hesheng, Luo Cong, Li Mingdong

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P.R.China)

    While positive feedback exists in an active vibration control system, it may cause instability of the whole system. To solve this problem, a feedforward adaptive controller is proposed based on the Filtered-U recursive least square (FURLS) algorithm. Algorithm development process is presented in this paper. Real time active vibration control experimental tests were done. The experiment results show that the active control algorithm proposed in this paper has good control performance for both narrow band disturbances and broad band disturbances.

    adaptive control, active vibration control, Filtered-U recursive least square (FURLS) algorithm

    0 Introduction

    Active vibration control has been a hot topic during the last two decades[1-5]. Many algorithms have been proposed with the positive feedback effect neglected. Most of them are based on the Least Mean Square (LMS) algorithm[6], such as Filtered-X LMS (FXLMS) algorithm[7, 8]and filtered-V LMS (FVLMS) algorithm[9]. However, positive feedback exists in most of the mechanical vibration control system. It may not be neglected in most situations, as it may result in system instability and system crashes[10-12].

    To overcome these problems, a novel active vibration control algorithm based on Filtered-U recursive least square (FURLS) algorithm is proposed in this study. Section 1 introduces a typical mechanical active vibration control system, and gives the discrete model of this mechanical vibration control system. Section 2 gives the FURLS based adaptive control algorithm’s development process. Section 3 illustrates the experiment platform of the system identification results and vibration suppression experiment results. Section 4 gives the conclusions.

    1 Description of an active vibration control system

    1.1 Active vibration control system with positive feedback

    A typical mechanical active vibration control system is shown in Fig.1. The system is consisted of five stainless steel discs connected together by springs. The uppermost one and the lowest one are rigidly connected. The actuators are inertial actuators which are used to output disturbances and control forces. Acceleration sensors are used to measure the error signal and the reference signal. Different control paths could be defined corresponding to the actuators and sensors. The disturbance in this system is input by the inertial actuator located on the bottom, the control actuator on the top would produce a positive feedback force while it tries to suppress the unwanted disturbances. Such active vibration control system can be described in Fig.2.

    Fig.1 Schematic diagram of a mechanical active vibration control system

    Fig.2 Block diagram of the active vibration control system

    1.2 System model description

    The secondary path can be expressed as

    (1)

    here

    (2)

    (3)

    The positive feedback path can be expressed as

    (4)

    where

    (5)

    (6)

    The primary path can be expressed as

    (7)

    here

    (8)

    (9)

    The reference path can be expressed as

    (10)

    where

    (11)

    (12)

    The controller can be expressed as

    (13)

    here

    (14)

    (15)

    r(t) represents the disturbance. Then the controller input is shown as

    u(t)=x(t)+xf(t)

    (16)

    2 Control algorithm development

    A novel adaptive control algorithm will be developed based on the FURLS algorithm. A priori output is given as follows:

    (17)

    here

    (18)

    φT(t)=[-y(t),…,-y(t-nAC+1), u(t+1),…,u(t-nBC+1)]

    (19)

    Then

    (20)

    A priori output of the secondary path is

    (21)

    A posteriori output of the secondary path is

    ys(t+1)=ys(t+1|θ(t+1))

    (22)

    while

    e(t+1)=d(t+1)+ys°(t+1)

    (23)

    A priori and a posteriori adaptation error can be defined as

    ν°(t+1)=-d(t+1)-ys°(t+1)

    (24)

    v(t+1)=-d(t+1)-ys(t+1)

    (25)

    The algorithm can be deduced with the following assumptions:

    (1) The disturbance r(t) is bounded, W(z-1) is asymptotically stable, then x(t) is bounded.

    (26)

    (27)

    where

    (28)

    (29)

    (30)

    (31)

    while the optimal filter is replaced by the adaptive filter,

    ys(t)=S(z-1)y(t)

    (32)

    y(t+1)=y(t+1|θ(t+1))=θT(t+1)φ(t)

    (33)

    The prediction error can be defined as

    (34)

    Then the posteriori adaptation error can be expressed as

    v(t+1)=-d(t+1)-ys(t+1) =S(z-1)ε(t+1)

    (35)

    And

    (36)

    From Eq.(20), one can be got:

    (37)

    From Eqs(33) and (34), one can be got:

    (38)

    Substitute it into Eq.(37),

    (39)

    Then

    (40)

    φf(t)=Pf(z-1)φ(t)

    (41)

    (42)

    RLS algorithm can be adopted as a parameter update algorithm:

    θ(t+1)=θ(t)+F(t)ψ(t)ν(t+1)

    (43)

    (44)

    (45)

    The stability condition and convergence condition are:

    (46)

    which is a strictly positive real transfer function.

    3 Experiment

    3.1 Experiment platform

    The above mechanical vibration system is representative for many applications. A set of devices and instruments are employed to develop a vibration control experiment platform to test the proposed algorithm, as shown in Fig.3. The Matlab-xPC is used for real time vibration control experiments. An NI PCI-1200 card is inserted into the target PC. The sampling frequency is 1000 Hz. The host PC is used to store the control data for further analysis. Also, for a vibration control system, a power amplifier and a charge amplifier are employed to control the force output and sensor signal transformation.

    Fig.3 Diagram of the experiment platform

    The photograph of the whole experiment platform is shown in Fig.4.

    Fig.4 Photograph of the experiment platform

    3.2 System identification

    As shown in Section 2, to apply the proposed active vibration control algorithm, the model of the secondary path and the positive feedback path should be identified. The identification method used in this paper is output error with extended prediction model algorithm. The algorithm is applicable for the following system:

    (47)

    The identification process can be summarized as

    (48)

    φT(t)=[-y(t),…,-y(t-nA+1), u(t-d),…,u(t-d-nB+1),ε(t), …,ε(t-nH+1)]

    (49)

    where

    nH=max(nA,nC)

    (50)

    (51)

    (52)

    (53)

    (54)

    The identification of the secondary path and the positive feedback path were implemented using a pseudo-random binary sequence as the excitation signal. For the identification of the secondary path, the output is the acquired data from the error sensor. As for the positive feedback path, the output is the data picked by the reference sensor.

    The identified frequency model of the secondary path and the positive feedback path is shown in Fig.5, the dotted curve is the frequency characteristic for the secondary path, and the solid curve is the frequency characteristic for the positive feedback path. For secondary path, there are several low damped vibration modes: the first order vibration mode is at 44.86Hz with a damping of 0.0080, the second order vibration mode is at 83.94Hz with a damping of 0.0104 and the third order vibration mode is at 114.92Hz with a damping of 0.0080. For positive feedback path, there are also several low damped vibration modes: the first order vibration mode is at 43.8Hz with a damping of 0.0438, the second order vibration mode is at 83.83Hz with a damping of 0.0089 and the third order vibration mode is at 114.71Hz with a damping of 0.0079

    Fig.5 Frequency model of secondary path and positive feedback path

    3.3 Experiment results

    At each sampling time, the proposed adaptive control system implements the following procedures:

    (1) Get the measured u(t+1) through the reference sensor, as well as the measured error signal through the error sensor;

    (2) Use Eq.(19) and Eq.(41) to calculate φ(t) and φf(t) respectively;

    (3) Update θ(t+1) using RLS algorithm as shown from Eq.(43) to Eq.(45);

    (4) Use Eq.(33) to calculate the controller output and apply the calculated output into the vibration control system.

    A control performance index (CPI) is defined as

    (55)

    here d(i) is the output of the error sensor before the active vibration control is applied. And e(i) is the output of the error sensor while the active vibration control is applied. While the vibration of the system is suppressed, CPI is negative. While the controller fails to suppress the vibrating system, CPI is positive.

    Three type disturbances are applied to test the control performance of the proposed algorithm. While the disturbance is a sinusoidal signal, the control time history is shown in Fig.6. The active vibration control is applied to the vibrating mechanical system at 50 seconds. The structural vibration is suppressed to a great extent very quickly. The signal acquired by the reference sensor is shown in Fig.7. The controller output calculated by the proposed algorithm is shown in Fig.8. Fig.9 shows the controller weight convergence curve for θ. Fig.10 shows power spectral density comparison of control on and control off. CPI for a sinusoidal disturbance is -69.7dB. That means for most of disturbances occurred in factories, the proposed method could get very good control performance and fast convergence speed.

    Fig.6 Control time history for a sinusoidal disturbance

    Fig.7 Reference signal plot for a sinusoidal disturbance

    Fig.8 Control output for a sinusoidal disturbance

    Fig.9 Controller weight convergence curve for a sinusoidal disturbance

    Fig.10 PSD comparison of control on and control off for a sinusoidal disturbance

    While a narrow band disturbance with two sinusoidal components is applied, the situation is different, as shown in Fig.11, the control performance get worse. But the proposed algorithm still converge and provide a CPI=-32.4dB, which is still a very good control performance index. Fig.12 shows the reference signal plot. Fig.13 shows the controller output. Fig.14 shows the controller weight convergence curve. And the power spectral density comparison of control on and off is shown in Fig.15.

    Fig.11 Control time history for a narrow disturbance with two sinusoidal components

    Fig.12 Reference signal plot for a narrow band disturbance with two sinusoidal components

    Fig.13 Control output for a narrow band disturbance with two sinusoidal components

    Fig.14 Controller weight convergence curve for a narrow band disturbance with two sinusoidal components

    Fig.15 PSD comparison between control on and off for a narrow band disturbance with two sinusoidal components

    To further illustrate the effectiveness of the proposed algorithm, a broad band disturbance is applied into the system. The same experiment protocol is applied and an active vibration control is imposed in the vibrating mechanical vibration control system at 50s. The control time history is shown in Fig.16. The reference signal is shown in Fig.17. The controller’s output is shown in Fig.18. Fig.19 shows the controller weight convergence curve. Fig.20 shows power spectral density comparison of control on and off. The CPI of -16.6dB means even for the disturbances which seldom occurs in actual situations, and make the control problem more challenge, the proposed method could also give very good control performance.

    Fig.16 Control time history for a broad band disturbance

    Fig.17 Reference signal plot for a broad band disturbance

    Fig.18 Control output for a broad band disturbance

    Fig.19 Controller weight convergence curve for a broad band disturbance

    Fig.20 PSD comparison of control on and control off for a broad band disturbance

    4 Conclusion

    A Filtered-U recursive least square (FURLS) algorithm based active vibration control algorithm is presented in this paper for mechanical active vibration control system with inherent positive feedback coupling. An algorithm develop process is presented. An active vibration control experiment platform is constructed and the real time experiments are implemented. The experiment results show that the proposed control algorithm is feasible with good control performance and fast convergence speed.

    Acknowledgment

    This study is sponsored by program of National Natural Science Foundation of China (No. 90716027, No.51175319), Innovation program of Shanghai Municipal Education Commission (No.13ZZ075), and Shanghai Key Laboratory of Power Station Automation Technology. Special thanks go to Professor I.D. Landau, Professor Luc Dugard, Mr. Castellanos silva, Abraham and Mr. Airimitoaie, Tudor-bogdan for their kind help and support.

    [ 1] Ji C Y, Li H J, Meng Q M. Active control strategy for offshore structures accounting for AMD constraints. High Technology Letters, 2004, 10(4): 63-68

    [ 2] Ji C Y, Chen M L, Li S S. Vibration Control of Jacket Platforms with Magnetorheological Damper and Experimental Validation, High Technology Letters, 2010, 16(2): 189-193

    [ 3] Huang Q Z, Gao S W, Gao Z Y, et al. Study and verification of an online secondary path identification algorithm for adaptive filtering based control of structural vibration. Chinese High Technology Letters, 2012, 22(1): 61-67 (In Chinese)

    [ 4] Alma M, Martinez J J, Landau I D, et al. Design and tuning of reduced order H-infinity feedforward compensators for active vibration control. IEEE Transactions on Control Systems Technology, 2012, 20(2): 554-561

    [ 5] Shin C, Hong C, Jeong W B. Active vibration control of beam structures using acceleration feedback control with piezoceramic actuators. Journal of Sound and Vibration, 2012, 331(6): 1257-1269

    [ 6] Widrow B, Glover J R, Mccool J M, et al. Adaptive noise cancelling: Principles and applications. Proceedings of the IEEE, 1975, 63(12): 1692-1716

    [ 7] Huang Q Z, Zhu X J, Gao Z Y, et al. Analysis and implementation of improved multi-input multi-output filtered-X least mean square algorithm for active structural vibration control, Structural Control and Health Monitoring, 2013, 20(11): 1351-1365

    [ 8] Ardekani I T, Abdulla W H. Theoretical convergence analysis of FxLMS algorithm. Signal Processing, 2010, 90(12): 3046-3055

    [ 9] Lu J, Shen C, Qiu X, et al. Lattice form adaptive infinite impulse response filtering algorithm for active noise control. Journal of the Acoustical Society of America, 2003, 113(1): 327-335

    [10] Wang Z, Li J. New features of time-delayed positive feedbacks in vibration control. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 933-942

    [12] Li Q S, Fang J Q, Jeary A P, et al. Decoupling control law for structural control implementation. International Journal of Solids and Structures, 2001, 38(34-35): 6147-6162

    Gao Zhiyuan, born in 1986. Currently he is a lecturer at Shanghai University. He received his Ph.D degree from Shanghai University in 2014 and his B.S. degree from Harbin Institute of Technology in 2008. His research interests include active vibration and noise control, adaptive control and embedded systems.

    10.3772/j.issn.1006-6748.2015.02.008

    ①Supported by the National Natural Science Foundation of China (No. 90716027, 51175319).

    ②To whom correspondence should be addressed. E-mail: mgzhuxj@shu.edu.cn Received on Feb. 4, 2014

    猜你喜歡
    志遠
    Corrigendum to“Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world”
    Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world
    禹志遠作品
    大眾文藝(2022年24期)2023-01-09 09:27:16
    Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications
    Quantum mechanical solution to spectral lineshape in strongly-coupled atom-nanocavity system
    呼志遠美術作品
    電影文學(2021年17期)2021-10-14 08:56:50
    Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
    我最喜愛的玩具①
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    香噴噴的年喲
    女人被躁到高潮嗷嗷叫费观| 国产一卡二卡三卡精品| 欧美人与性动交α欧美软件| 欧美激情久久久久久爽电影 | 亚洲国产毛片av蜜桃av| 水蜜桃什么品种好| 亚洲五月色婷婷综合| 亚洲全国av大片| av在线app专区| 两个人免费观看高清视频| 91成年电影在线观看| 午夜福利在线观看吧| 国产区一区二久久| 男女国产视频网站| 黄片播放在线免费| 色老头精品视频在线观看| 日韩制服丝袜自拍偷拍| a级片在线免费高清观看视频| 精品久久久久久久毛片微露脸 | 十八禁人妻一区二区| 午夜福利在线观看吧| 国产国语露脸激情在线看| 777米奇影视久久| 亚洲国产精品一区三区| 欧美久久黑人一区二区| 蜜桃国产av成人99| 性高湖久久久久久久久免费观看| 国产欧美日韩综合在线一区二区| 9191精品国产免费久久| 无遮挡黄片免费观看| 黑丝袜美女国产一区| 18禁黄网站禁片午夜丰满| 精品国产乱子伦一区二区三区 | 国产一区二区在线观看av| 亚洲精品av麻豆狂野| 亚洲精品国产区一区二| 国产免费现黄频在线看| 亚洲人成电影免费在线| 窝窝影院91人妻| 国产成人欧美| videosex国产| 操美女的视频在线观看| www日本在线高清视频| 午夜免费成人在线视频| 精品免费久久久久久久清纯 | 国产极品粉嫩免费观看在线| av电影中文网址| 丁香六月天网| 免费观看av网站的网址| 多毛熟女@视频| 9热在线视频观看99| 巨乳人妻的诱惑在线观看| 国产免费福利视频在线观看| 成人国语在线视频| 777久久人妻少妇嫩草av网站| 午夜福利乱码中文字幕| cao死你这个sao货| 高清av免费在线| 在线 av 中文字幕| 久久精品熟女亚洲av麻豆精品| 男女免费视频国产| 国产日韩一区二区三区精品不卡| 天天躁夜夜躁狠狠躁躁| 免费观看av网站的网址| 亚洲精品国产色婷婷电影| 侵犯人妻中文字幕一二三四区| 两个人免费观看高清视频| 亚洲激情五月婷婷啪啪| 国产精品一区二区在线不卡| 老司机靠b影院| 在线精品无人区一区二区三| 日本wwww免费看| 色播在线永久视频| 青春草视频在线免费观看| 男女下面插进去视频免费观看| 91麻豆av在线| 国产亚洲av高清不卡| 久久天堂一区二区三区四区| 麻豆国产av国片精品| 一级毛片精品| 国产片内射在线| 亚洲国产精品成人久久小说| 久久亚洲国产成人精品v| 嫁个100分男人电影在线观看| 黑人欧美特级aaaaaa片| 久久人人97超碰香蕉20202| 十八禁网站免费在线| 亚洲熟女精品中文字幕| 精品久久久精品久久久| 精品人妻在线不人妻| 中国美女看黄片| 中文字幕最新亚洲高清| 妹子高潮喷水视频| 国产在线视频一区二区| 国产97色在线日韩免费| 又紧又爽又黄一区二区| 欧美激情 高清一区二区三区| 国产av又大| 日日夜夜操网爽| 好男人电影高清在线观看| 久久久国产精品麻豆| 精品久久久久久电影网| a 毛片基地| 久久久欧美国产精品| 两性夫妻黄色片| 国产99久久九九免费精品| 嫩草影视91久久| 国产精品av久久久久免费| 成人国语在线视频| 国产亚洲av高清不卡| 国产欧美日韩精品亚洲av| 精品国产乱码久久久久久小说| 男男h啪啪无遮挡| 日本五十路高清| 久久人妻熟女aⅴ| 国产精品免费大片| 免费在线观看影片大全网站| 国产有黄有色有爽视频| 国产精品一区二区在线不卡| 99国产极品粉嫩在线观看| 日韩欧美免费精品| 久久国产精品人妻蜜桃| 天天躁夜夜躁狠狠躁躁| 亚洲av欧美aⅴ国产| 成人影院久久| www.自偷自拍.com| av网站免费在线观看视频| 制服人妻中文乱码| 久久精品国产a三级三级三级| 91av网站免费观看| 久久国产精品人妻蜜桃| 午夜福利视频在线观看免费| 一区二区三区精品91| 国精品久久久久久国模美| 国产深夜福利视频在线观看| av网站免费在线观看视频| 国产日韩一区二区三区精品不卡| 精品亚洲成a人片在线观看| 亚洲欧美一区二区三区黑人| 国产精品一区二区免费欧美 | 久久久久国产一级毛片高清牌| 午夜福利影视在线免费观看| 亚洲专区中文字幕在线| 老熟女久久久| 99久久人妻综合| 在线永久观看黄色视频| 中文字幕另类日韩欧美亚洲嫩草| 国产欧美日韩一区二区精品| 欧美国产精品一级二级三级| www日本在线高清视频| 午夜影院在线不卡| 国产熟女午夜一区二区三区| av电影中文网址| 国产av一区二区精品久久| 后天国语完整版免费观看| 精品少妇内射三级| 两个人免费观看高清视频| 久久久国产成人免费| netflix在线观看网站| 青春草视频在线免费观看| 久久性视频一级片| 黑人操中国人逼视频| 国产精品香港三级国产av潘金莲| 在线观看免费午夜福利视频| 午夜激情av网站| 亚洲精品美女久久久久99蜜臀| 亚洲国产av新网站| 精品少妇一区二区三区视频日本电影| 老司机影院毛片| 成人三级做爰电影| 不卡一级毛片| 天天操日日干夜夜撸| 丰满迷人的少妇在线观看| 成人国产一区最新在线观看| 亚洲一区二区三区欧美精品| 人妻人人澡人人爽人人| 精品人妻在线不人妻| av福利片在线| 亚洲五月色婷婷综合| 成人免费观看视频高清| 国产人伦9x9x在线观看| 国产成人系列免费观看| 大香蕉久久成人网| 无限看片的www在线观看| 久久毛片免费看一区二区三区| 一进一出抽搐动态| 亚洲欧美日韩另类电影网站| 肉色欧美久久久久久久蜜桃| av国产精品久久久久影院| 啦啦啦免费观看视频1| 久久精品亚洲av国产电影网| 亚洲va日本ⅴa欧美va伊人久久 | 色综合欧美亚洲国产小说| 另类精品久久| 日韩欧美免费精品| 啦啦啦视频在线资源免费观看| 国产成人系列免费观看| 国产国语露脸激情在线看| 9热在线视频观看99| 国产欧美亚洲国产| 亚洲精品国产色婷婷电影| 日韩欧美国产一区二区入口| 国产精品成人在线| 久久久久网色| 午夜福利在线免费观看网站| 伦理电影免费视频| 精品人妻一区二区三区麻豆| 亚洲色图 男人天堂 中文字幕| 一本大道久久a久久精品| 久久亚洲国产成人精品v| e午夜精品久久久久久久| 亚洲欧美日韩另类电影网站| 少妇裸体淫交视频免费看高清 | avwww免费| 欧美日韩一级在线毛片| 男人爽女人下面视频在线观看| 精品人妻熟女毛片av久久网站| 欧美黄色淫秽网站| 午夜精品国产一区二区电影| 亚洲av国产av综合av卡| 女人爽到高潮嗷嗷叫在线视频| 欧美老熟妇乱子伦牲交| 可以免费在线观看a视频的电影网站| 韩国高清视频一区二区三区| 成年美女黄网站色视频大全免费| 香蕉国产在线看| 超碰成人久久| 男女无遮挡免费网站观看| 久久精品国产亚洲av香蕉五月 | 亚洲黑人精品在线| 亚洲第一欧美日韩一区二区三区 | 精品第一国产精品| 又黄又粗又硬又大视频| 日韩中文字幕欧美一区二区| 午夜免费成人在线视频| 成在线人永久免费视频| 免费不卡黄色视频| 美国免费a级毛片| 亚洲欧美色中文字幕在线| 国产福利在线免费观看视频| 夫妻午夜视频| 黑人巨大精品欧美一区二区mp4| 欧美激情 高清一区二区三区| 亚洲美女黄色视频免费看| xxxhd国产人妻xxx| 天天躁夜夜躁狠狠躁躁| 最近中文字幕2019免费版| 亚洲免费av在线视频| 欧美性长视频在线观看| 国产主播在线观看一区二区| 桃红色精品国产亚洲av| 国产成人免费无遮挡视频| 亚洲精品一区蜜桃| 中亚洲国语对白在线视频| 人妻人人澡人人爽人人| 一个人免费在线观看的高清视频 | 精品人妻一区二区三区麻豆| 国产国语露脸激情在线看| 亚洲成人免费电影在线观看| 国产精品 国内视频| 99九九在线精品视频| 美女高潮喷水抽搐中文字幕| 狂野欧美激情性bbbbbb| 另类精品久久| 下体分泌物呈黄色| 国产在线观看jvid| 伊人亚洲综合成人网| 午夜久久久在线观看| 久久久精品区二区三区| 日韩视频一区二区在线观看| 欧美黄色淫秽网站| 精品国产国语对白av| 国产精品香港三级国产av潘金莲| 一区二区三区精品91| 伦理电影免费视频| 午夜精品国产一区二区电影| 免费观看av网站的网址| 夫妻午夜视频| 性色av一级| 精品国产一区二区三区久久久樱花| 男女国产视频网站| 97在线人人人人妻| 欧美精品一区二区大全| 日日摸夜夜添夜夜添小说| av在线app专区| 视频在线观看一区二区三区| 国产成人a∨麻豆精品| 欧美av亚洲av综合av国产av| 国产成人影院久久av| av一本久久久久| 精品亚洲乱码少妇综合久久| 亚洲精品久久久久久婷婷小说| av国产精品久久久久影院| 好男人电影高清在线观看| 国产福利在线免费观看视频| 亚洲精品久久午夜乱码| 国产精品久久久av美女十八| 桃红色精品国产亚洲av| 丰满少妇做爰视频| 两个人免费观看高清视频| 中亚洲国语对白在线视频| 黄色a级毛片大全视频| 老司机靠b影院| 国产成人精品在线电影| 十分钟在线观看高清视频www| 日韩 亚洲 欧美在线| 深夜精品福利| 极品人妻少妇av视频| 欧美激情久久久久久爽电影 | 亚洲va日本ⅴa欧美va伊人久久 | 69精品国产乱码久久久| 亚洲欧美一区二区三区久久| 亚洲精品久久成人aⅴ小说| 欧美亚洲 丝袜 人妻 在线| 免费在线观看视频国产中文字幕亚洲 | 欧美激情高清一区二区三区| 一区二区三区乱码不卡18| 国产在线免费精品| 国精品久久久久久国模美| 深夜精品福利| 日本av手机在线免费观看| 亚洲精品一二三| 一级毛片电影观看| 人妻 亚洲 视频| 精品久久蜜臀av无| tube8黄色片| 国产一区二区三区av在线| 一区二区三区乱码不卡18| 亚洲国产看品久久| 亚洲av日韩在线播放| 成人影院久久| 老熟妇仑乱视频hdxx| 99国产综合亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产欧美日韩在线播放| 国产精品av久久久久免费| 国产片内射在线| 韩国精品一区二区三区| 最近最新免费中文字幕在线| 久久 成人 亚洲| 欧美97在线视频| 美女主播在线视频| 女性被躁到高潮视频| 日本黄色日本黄色录像| 亚洲精品乱久久久久久| 国产视频一区二区在线看| 一个人免费在线观看的高清视频 | 丝袜喷水一区| 亚洲国产欧美在线一区| 精品视频人人做人人爽| 久久久精品94久久精品| 国产又色又爽无遮挡免| 9色porny在线观看| 国产精品二区激情视频| 久久久久精品国产欧美久久久 | 日韩大码丰满熟妇| 国产精品免费视频内射| 亚洲国产欧美一区二区综合| 狂野欧美激情性bbbbbb| 一级,二级,三级黄色视频| 国产精品久久久久久精品电影小说| 亚洲av日韩在线播放| 色婷婷久久久亚洲欧美| 大型av网站在线播放| 在线 av 中文字幕| av超薄肉色丝袜交足视频| 美女国产高潮福利片在线看| 久久天躁狠狠躁夜夜2o2o| 精品福利观看| 免费高清在线观看视频在线观看| 国产无遮挡羞羞视频在线观看| 成年人黄色毛片网站| 国产无遮挡羞羞视频在线观看| 成人手机av| 午夜激情av网站| 色精品久久人妻99蜜桃| 亚洲欧美激情在线| 欧美成狂野欧美在线观看| 国产精品免费视频内射| 久久中文字幕一级| 色婷婷av一区二区三区视频| 岛国毛片在线播放| 51午夜福利影视在线观看| 久久人人爽av亚洲精品天堂| 国产精品麻豆人妻色哟哟久久| 日本av免费视频播放| 欧美激情久久久久久爽电影 | 国产成人欧美| 伊人亚洲综合成人网| 精品久久久精品久久久| 午夜福利,免费看| 大片电影免费在线观看免费| 亚洲精品一区蜜桃| tocl精华| 黄色视频在线播放观看不卡| 久久久国产精品麻豆| 久久 成人 亚洲| 人人妻人人澡人人爽人人夜夜| 久久精品国产综合久久久| 成在线人永久免费视频| 一区二区三区乱码不卡18| 精品免费久久久久久久清纯 | 欧美日韩国产mv在线观看视频| 国产成人精品在线电影| 一本大道久久a久久精品| 在线看a的网站| 丝袜脚勾引网站| 午夜福利在线观看吧| 国产亚洲av高清不卡| 国产精品成人在线| 成年av动漫网址| 操美女的视频在线观看| 青春草视频在线免费观看| 欧美另类一区| 99国产精品免费福利视频| 丁香六月欧美| 丝袜美腿诱惑在线| 国产老妇伦熟女老妇高清| 色精品久久人妻99蜜桃| 欧美亚洲日本最大视频资源| 久久久精品国产亚洲av高清涩受| 国产精品久久久av美女十八| 高清在线国产一区| 日本黄色日本黄色录像| 搡老熟女国产l中国老女人| 国产免费福利视频在线观看| 国产精品99久久99久久久不卡| 超色免费av| 亚洲精品国产区一区二| 精品一区二区三区四区五区乱码| 国产真人三级小视频在线观看| 国产精品 欧美亚洲| 久久中文看片网| 亚洲色图综合在线观看| 国产精品av久久久久免费| 国产老妇伦熟女老妇高清| 麻豆av在线久日| 激情视频va一区二区三区| 美女主播在线视频| 免费黄频网站在线观看国产| 高清在线国产一区| 捣出白浆h1v1| 午夜福利影视在线免费观看| 久久久久久久久久久久大奶| 激情视频va一区二区三区| 亚洲人成电影免费在线| tube8黄色片| 国产精品欧美亚洲77777| 一本一本久久a久久精品综合妖精| 丁香六月欧美| 日本a在线网址| 亚洲专区国产一区二区| 欧美日韩一级在线毛片| 午夜福利视频在线观看免费| tube8黄色片| 国产黄频视频在线观看| 男人舔女人的私密视频| 成年女人毛片免费观看观看9 | www日本在线高清视频| 1024视频免费在线观看| 久久久久久人人人人人| 欧美黄色淫秽网站| 欧美午夜高清在线| 久久 成人 亚洲| 免费女性裸体啪啪无遮挡网站| 日韩 亚洲 欧美在线| 后天国语完整版免费观看| 精品亚洲乱码少妇综合久久| 国产亚洲午夜精品一区二区久久| 老汉色av国产亚洲站长工具| 国产在视频线精品| 1024视频免费在线观看| 91字幕亚洲| 国产97色在线日韩免费| 精品人妻1区二区| 久久久精品国产亚洲av高清涩受| 亚洲免费av在线视频| 热re99久久国产66热| 男女床上黄色一级片免费看| 夫妻午夜视频| 男人添女人高潮全过程视频| 亚洲成国产人片在线观看| 精品亚洲成a人片在线观看| 日本wwww免费看| 999久久久国产精品视频| 久久久国产成人免费| 每晚都被弄得嗷嗷叫到高潮| 久久九九热精品免费| 亚洲五月色婷婷综合| av超薄肉色丝袜交足视频| 老司机亚洲免费影院| 免费女性裸体啪啪无遮挡网站| 中文字幕精品免费在线观看视频| 国产av精品麻豆| 咕卡用的链子| 叶爱在线成人免费视频播放| av电影中文网址| 肉色欧美久久久久久久蜜桃| 亚洲成人手机| 成人亚洲精品一区在线观看| 热re99久久国产66热| 免费高清在线观看日韩| 水蜜桃什么品种好| bbb黄色大片| 波多野结衣av一区二区av| 欧美精品av麻豆av| 亚洲av日韩精品久久久久久密| av不卡在线播放| 成年美女黄网站色视频大全免费| 一级黄色大片毛片| 18禁黄网站禁片午夜丰满| 巨乳人妻的诱惑在线观看| 久久久久久久久免费视频了| 人人妻人人澡人人爽人人夜夜| 大片免费播放器 马上看| 色94色欧美一区二区| av网站免费在线观看视频| 久久人人爽av亚洲精品天堂| 欧美激情 高清一区二区三区| 男女国产视频网站| 久久av网站| 午夜福利视频精品| 亚洲九九香蕉| 精品高清国产在线一区| 国产一区二区三区在线臀色熟女 | 亚洲自偷自拍图片 自拍| 黄频高清免费视频| 国产成+人综合+亚洲专区| 90打野战视频偷拍视频| 国产成人av激情在线播放| 精品人妻熟女毛片av久久网站| 黑人欧美特级aaaaaa片| 国产在线视频一区二区| 久久国产亚洲av麻豆专区| 亚洲av日韩精品久久久久久密| 精品卡一卡二卡四卡免费| 亚洲中文av在线| 50天的宝宝边吃奶边哭怎么回事| 久久av网站| 国产高清videossex| av视频免费观看在线观看| 制服人妻中文乱码| 91精品三级在线观看| 少妇猛男粗大的猛烈进出视频| 色94色欧美一区二区| 一区二区三区乱码不卡18| 精品免费久久久久久久清纯 | 国产欧美日韩综合在线一区二区| 欧美+亚洲+日韩+国产| 免费不卡黄色视频| 天天影视国产精品| 法律面前人人平等表现在哪些方面 | 亚洲国产精品一区二区三区在线| 国产精品久久久久久精品电影小说| 亚洲激情五月婷婷啪啪| 丰满饥渴人妻一区二区三| 欧美人与性动交α欧美精品济南到| 999久久久国产精品视频| 少妇人妻久久综合中文| 午夜福利视频在线观看免费| 欧美少妇被猛烈插入视频| 捣出白浆h1v1| 又黄又粗又硬又大视频| 久久久久国内视频| 91字幕亚洲| 精品欧美一区二区三区在线| 欧美在线黄色| 国产精品欧美亚洲77777| 亚洲男人天堂网一区| 久久99热这里只频精品6学生| 亚洲精品粉嫩美女一区| 亚洲成人手机| 男女免费视频国产| 老熟妇乱子伦视频在线观看 | √禁漫天堂资源中文www| 国产精品久久久人人做人人爽| 欧美精品av麻豆av| 十八禁网站网址无遮挡| 在线观看免费高清a一片| 狠狠婷婷综合久久久久久88av| 美女国产高潮福利片在线看| 亚洲人成电影观看| 老司机靠b影院| 极品人妻少妇av视频| 日韩 欧美 亚洲 中文字幕| 国产人伦9x9x在线观看| 19禁男女啪啪无遮挡网站| 国产亚洲精品一区二区www | 久久久精品国产亚洲av高清涩受| 成人国产一区最新在线观看| 亚洲国产精品一区三区| 亚洲精品中文字幕一二三四区 | 天天添夜夜摸| 999久久久精品免费观看国产| 国产亚洲欧美精品永久| 亚洲av日韩精品久久久久久密| 亚洲熟女毛片儿| 精品欧美一区二区三区在线| 亚洲av日韩精品久久久久久密| 亚洲中文字幕日韩| 人妻久久中文字幕网| 一个人免费在线观看的高清视频 | a级毛片在线看网站| 日本五十路高清| 看免费av毛片| 亚洲精品日韩在线中文字幕| av在线老鸭窝| 91精品国产国语对白视频| 一区二区三区精品91| 国产精品香港三级国产av潘金莲| 在线观看舔阴道视频| 久久香蕉激情| 91麻豆精品激情在线观看国产 | 成人黄色视频免费在线看| 国产av一区二区精品久久|