• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-sensor federated unscented Kalman filtering algorithm in intermittent observations①

    2015-04-17 05:44:29HuZhentao胡振濤
    High Technology Letters 2015年2期

    Hu Zhentao (胡振濤)

    (*Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)(**College of Computer and Information Engineering, Henan University, Kaifeng 475004, P.R.China )

    ?

    Multi-sensor federated unscented Kalman filtering algorithm in intermittent observations①

    Hu Zhentao (胡振濤)②

    (*Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)(**College of Computer and Information Engineering, Henan University, Kaifeng 475004, P.R.China )

    Aiming at the adverse effect caused by limited detecting probability of sensors on filtering precision of a nonlinear system state, a novel multi-sensor federated unscented Kalman filtering algorithm is proposed. Firstly, combined with the residual detection strategy, effective observations are correctly identified. Secondly, according to the missing characteristic of observations and the structural feature of unscented Kalman filter, the iterative process of the single-sensor unscented Kalman filter in intermittent observations is given. The key idea is that the state estimation and its error covariance matrix are replaced by the state one-step prediction and its error covariance matrix, when the phenomenon of observations missing occurs. Finally, based on the realization mechanism of federated filter, a new fusion framework of state estimation from each local node is designed. And the filtering precision of system state is improved further by the effective management of observations missing and the rational utilization of redundancy and complementary information among multi-sensor observations. The theory analysis and simulation results show the feasibility and effectiveness of the proposed algorithm.

    nonlinear estimation, intermittent observations, unscented Kalman filter, federated filter

    0 Introduction

    The estimation problem of a nonlinear dynamic system exists widely in target tracking, navigation, fault diagnosis, signal processing and automatic control, etc. The optimal solution for this problem is to obtain a complete description of state posterior distribution, but it is usually difficult to be implemented in actual engineering. Since the accurate description generally needs endless parameters, optimal solution can be obtained only for some specific conditions[1]. Combined with analytical approximation, numerical approximation and Gaussian-sum approximation, some suboptimal filters are proposed, such as extended Kalman filter(EKF)[2], grid filter(GF)[3], and Gaussian-sum filter (GSF)[4], et al. However, with growing complexity and increasing perception requirement to estimated object, the filtering precision and real-time of above algorithms are difficult to meet the needs in actual engineering[5]. In recent years, along with the improvement of computer performance, sampling methods used to approximate posterior probability distribution have attracted much attention of scholars in related fields. According to the difference of sampling strategies, the existing nonlinear filters can be classified into two types: random sampling and deterministic sampling. The typical implementation of random sampling is particle filter (PF). It adopts a new sequential Bayesian estimation idea by using importance sampling and re-sampling technique in Monte Carlo simulation framework. In addition, PF is suitable for nonlinear system with free-form noise distribution[6]. However, the realization mechanism of sequential importance sampling and re-sampling will unavoidably lead to two drawbacks: the particles degeneracy and the depletion of particles diversity after re-sampling. Moreover, the filtering precision of PF is closely related to the dimension of the estimated system and the number of sampling particles, which make parameters lack of universality in applications[7]. The typical implementation of deterministic sampling is unscented Kalman filter (UKF). Its idea is not to approximate the nonlinear function but the probability density distribution of nonlinear function by UT transformation strategy[8]. And for nonlinear system with Gauss noise, it is superior to the existing nonlinear filters in filtering precision, computational burden and operability.

    Recently designing work of nonlinear filter in theory and practical application has made great progress, while studies are usually subject to the hypothesis that no observation is missed. Namely, the detection probability of sensor is 1. However, in actual engineering, due to obstacles, bad weather, sensor faults and uncertain factors in surrounding, observations missing, out-of-sequence and communication delay are inevitable. These situations are also known as the intermittent observations[9,10]. The concrete manifestation is that some abnormal data caused by the random missing of observations lead the adverse effect on filtering performance. Therefore, the implementation structure needs to be improved in the design of nonlinear filter. For this problem, some scholars have carried out relevant studies and made some preliminary results. Sinopoli, et al, propose the discrete Kalman filter (KF) in single- sensor intermittent observations, and the statistical convergence property of estimation error covariance matrix is discussed[11]. On this basis, Kar, et al, studied further the asymptotic property of stochastic Riccati equations[12]. Chen, et al, studied the selection of parameters boundary in filter model by means of linear matrix inequality (LMI) in the constraint of estimation error covariance[13]. Aiming at the state estimation of nonlinear system in intermittent observations, Kluge, et al, proves the convergence boundary of error covariance matrix in EKF for different observation models[14]. Combined with the fuzzy theory, Gao, et al, discussed the design of nonlinear filter in intermittent observations[15]. For the problem when the nonlinear of an estimated system and the multi-sensor intermittent observations exist at the same time, Hu, et al, proposed a new realization method of EKF to solve state estimation in typical nonlinear system[16]. Through the introduction of cost function and risk function, Djuric, et al, constructed a cost reference particle filter which effectively improved the excessive dependence of filtering precision on the statistical information of observation noise[17].

    In conclusion, the existing achievements for intermittent observations mainly focus on single- sensor observation system, and the estimation results rely heavily on sensor performance. When the detection probability of used sensor is too low, it will result in a sharp drop of filtering precision. It is considered that multi-sensor detection system can play the superiority of coordinated and complementary among multi-sensor observations, overcome the uncertainty and limitation of single sensor, and improve the reliability and robustness of the whole observation system. Therefore, it can improve necessarily the system estimation precision by reasonable utilization of multi-sensor observations information, especially when the estimated system is with the characteristic of intermittent observations.

    In this work, multi-sensor intermittent observations model is firstly constructed according to the parameter characteristic of detection probability. And then utilizing the residual detection strategy, the iterative process of single-sensor unscented Kalman filtering algorithm (S-UKF) is designed in intermittent observations. Combining the multi-source information fusion idea with the federated filtering mechanism, a novel multi-sensor federated unscented Kalman filtering algorithm (MF-UKF) is proposed. And the influence of detection probability on state estimation is analyzed and validated. The simulation results show the feasibility and effectiveness of the proposed algorithm.

    1 Multi-sensor intermittent observations model

    Considering intermittent observations in practical applications, λmis defines as the detection probability of sensor m. And the nonlinear system with multi-sensor intermittent observations can be modeled as follows:

    zk,m=dk,mhk(xk)+vk,m

    (1)

    where zk,mdenotes the observation of sensor m at time k, hk(·) denotes the mapping function from state space to observation space, xkdenotes the state vector of estimated system, and vk,m~N (0,σvk,m) denotes the observation noise, drawn from a Gaussian distribution of which mean and variance are 0 and σvk,m, respectively. dk,mdenotes the discrete random variable and the value is selected as 0 or 1. the probability distribution of dk,mis subject to Prob{dk,m=1}=λm. dm,k=1 indicates that the observation of sensor m is existing. On the contrary, observation is missing. Moreover, dk,mand vk,mshould be subject to the following relationship.

    (2)

    where δ adopts the limit form, namely, δ→∞. I denotes the unit matrix with appropriate dimension. The system state transfer equation is expressed as

    xk=f(xk-1)+uk-1

    (3)

    where f(·) denotes the transfer function of the system state and uk-1~N (0, σuk-1,m) denotes process noise.

    2 Single-sensor unscented Kalman filter in intermittent observations

    Considering the influence caused by intermittent observations on the state estimation of nonlinear system, the structure of some existing nonlinear filters need to be improved. In this section, combined with the characteristic of intermittent observations, a single-sensor unscented Kalman filter (S-UKF) is constructed.

    In the UKF algorithm, the UT transform strategy is adopted to approximate the probability density distribution of nonlinear function. And UKF employs a set of discrete deterministic sigma points to calculate the mean and variance of Gaussian random state variables. And then the mean and variance of posteriori probability are spread by the state transfer equation. Thereby, the iterative prediction and update process of state estimation are realized in the framework of Bayesian filter[18]. In filtering precision, UKF is superior to EKF using the local linearization technique. Meanwhile, in computational complexity, UKF is better than PF which uses the sequential Monte Carlo simulation method. Allowing the realization of S-UKF is still for single-sensor observation system, for simplicity, label m of sensor m in Eqs(1) and (2) can be omitted. Thus the estimated system model can be degenerated to be a single sensor observation model. The concrete realization of S-UKF can be expressed as follows:

    1: Initializing state estimation and its error covariance matrix

    (4)

    (5)

    (6)

    (7)

    (8)

    (9)

    (10)

    where ε denotes the state distribution parameter. When estimated state is subject to Gaussian distribution, the value is 2[19].

    (11)

    (12)

    (13)

    (14)

    6: Next, calculating residual vector to realize the identification of observation missing according to the residual detection strategy.

    (15)

    where j, j denotes jth row and jth column in matrix, C denotes the detection threshold value of residual vector, and its value is usually selected as 3 or 4. If C is too large, observation missing occurs, otherwise, observation false-alarm occurs[21]. In actual engineering, generally it needs to consider the overall performance from each component, and judges the credibility of sensor observation at current time. For example, observations information including radial distance, azimuth and elevation, are needed to take into account simultaneously in the target tracking system. So the constraint condition in Eq.(15) can be modified as

    (16)

    Kk=Pk,xz(Pk,zz)-1

    (17)

    when dkis equal to 1, and

    (18)

    (19)

    when dkis equal to 0, and

    (20)

    Pk/k=Pk/k-1

    (21)

    (22)

    (23)

    In accordance with the above construction process of S-UKF, it is known that the object of S-UKF is to identify the random missing of observation by introducing residual detection strategy.

    3 Multi-sensor federated unscented Kalman filter in intermittent observations

    Although the averse effect on state estimation result can be decreased by the above treatment to some extent. However, it is difficult for the estimation precision and robustness to meet some requirements that higher filtering precision is required. According to the specific situation of intermittent observation, combined the mechanism of federal filter[19]with the utilization of redundancy and complementary information among multi-sensor observations, a novel multi-sensor federated unscented Kalman filter is constructed in this section. The structure frame of MF-UKF is shown in Fig.1.

    Fig.1 The structure frame of MF-UKF

    (24)

    Pk/k,m=Pk/k-1,m-dk,mKk,mPk,zz,m(Kk,m)Τ

    (25)

    (26)

    (27)

    (28)

    4 Simulation results and analysis

    To verify the feasibility and validity of algorithm proposed in this paper, the typical target tracking problem in two-dimensional plane is set as simulation scenario. The target is observed by three radar sensors with different detection probability. According to physical properties of radar, radial distance and azimuth can be given in observation system. zk,mis defined as the observation of radar m, and zk,m=[rk,mθk,m]Τ. rk,mand θk,mdenote radial distance and azimuth at time k, respectively. Combined with the dynamic characteristic of uniform motion target, the state transition equation and the observation equation are as follows:

    xk=Fxk-1+Γk-1wk-1

    To illustrate the influence caused by the random missing of sensor observation on filtering precision, observation data from radar 1 are respectively adopted to UKF and S-UKF. For the above two algorithms, Fig.2 and Fig.3 show that the root mean square errors (RMSE) in horizontal direction and vertical direction in 1000 times Monte Carlo simulation. The results clearly show that RMSE of UKF is inferior for lack of processing mechanism of observation random missing. And due to error accumulation, the filter divergence even occurs. On the contrary, since the detecting and processing mechanism for the random missing of observation is introduced into S-UKF, the filtering precision is improved effectively relative to UKF.

    Fig.2 Horizontal direction

    Fig.3 Vertical direction

    According to the realization framework of S-UKF, variable dk,mused to indicate whether observation from sensor m exists or not, can be obtained according to inequality constraint expressed in Eq.(16). A simulation experiment with one time is used to verify the estimation validity of dk,min the inequality constraint. Assuming the residual detection threshold C is equal to 3, comparisons between a true value and estimation, according to dk,mforming three radar observations, are given by Fig.4, Fig.5, and Fig.6, respectively. The result shows that the estimation of dk,mis consistent with the true value. On this basis, the misjudgment rate of three sensors (miscalculation times/observation times×100%) is obtained in 1000 times Monte Carlo simulations, and their results are 0.28%, 0.24% and 0.19%, respectively. Therefore, the validity and feasibility of residual detection strategy used to estimate dk,mis verified.

    It is known that the misjudgment rates of dk,1, dk,2

    Fig.4 λ1=0.95

    Fig.5 λ2=0.85

    Fig.6 λ3=0.65

    and dk,3show the decline trend in figures. The key reason is that C is small, and the misjudgment of observation mainly belongs to false alarm. Namely, normal observation is mistaken as the observation missing. At this point, the less is the cardinality of normal observation, namely, the detection probability is lower, and relatively the less is the number of observation misjudgment. So the reason leads to the decrease of estimated error rate. If “misjudgment times/no missing observation times” is used to be expressed the misjudgment rate, the misjudgment rate are 0.29%, 0.28% and 0.29% respectively. Above situations well validate the un-correlate relationship between misjudgment rate obtained by the residual error detection strategy and the detection probability of sensor. In addition, if the value of detection threshold C is 4, the misjudgment rates will be 0.008%, 0.003% and 0.005% at the same simulation condition, respectively. It shows that C directly effects on observation misjudgment rate. Namely, the larger C is, the lower false alarm is.

    Based on the above experiment conclusions, in the same simulation condition including hardware and software, RMSE of S-UKF for position estimation in horizontal direction and vertical direction is given by each sensor observation, respectively. Meanwhile, RMSE of MF-UKF is given by synthesizing the output information of each sub filter. For simplicity, assuming that the coefficients including β1, β2and β3of information allocation in local nodes, are all equal to 1/3, and simulation results are shown in Fig.7 and Fig.8. In order to more intuitively and quantitatively compare with the performance of algorithm, the mean of RMSE is given in Table1.

    Fig.7 and Fig.8 show that the bigger is the detection probability of the radar sensor, the higher is the filtering precision of S-UKF. The results also indicate that S-UKF can improve the filtering precision to some extent. While a few affect on estimation precision still exist intermittent observations if in only directly taking state prediction and its error covariance matrix as state estimation at current time. And RMSE of S-UKF is in the inverse proportional relationship to detection probability of sensor. Moreover, the results in figures show that the estimation precision of MF-UKF is superior to S-UKF. Namely, In intermittent observations, the adverse influence caused by detection probability of sensor on estimation precision of S-UKF can be improved by utilizing effectively redundancy and complementary information among multi-sensor observations. The quantitative analysis of RMSE in Table 1 also verifies the above conclusion.

    Fig.7 Horizontal direction

    Fig.8 Vertical direction

    AlgorithmHorizontaldirectionVerticaldirectionS-UKF-Sensor338.531927.9265S-UKF-Sensor232.882123.8102S-UKF-Sensor130.492822.1580MF-UKF20.653115.0018

    5 Conclusions

    Aiming at state estimation of nonlinear system in intermittent observations, a single-sensor unscented Kalman filter in intermittent observations is firstly constructed by the introduction of residual detection strategy. On this basis, combined with the federal filter algorithm, a novel multi-sensor federated unscented Kalman filter in intermittent observations is proposed. Relative to the existing nonlinear filter, the new algorithm effectively improves adverse effect caused by observation missing on filtering precision of state estimation. Simulation results show that MF-UKF has a higher target tracking precision than UKF and S-UKF. Meanwhile, the structure of MF-UKF applies to multi-sensor observation situation, so its application scope is wider. In addition, the algorithm has advantages of clear physical meaning and easy realization.

    [ 1] Ronald P S Mahler. Statistical Multisource-multitarget information fusion. Boston, London: Artech House Publishers, 2007. 23-27

    [ 2] Gustafsson F, Hendeby G. Some Relations between extended and unscented Kalman filters. IEEE Trans on Signal Processing, 2012,60(2): 545-555

    [ 3] Laneuville D, Vignal H. Grid based target motion analysis. In: Proceedings of the IEEE Aerospace Conference, Big Sky, USA, 2007. 1-7

    [ 4] Terejanu G, Singla P, Singh T, Scott P D. Adaptive Gaussian sum filter for nonlinear bayesian estimation. IEEE Trans on Automatic Control, 2011, 56(9):2151- 2156

    [ 5] Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE, 2007,95(5):899-924

    [ 6] Saha S, Gustafsson F. Particle filtering with dependent noise processes. IEEE Trans on Signal Processing, 2012 , 60(9): 4497-4508

    [ 7] Derek Yee, Reilly J P, Kirubarajan T, Punithakumar K. Approximate conditional mean particle filtering for linear/nonlinear dynamic state space models. IEEE Trans on Signal Processing, 2008, 56(12): 5790 -5803

    [ 8] Dunik J, Simandl M, Straka O. Unscented Kalman filter: aspects and adaptive setting of scaling parameter. IEEE Trans on Automatic Control, 2012,57(9): 2411- 2416

    [ 9] Yilin Mo, Sinopoli B. Kalman filtering with intermittent observations: tail distribution and critical value. IEEE Transactions on Automatic Control, 2012, 57(3): 677- 689

    [10] Plarre K, Bullo F. On Kalman filtering for detectable systems with intermittent observations. IEEE Trans on Automatic Control, 2009 , 54(2): 386 -390

    [11] Sinopoli B, Schenato L, Fransceschetti L M, et al. Kalman filtering with intermittent observations. IEEE Trans on Automatic Control, 2004, 49(9):1453-1464

    [12] Kar S, Sinopoli B, Moura J M. Kalman filtering with intermittent observations: Weak convergence to a stationary distribution. IEEE Trans on Automatic Control, 2012, 57(2): 405-420

    [13] Chen S J, Qi G Q, Sheng A D. Admissible sampling frequency in measurements with variance-constrained and missing data. Control Theory & Applications, 2012, 29(5):629-634

    [14] Kluge S, Reif K, Brokate M. Stochastic stability of the extended Kalman filter with intermittent observations. IEEE Trans on Automatic Control, 2012, 55(2): 514-518

    [15] Gao H J, Zhao Y, Lam J, Chen K. H∞ fuzzy filtering of nonlinear systems with intermittent measurements. IEEE Trans on Fuzzy System, 2009, 17(2): 291-300

    [16] Hu J, Wang Z D, Gao H J, Stergioulas L K. Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements. Automatica, 2012,48 (9): 2007- 2015

    [17] Djuric P M, Zhang Z J, Bugallo M F. Target tracking by a new class of cost-reference particle filters. In: Proceedings of the IEEE Aerospace Conference, Big Sky, USA, 2008,1-9

    [18] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004 , 92(3): 401-422

    [19] Julier S J. The spherical simplex unscented transformation. Proceedings of the American Control Conference, 2003, 2430 -2434

    [20] Zhou H R, Jing Z L, Wang P D. Maneuvering Target Tracking. Beijing. National Defence Industry Press, 2011 (In Chinese)

    [21] Liu J, Ma J, Tian J W. Pulsar/CNS integrated navigation based on federated UKF. Journal of Systems Engineering and Electronics, 2010 , 21(4): 675 - 681

    [22] Qin Y Y. Kalman Filter and Integrated Navigation Principle. Xian: Northwestern Polytechnical University Press, 2012

    Hu Zhentao, born in 1979. He received his Ph.D degrees in Control Science and Engineering from Northwestern Polytechnical University in 2010. He also received his B.S. and M.S. degrees from Henan University in 2003 and 2006 respectively. Now, he is an assistant professor of college of computer and information engineering, Henan University. His research interests include complex system modeling and estimation, target tracking and particle filter, etc.

    10.3772/j.issn.1006-6748.2015.02.003

    ①Supported by the National Natural Science Foundation (NNSF) of China under Grant (No. 61300214), the Science and Technology Innovation Team Support Plan of Education Department of Henan Province (No.13IRTSTHN021), the Science and Technology Research Key Project of Education Department of Henan Province (No.13A413066), the Basic and Frontier Technology Research Plan of Henan Province (No. 132300410148), the Funding Scheme of Young Key Teacher of Henan Province Universities (No. 2013GGJS-026), the Key Project of Teaching Reform Research of Henan University (No. HDXJJG2013-07), the Postdoctoral Science Fund of Henan Province (No. 2013029) and the Postdoctoral Science Fund of China (No. 2014M551999).

    ②To whom correspondence should be addressed. E-mail: hzt@henu.edu.cn Received on Apr. 18, 2014***, Hu Yumei**, Li Song**

    国产精品久久久久久久电影| 国产在视频线在精品| 亚洲怡红院男人天堂| 国产高清不卡午夜福利| 精品久久久久久久人妻蜜臀av| 中文字幕亚洲精品专区| 久久国内精品自在自线图片| 免费av毛片视频| 亚洲精品日韩av片在线观看| 国产免费福利视频在线观看| 国产亚洲精品av在线| 国产精品伦人一区二区| 国精品久久久久久国模美| 色综合站精品国产| 国产一区二区在线观看日韩| 男人舔奶头视频| 精品一区二区三区人妻视频| 人妻制服诱惑在线中文字幕| 亚洲人成网站高清观看| 午夜精品国产一区二区电影 | 99热这里只有精品一区| 国内精品宾馆在线| 校园人妻丝袜中文字幕| 欧美zozozo另类| 中文欧美无线码| 国产白丝娇喘喷水9色精品| 熟妇人妻久久中文字幕3abv| 亚洲丝袜综合中文字幕| 赤兔流量卡办理| 天堂网av新在线| 欧美3d第一页| 在线 av 中文字幕| 一二三四中文在线观看免费高清| 国产av不卡久久| 美女主播在线视频| 精华霜和精华液先用哪个| 日韩一本色道免费dvd| 十八禁网站网址无遮挡 | 午夜精品在线福利| 69人妻影院| 七月丁香在线播放| av专区在线播放| 麻豆乱淫一区二区| 天美传媒精品一区二区| 九色成人免费人妻av| 日本色播在线视频| 99视频精品全部免费 在线| 亚洲三级黄色毛片| 最近手机中文字幕大全| 九色成人免费人妻av| 中文欧美无线码| 国产激情偷乱视频一区二区| 成人亚洲精品av一区二区| 寂寞人妻少妇视频99o| 小蜜桃在线观看免费完整版高清| 欧美丝袜亚洲另类| 久久久精品欧美日韩精品| 只有这里有精品99| 免费观看在线日韩| 午夜免费男女啪啪视频观看| 中文字幕亚洲精品专区| 亚洲成人久久爱视频| 日日干狠狠操夜夜爽| 久久久久久伊人网av| 天天躁夜夜躁狠狠久久av| av福利片在线观看| 天堂影院成人在线观看| 久久精品夜色国产| 国精品久久久久久国模美| 深爱激情五月婷婷| 久久久成人免费电影| 午夜福利在线在线| 身体一侧抽搐| 国内精品一区二区在线观看| 久久久久久久久中文| 国产乱人偷精品视频| 国产69精品久久久久777片| 性色avwww在线观看| 亚洲婷婷狠狠爱综合网| 成人特级av手机在线观看| a级毛片免费高清观看在线播放| 国产av不卡久久| 国产精品国产三级国产av玫瑰| 欧美bdsm另类| 少妇人妻一区二区三区视频| 亚洲欧美一区二区三区黑人 | 日韩大片免费观看网站| 中文天堂在线官网| 大香蕉久久网| 亚洲人成网站高清观看| 亚洲人成网站在线播| 婷婷色av中文字幕| 能在线免费看毛片的网站| 国产黄片视频在线免费观看| 一夜夜www| 亚洲欧洲国产日韩| 91av网一区二区| 亚洲国产av新网站| 美女主播在线视频| freevideosex欧美| 麻豆久久精品国产亚洲av| 日韩,欧美,国产一区二区三区| 国产黄片美女视频| 欧美最新免费一区二区三区| 黄色配什么色好看| 赤兔流量卡办理| 熟女电影av网| av.在线天堂| 街头女战士在线观看网站| 永久网站在线| 亚洲第一区二区三区不卡| av福利片在线观看| 老司机影院毛片| 少妇高潮的动态图| 国产有黄有色有爽视频| 国产精品一区二区三区四区免费观看| 亚洲,欧美,日韩| 国产成人精品久久久久久| 成人国产麻豆网| 搡老乐熟女国产| 成年人午夜在线观看视频 | 午夜老司机福利剧场| 少妇猛男粗大的猛烈进出视频 | 又粗又硬又长又爽又黄的视频| 免费av毛片视频| 丰满人妻一区二区三区视频av| 国产一区亚洲一区在线观看| 亚洲自偷自拍三级| 一边亲一边摸免费视频| 国产国拍精品亚洲av在线观看| 国产亚洲最大av| 国产黄a三级三级三级人| 精品久久久久久久久av| 亚洲内射少妇av| 久久久久久久午夜电影| 国产 亚洲一区二区三区 | .国产精品久久| 九九爱精品视频在线观看| 免费观看性生交大片5| 国产av在哪里看| 国产亚洲精品av在线| 干丝袜人妻中文字幕| 一级毛片电影观看| 国产一区二区在线观看日韩| av在线蜜桃| 亚洲欧美成人精品一区二区| 久热久热在线精品观看| 亚洲最大成人手机在线| 亚洲av福利一区| 午夜福利网站1000一区二区三区| 中文字幕av在线有码专区| 国产v大片淫在线免费观看| 欧美zozozo另类| 国产亚洲午夜精品一区二区久久 | 看非洲黑人一级黄片| 在线观看一区二区三区| 搡女人真爽免费视频火全软件| 国产欧美另类精品又又久久亚洲欧美| 97在线视频观看| 天美传媒精品一区二区| 最近视频中文字幕2019在线8| 久久久久久久午夜电影| 国产av不卡久久| 综合色av麻豆| 国产综合精华液| 校园人妻丝袜中文字幕| 一区二区三区免费毛片| 一级毛片久久久久久久久女| 一区二区三区四区激情视频| 亚洲精品国产av成人精品| 麻豆乱淫一区二区| 美女高潮的动态| 精品亚洲乱码少妇综合久久| 精品少妇黑人巨大在线播放| 熟妇人妻久久中文字幕3abv| 免费看光身美女| 免费大片黄手机在线观看| 亚洲欧美一区二区三区黑人 | 亚洲高清免费不卡视频| 亚洲欧美一区二区三区国产| 伊人久久国产一区二区| 欧美变态另类bdsm刘玥| 国产精品一区二区三区四区免费观看| 成年女人看的毛片在线观看| 午夜福利在线在线| 亚洲av成人精品一二三区| 2018国产大陆天天弄谢| 在线观看美女被高潮喷水网站| 97热精品久久久久久| 国产麻豆成人av免费视频| 亚洲精品一区蜜桃| 中文字幕av在线有码专区| 你懂的网址亚洲精品在线观看| 蜜臀久久99精品久久宅男| 日本wwww免费看| 国产亚洲最大av| 午夜老司机福利剧场| 日本三级黄在线观看| 九草在线视频观看| 国产真实伦视频高清在线观看| 日韩三级伦理在线观看| 六月丁香七月| 男人狂女人下面高潮的视频| 久久精品国产亚洲av天美| 欧美潮喷喷水| 国产老妇女一区| 国产亚洲5aaaaa淫片| 黑人高潮一二区| 亚洲国产精品成人综合色| 最近2019中文字幕mv第一页| 精品99又大又爽又粗少妇毛片| 99久久精品一区二区三区| 精品国产一区二区三区久久久樱花 | 简卡轻食公司| 国精品久久久久久国模美| 色综合站精品国产| 亚洲国产欧美在线一区| 成人国产麻豆网| 精品国产三级普通话版| 国产一区二区三区av在线| 欧美xxⅹ黑人| 九草在线视频观看| 日韩国内少妇激情av| 中文字幕亚洲精品专区| 亚洲精品第二区| 亚洲高清免费不卡视频| 午夜亚洲福利在线播放| 天堂√8在线中文| 国产 亚洲一区二区三区 | 亚洲国产精品sss在线观看| 国产成人免费观看mmmm| 一级二级三级毛片免费看| 精品欧美国产一区二区三| 蜜桃亚洲精品一区二区三区| 久久久a久久爽久久v久久| 欧美人与善性xxx| 精品国产露脸久久av麻豆 | 人人妻人人看人人澡| 女人久久www免费人成看片| 两个人的视频大全免费| 五月伊人婷婷丁香| 国产欧美另类精品又又久久亚洲欧美| 一夜夜www| 免费黄色在线免费观看| 真实男女啪啪啪动态图| 中国美白少妇内射xxxbb| 国产午夜福利久久久久久| 免费播放大片免费观看视频在线观看| 精品久久久久久久久av| videossex国产| 最近2019中文字幕mv第一页| 免费少妇av软件| 久久久久久久久久久免费av| 三级国产精品欧美在线观看| 亚洲国产精品sss在线观看| a级毛片免费高清观看在线播放| 国产老妇伦熟女老妇高清| 高清在线视频一区二区三区| 黄色配什么色好看| 日韩av在线免费看完整版不卡| 亚洲18禁久久av| 欧美性猛交╳xxx乱大交人| 久99久视频精品免费| 在线观看人妻少妇| 色综合色国产| 免费高清在线观看视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 听说在线观看完整版免费高清| 国产成人a∨麻豆精品| 免费看av在线观看网站| 国产免费又黄又爽又色| 少妇的逼水好多| 国产老妇女一区| 黄片wwwwww| or卡值多少钱| 免费黄色在线免费观看| 免费人成在线观看视频色| 精品酒店卫生间| 亚洲自拍偷在线| 少妇的逼好多水| 大香蕉97超碰在线| 亚洲天堂国产精品一区在线| 亚洲经典国产精华液单| eeuss影院久久| 啦啦啦中文免费视频观看日本| 亚洲人与动物交配视频| 精品亚洲乱码少妇综合久久| 成人亚洲精品一区在线观看 | 少妇被粗大猛烈的视频| 淫秽高清视频在线观看| 国产人妻一区二区三区在| 成人美女网站在线观看视频| 夜夜看夜夜爽夜夜摸| 高清日韩中文字幕在线| 国产精品久久视频播放| 高清毛片免费看| 搞女人的毛片| 亚洲成人精品中文字幕电影| 一级二级三级毛片免费看| 韩国高清视频一区二区三区| 亚洲丝袜综合中文字幕| 国产精品一区二区性色av| 亚州av有码| 毛片女人毛片| 在线免费观看不下载黄p国产| 五月天丁香电影| 国产黄频视频在线观看| 色尼玛亚洲综合影院| 成人综合一区亚洲| 天堂网av新在线| 51国产日韩欧美| 精品久久国产蜜桃| 国产黄片视频在线免费观看| 秋霞在线观看毛片| 久久久欧美国产精品| 免费高清在线观看视频在线观看| 麻豆国产97在线/欧美| 久久国内精品自在自线图片| 欧美97在线视频| 国产高潮美女av| 国产精品三级大全| 精品人妻熟女av久视频| 91精品一卡2卡3卡4卡| 国产真实伦视频高清在线观看| 一级二级三级毛片免费看| 麻豆乱淫一区二区| 高清视频免费观看一区二区 | 久久久久性生活片| 99re6热这里在线精品视频| 插逼视频在线观看| 日韩欧美三级三区| 欧美日韩视频高清一区二区三区二| 午夜精品在线福利| 精品久久久久久久人妻蜜臀av| 免费高清在线观看视频在线观看| 日本免费a在线| 亚洲久久久久久中文字幕| 人人妻人人澡人人爽人人夜夜 | 色播亚洲综合网| 日日啪夜夜爽| av.在线天堂| 2018国产大陆天天弄谢| 99热全是精品| 精品少妇黑人巨大在线播放| 亚洲成人中文字幕在线播放| 亚洲高清免费不卡视频| 亚洲三级黄色毛片| 国产黄色免费在线视频| 综合色丁香网| 免费看av在线观看网站| 国产午夜精品论理片| 免费观看a级毛片全部| 国产免费视频播放在线视频 | 91精品伊人久久大香线蕉| 国产精品伦人一区二区| 十八禁网站网址无遮挡 | 97人妻精品一区二区三区麻豆| 一区二区三区四区激情视频| 又爽又黄a免费视频| 麻豆久久精品国产亚洲av| av一本久久久久| 又爽又黄无遮挡网站| 白带黄色成豆腐渣| 亚洲av成人精品一二三区| 2021少妇久久久久久久久久久| 国产又色又爽无遮挡免| 国产 一区精品| 欧美成人a在线观看| 精品人妻一区二区三区麻豆| 亚洲av日韩在线播放| 18禁在线播放成人免费| 特大巨黑吊av在线直播| 天堂中文最新版在线下载 | 永久免费av网站大全| 亚洲av免费在线观看| 51国产日韩欧美| 亚洲最大成人中文| 亚洲欧洲国产日韩| 国产亚洲精品久久久com| 亚洲国产日韩欧美精品在线观看| 亚洲av成人精品一二三区| 好男人在线观看高清免费视频| 国产伦一二天堂av在线观看| 精品久久久久久电影网| 简卡轻食公司| 搞女人的毛片| 国产精品国产三级国产av玫瑰| 午夜激情福利司机影院| 大香蕉久久网| 有码 亚洲区| 欧美 日韩 精品 国产| 国产熟女欧美一区二区| 男女边吃奶边做爰视频| 超碰97精品在线观看| 高清午夜精品一区二区三区| a级毛片免费高清观看在线播放| 亚洲国产成人一精品久久久| 精品国产一区二区三区久久久樱花 | 精华霜和精华液先用哪个| 一本久久精品| 美女被艹到高潮喷水动态| 亚洲熟女精品中文字幕| 成人无遮挡网站| 亚洲欧美日韩东京热| 麻豆国产97在线/欧美| 久久久久久久久久久丰满| 国产永久视频网站| 亚洲高清免费不卡视频| 日韩欧美一区视频在线观看 | 亚洲欧洲国产日韩| 久久久色成人| 日韩,欧美,国产一区二区三区| 777米奇影视久久| 国产一级毛片在线| 成人毛片60女人毛片免费| 舔av片在线| 蜜桃久久精品国产亚洲av| 亚洲精品aⅴ在线观看| 两个人视频免费观看高清| 亚洲av成人精品一区久久| 免费高清在线观看视频在线观看| 亚洲婷婷狠狠爱综合网| 亚洲丝袜综合中文字幕| 五月伊人婷婷丁香| 在线免费十八禁| 精品酒店卫生间| 97在线视频观看| 亚洲国产精品国产精品| 人妻夜夜爽99麻豆av| 亚洲欧美日韩卡通动漫| 啦啦啦韩国在线观看视频| 热99在线观看视频| 免费黄色在线免费观看| 亚洲成色77777| 淫秽高清视频在线观看| 亚洲不卡免费看| 男女边摸边吃奶| 一级毛片我不卡| 精品酒店卫生间| 国国产精品蜜臀av免费| 亚洲人成网站在线播| 久久热精品热| 插阴视频在线观看视频| 在线播放无遮挡| 免费电影在线观看免费观看| 成人鲁丝片一二三区免费| 人妻夜夜爽99麻豆av| 午夜亚洲福利在线播放| 国产淫语在线视频| 精品一区二区免费观看| 97精品久久久久久久久久精品| 夜夜看夜夜爽夜夜摸| 免费大片18禁| 免费少妇av软件| 搡女人真爽免费视频火全软件| 国产成人aa在线观看| 大陆偷拍与自拍| 日日干狠狠操夜夜爽| 夜夜爽夜夜爽视频| 哪个播放器可以免费观看大片| 国产片特级美女逼逼视频| 一个人看的www免费观看视频| a级毛片免费高清观看在线播放| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品sss在线观看| 欧美xxxx性猛交bbbb| 午夜福利在线观看免费完整高清在| 视频中文字幕在线观看| 一级毛片aaaaaa免费看小| 高清日韩中文字幕在线| 国产v大片淫在线免费观看| 亚洲精品亚洲一区二区| 一本久久精品| 人妻制服诱惑在线中文字幕| 色哟哟·www| 国产大屁股一区二区在线视频| 中文字幕av成人在线电影| 午夜老司机福利剧场| 国产精品99久久久久久久久| 国国产精品蜜臀av免费| 日本av手机在线免费观看| 美女cb高潮喷水在线观看| 精品酒店卫生间| 最近中文字幕高清免费大全6| 人人妻人人看人人澡| 综合色av麻豆| 成年女人在线观看亚洲视频 | 少妇的逼好多水| 99热这里只有是精品50| av免费在线看不卡| 中文字幕免费在线视频6| av国产免费在线观看| 亚洲精品456在线播放app| 亚洲乱码一区二区免费版| 少妇人妻精品综合一区二区| 精品人妻偷拍中文字幕| 国产淫片久久久久久久久| av在线蜜桃| 99久国产av精品国产电影| 亚洲第一区二区三区不卡| 国产在视频线精品| 国内精品美女久久久久久| 免费看av在线观看网站| 亚洲精品乱久久久久久| 亚洲欧美成人精品一区二区| av国产久精品久网站免费入址| 寂寞人妻少妇视频99o| 97精品久久久久久久久久精品| 少妇丰满av| 国产成人精品一,二区| 国产精品女同一区二区软件| 九九在线视频观看精品| 亚洲精品第二区| 日本wwww免费看| 久久久精品免费免费高清| 69av精品久久久久久| 国产成人精品久久久久久| 免费看av在线观看网站| 亚洲精品色激情综合| 国产伦在线观看视频一区| 亚洲综合精品二区| 久久99蜜桃精品久久| 亚洲美女搞黄在线观看| 欧美另类一区| 夫妻性生交免费视频一级片| 秋霞在线观看毛片| www.色视频.com| 中文字幕av在线有码专区| 嫩草影院入口| 日日啪夜夜撸| 国产亚洲av片在线观看秒播厂 | 国产探花在线观看一区二区| 两个人视频免费观看高清| 1000部很黄的大片| 欧美极品一区二区三区四区| 色哟哟·www| 久久久久久久久久久免费av| 狂野欧美白嫩少妇大欣赏| 婷婷六月久久综合丁香| 国产精品人妻久久久久久| 97热精品久久久久久| 蜜臀久久99精品久久宅男| 极品少妇高潮喷水抽搐| 深爱激情五月婷婷| 午夜福利在线观看免费完整高清在| 免费看av在线观看网站| 国产男人的电影天堂91| 伊人久久精品亚洲午夜| 亚洲国产色片| 亚洲欧美成人综合另类久久久| 国产伦精品一区二区三区四那| 国产成人a∨麻豆精品| 久久精品人妻少妇| 尤物成人国产欧美一区二区三区| 亚洲av电影在线观看一区二区三区 | 久久久久久久久久久免费av| 最近的中文字幕免费完整| 精品一区二区免费观看| 日日摸夜夜添夜夜添av毛片| 国产亚洲av嫩草精品影院| 91av网一区二区| 午夜精品一区二区三区免费看| 国产高清有码在线观看视频| 午夜福利高清视频| 亚洲av在线观看美女高潮| 乱人视频在线观看| 国产午夜福利久久久久久| 特大巨黑吊av在线直播| 97在线视频观看| 色网站视频免费| 啦啦啦啦在线视频资源| 亚洲av福利一区| 成人高潮视频无遮挡免费网站| 亚洲精品日本国产第一区| 少妇丰满av| 看黄色毛片网站| 久久久久九九精品影院| 91av网一区二区| 国产伦精品一区二区三区四那| 精品久久久久久久末码| av播播在线观看一区| 日韩视频在线欧美| 国产成人a∨麻豆精品| 国产av在哪里看| 免费少妇av软件| 色播亚洲综合网| 午夜福利在线在线| 亚洲在线观看片| 少妇猛男粗大的猛烈进出视频 | 中国国产av一级| 亚洲欧美精品自产自拍| 极品教师在线视频| 男女国产视频网站| 免费观看av网站的网址| 久久久久久久国产电影| 久久久精品欧美日韩精品| 午夜福利在线观看免费完整高清在| 中文字幕制服av| 久久久精品94久久精品| 免费观看av网站的网址| 精品99又大又爽又粗少妇毛片| 噜噜噜噜噜久久久久久91| 午夜福利在线观看免费完整高清在| 欧美极品一区二区三区四区| 国产精品爽爽va在线观看网站| 欧美三级亚洲精品| 亚洲久久久久久中文字幕| 欧美性猛交╳xxx乱大交人| 午夜福利网站1000一区二区三区| 亚洲图色成人| 午夜亚洲福利在线播放| 国产永久视频网站| 免费黄频网站在线观看国产| 一二三四中文在线观看免费高清| 亚洲真实伦在线观看|