• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MPLPK: A mobile path localization protocol based on key nodes①

    2015-04-17 05:44:28WangJiahao王佳昊
    High Technology Letters 2015年2期

    Wang Jiahao (王佳昊)

    (*School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P.R.China)(**The Fifth Research Institute of Ministry of Information Industry, Guangzhou 510610, P.R.China)

    ?

    MPLPK: A mobile path localization protocol based on key nodes①

    Wang Jiahao (王佳昊)②

    (*School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P.R.China)(**The Fifth Research Institute of Ministry of Information Industry, Guangzhou 510610, P.R.China)

    To alleviate the localization error introduced by irregular sensor network deployment, a new mobile path localization based on key nodes (MPLPK) protocol is proposed. It can recognize all concave/convex nodes in the network as fixed anchor nodes, and simplify the following localization process based on these key nodes. The MPLPK protocol is composed of three steps. After all key nodes are found in the network, a mobile node applying improved minimum spanning tree (MST) algorithm is introduced to traverse and locate them. By taking the concave/convex nodes as anchors, the complexity of the irregular network can be degraded. And the simulation results demonstrate that MPLPK has 20% to 40% accuracy improvements than connectivity-based and anchor-free three-dimensional localization (CATL) and approximate convex decomposition based localization (ACDL).

    concave, convex node, mobile anchor node, sensor network, localization

    0 Introduction

    Node localization is one of the key issues of wireless sensor network applications, especially for large-scale complex and irregular networks. A lot of research have been carried out about localization and localization rate in the recent study[1-3]. There has been growing interests in using connectivity information only to locate other unkown nodes in these algorithms. Multi-dimensional scaling (MDS) based localization techniques have been proved to compute positions of high accuracy with low node density[4]. It’s main advantage is that there is no need for a lot of anchor nodes and low positioning error. For example, A MDS based algorithm MDS-MAP takes a hop distance matrix between any two of these inner nodes as input, and works out a set of relative position coordinates for each node[5], which can map the relative coordinates to absolute coordinates with a few anchor nodes. Nevertheless, the accuracy of MDS-MAP depends heavily on the assumption that the hop-count distance between two nodes can correlate with their Euclidean distance. The assumption is valid only when the network is distributed in a convex field. But real sensor network deployment can hardly guarantee the requirement.

    To avoid using hop-count distance between any two far-away nodes, some studies introduce landmark node to reduce the localization error in the irregular networks[6-10]. Among them, CATL is a representation solution which is proposed as a recent state-of-the-art localization algorithm[11]. The main idea of CATL is trying to identify concave nodes where the hop count of the shortest path between two nodes is greater than the true Euclidean distance. It takes use of an iterative concave-avoiding multilateration scheme to locate the unknown nodes and proposed schemes to avoid the concave node affect the localization error. The uniform deployment of anchor nodes decides the location accuracy of CATL. Furthermore, due to the iterative procedure, CATL has to suffer from error propagation. According to this problem, ACDL is proposed based on approximate convex decomposition, which decomposes the network into several convex subsections[12]. In each subsection, the hop-count distance between nodes can provide a good approximation of their Euclidean distance, and it utilizes MDS algorithm to compute relative coordinate of every node. ACDL finally unifies the locations of all subsections with a few anchor nodes. The ACDL can effectively avoid localization error due to concave node and it first proposes the definition of convex/concave node. Nevertheless, it depends on improved-MDS algorithm which has a complexity of O(N2), but also it needs several fixed anchor nodes proper-distributed in the network.

    The study proposes a MPLPK protocol to localize unknown nodes with mobile anchor based on key nodes. We firstly define concave/convex nodes as key nodes which greatly impact the positioning result. The mobile anchor node is introduced to localize the selected key nodes. Finally, we use these key nodes as anchors to localize other unknown nodes. In our work, we can locate these key nodes without knowing their coordinates, which can avoid affection of non-uniform anchor distribution. Secondly we introduce an improved MST to produce mobile moving path, which can help minimize the cost of network localization process. Finally we use key nodes to localize other nodes, the computation complexity and cost is O(N), which is better than O(N2) of ACDL.

    1 Finding the key nodes

    In an irregular network topology, the concave/convex nodes have great impact on localization accuracy when we use range-free localization algorithms to localize unknown nodes. Therefore, take use of concave/convex nodes as key nodes in the localization process is a straight forward method to simplify the problem. The first step is to pick out all the key nodes in the network.

    1.1 Key node recognition

    Fig.1 q is concave node, q1 and q2 is boundary node, node p is convex node, the green node is two-hop node from the node q

    1.2 Finding all key nodes in network

    To demonstrate the process of finding all the key nodes in an irregular network, Fig.2 is taken as an example and the nodes are assumed to be deployed in a simplified form. Firstly, every node tries to estimate whether itself is a boundary node or not. The black nodes around the network in Fig.2 represent boundary nodes. Secondly, all boundaries recognize themselves whether they are a concave/convex nodes and take them as key nodes. As shown in Fig.3, the black nodes represent the final selected concave/convex nodes.

    Fig.2 Initial network

    Fig.3 Find the key nodes

    2 Localization of nodes

    When the boundary nodes are recognized as shown in Fig.3, the localization problem of the whole network can be simplified into two steps, locate the key nodes and use them to position the rest ordinary nodes.

    And most of all, the key issue of the method relies on how to effectively locate the black concave/convex nodes. To facilitate the work in real applications, a mobile anchor node is used to traverse all key nodes based on the planned moving path, and locate their positions. The path will be scheduled according to the key node distribution and no difference will be made with ordinary nodes.

    2.1 Planning mobile path and locating key nodes

    Due to the complexity of real application environment, wireless sensor networks are usually deployed in large geographical scopes with complex terrains. The path of the mobile anchor node needs to be carefully designed if it wants to traverse all the key nodes. A good path planning algorithm can effectively save the total path length and implementation cost of a mobile anchor node. The traversal of all key nodes is actually a special TSP (Traveling Salesman Problem), which is an NP-hard problem. Therefore, an improved minimum spanning tree (MST) introduced to accommodate the special TSP to solve the problem[15].

    We generate the minimum spanning tree is generated by using the Prim algorithm and the path is simply adjusted among all key nodes, which can produce a unique and optimal path for the mobile anchor node. Our algorithm consists of the following steps:

    (1) Computing the shortest path among all key nodes. Here it is assumed the boundary nodes of the network have been identified and the network is fully connected. The path is weighted as shown in Fig.4, and the shortest path is used as the weight among the key node graph.

    Fig.4 Network with weight, all nodes in graph are key nodes

    (2) Forming minimum spanning tree using Prim as shown in Fig.5.

    (3) Deleting the connection between nodes whose degree is more than 2. Firstly a key node is randomly selected to start the traverse process. If the ith node’s degree is Wi>2, an edge with the node whose weight is the largest will be deleted until Wi≥2.

    (4) Connecting the nodes whose degree is 0. The algorithm will check every key node’s degree. If the jth node’s degree is Wj=0, nodes whose degree W=0 or W=1 will be selected, and a node k is choosen which is closest to node j, and node j, k are connected at the same time, ++Wk,++Wj.

    (5) After the 4th step, there should be no node with degree W=0. The algorithm will traverse all key nodes again to check nodes with the degree of W=1. It will select nodes whose degree is W=1 and connect the closest nodes together.

    In the end, a fully connected Hamiltonian cycle can be achieved. As shown in Fig.6, the cycle describes the path used for mobile anchor node. And after the moving path planned, we can use the mobile anchor node to start moving in the network.

    Fig.6 The shortest moving path

    The key issue of key node localization is how to use the mobile anchor node effectively. Assuming there is only one anchor node each time, a more effective localization algorithm is introduced based on the solution provided in Ref.[16] and the mobile anchor node approaches the key nodes infinitely. The mobile anchor can usually detect the signal strength and direction. When the distance between the mobile anchor and unknown node is less than a threshold value close to 0, the coordinate of the mobile anchor node can be considered as the coordinate of the key node, and the localization of the key node is accomplished. The process is shown in Fig.7.

    Positioning of key nodes in this method is not only accurate but also simple. It doesn’t require additional computing. Only a more accurate positioning equipment and signal detection device are needed to be installed on the mobile anchor. The method is comparably more applicable in real applications, and the MST based path planning algorithm can effectively improve the efficiency of the process.

    Fig.7 Localization of key node

    2.2 Positioning ordinary node

    After the key nodes are localized by the mobile anchor node, they can be used to locate other normal nodes. Concave nodes should exist if convex nodes appear at network boundary. Therefore, there should have no isolated node exist.

    Definition 1:

    Positioning directly:If there is a shortest path existing from a key node to an unknown node, and the path does not contain other key nodes, it is declared that the key node can locate the unknown node directly. Otherwise, it will locate the unknown node indirectly.

    As shown in Fig.8, the shortest path between key node B and unknown node s doesn’t consist of other key nodes. Node B can be used to position node s directly, but node A can only contribute indirectly. The pseudo process of the algorithm is as:

    Algorithm1:Seekingthenodessetwhichcanpositiontheunkownnodedirectly 1.C[N]asthekeynodesset,Nasthenumberofkeynodesset; 2.Setsastheunknownnode; 3.Ps[]asthekeynodessetwhichcanpositionsdi-rectly; 4.Lij[M]asthenodesetintheshortestpathbe-tweennodesiandj(exceptnodeiandnodej),MasthenumberofLij[M]; 5.fori=0toNdo 6 calculatingtheLis[]usingtheshortestpathal-gorithm; 7 forj=0toMdo 8 ifLis[j]∈C[N]thenC[i]cannotlocatenodesdirectly; 9 endfor 10 addC[i]inPs[]; 11 endfor

    After getting Ps[] through Algorithm 1, distance d between unknown node s and every node could be calculated from Ps[] using range free locating algorithm like

    d=Hhopsize×N

    (1)

    where Hhopsizerepresents the average hop distance of the entire network, which is relevant to the network density. N represents the number of hops between the key node and the target unknown node.

    Fig.8 Positioning directly

    Assuming ds1, ds2, ds3,…,dsirepresent the distances between unknown node s and the node in {Ps[1](x1,y1),Ps[2](x2,y2),Ps[3](x3,y3),…,Ps[i](xi,yi)} respectively. The node’s coordinate can be calculated as

    (2)

    3 Simulation

    The simulation of the above mechanisms is implemented on a 1000m×1000m scene with n=1000 to n=2000 randomly distributed nodes. The entire network is full connected, the distance error ranges from 5% to 10% and the node communication radius r is set to 100 m and k=2.

    The proposed MPLPK algorithm is compared with CATL and ACDL in our test. And the average localization error (ALE) and energy consumption results of the three algorithms are shown as below. Table 1 shows the comparison of their localization errors under ALE, 5-percentile, 50-percentile and 95-percentile.

    From Table 1, It can be found that the proposed solution can achieve less localization errors than ACDL and CATL in different criteria. After implementing a mobile anchor node in key node localization process, our solution can effectively reduce location error 20% to 40% to the other two algorithms.

    Table 1 Localization of CATL, ACDL and MPLPK

    Table 2 compares the energy consumption level of the three algorithms. The results show that our algorithm can prolong the life of the entire network for it does not depend on fixed landmark node with energy consuming devices like GPS. Effective MST algorithm can greatly reduce energy consumption level for the mobile anchor node.

    Table 2 Energy consumption

    4 Conclusion

    In this study, a new key node localization protocol MPLPK is proposed for wireless sensor networks with irregular topology. By identifying all concave and convex nodes in the network as key nodes, it simplifies the network deployment at first, and further takes use of them as fixed anchors to position other sensor nodes. To locate the key nodes, a MST based path planning algorithm is provided for defining mobile anchor node’s movement, which can avoid the localization error caused by concave nodes.

    Here an optimized solution is provided for the irregular deployed network on the view of application. For complex network distribution, more optimization methods should be considered to simplify the implementation in real environments.

    [ 1] Liu Y, Yang Z, Wang X, et al. Location, localization, and localizability. Journal of Computer Science and Technology, 2010, 25(2): 274-297

    [ 2] Wang R J, Bao H L, Chen D J, et al. 3D-CCD: a Novel 3D Localization Algorithm Based on Concave/Convex Decomposition and Layering Scheme in WSNs. Ad Hoc & Sensor Wireless Networks. 2012, 0, 1-20

    [ 3] Xu Y B, Sun Y L, Ma L. A KNN-based two-step fuzzy clustering weighted algorithm for WLAN indoor positioning. High Technology Letters, 2011, 17(3):223-229

    [ 4] Ingwer B, Patrick J F G. Modern Multidimensional Scaling, Theory and Applications. Springer-Verlag, NewYork, 1997

    [ 5] Shang Y, Ruml W, Zhang Y, et al. Localization from mere connectivity. In: Proceedings of the 4th ACM International Symposium on Mobile Adhoc Networking & Computing, Annapolis, USA, 2003. 201-212

    [ 6] Bulusu N, Heidemann J, Estrin D. GPS-less low-cost outdoor localization for very small devices. Personal Communications, IEEE, 2000, 7(5): 28-34

    [ 7] Jin M, Xia S, Wu H, et al. Scalable and fully distributed localization with mere connectivity. Proceedings of IEEE INFOCOM, Shanghai China, 2011. 3164-3172

    [ 8] Lederer S, Wang Y, Gao J. Connectivity-based localization of large scale sensor networks with complex shape. Proceedings of IEEE INFOCOM, Phoenix, USA, 2008. 789-797

    [ 9] Tang T, Qing G. Node cooperation based location secure verification algorithm in wireless sensor networks localization. High Technology Letters, 2012, 18(4):376-381

    [10] Wang Y, Lederer S, Gao J. Connectivity-based sensor network localization with incremental delaunay refinement method. Proceedings of IEEE INFOCOM. Rio de Janeiro, Brazil, 2009. 2401-2409

    [11] Tan G, Jiang H, Zhang S, et al. Connectivity-based and anchor-free localization in large-scale 2d/3d sensor networks. Mobihoc 2010, Chicago, USA, 2010. 191-200

    [12] Liu W, Wang D, Jiang H, et al. Approximate convex decomposition based localization in wireless sensor networks. In: Proceedings of the IEEE INFOCOM 2012, Orlando, USA, 2012. 1853-1861

    [13] Dong D, Liu Y, Liao X. Fine-grained boundary recognition in wireless ad hoc and sensor networks by topological methods. In: Proceedings of ACM MobiHoc 2009, New Orleans, USA, 2009. 135-144

    [14] Wang Y G, Jie M, et al. Boundary recognition in sensor networks by topological methods. In: Proceedings of ACM MobiCom 2006, Los Angeles, USA, 2006. 123-133

    [15] Zhao Y. An improved spanning tree algorithm for solving the Traveling Salesman Problem. Journal of Lanzhou University, 2008, 44: 164-165, 168

    [16] Li S J. Research on Localization Algorithm for Wireless Sensor Network in Three-Dimensional Space: [Masters dissertation]. ECUST, 2012

    Wang Jiahao, born in 1978, is an Associate Professor at University of Electronic Science and Technology of China(UESTC). He received his Msc and Ph.D Degree from UESTC in 2004 and 2007 respectively. His research interests includes RFID security, RFID&WSN integrated identifying and tracking, etc.

    10.3772/j.issn.1006-6748.2015.02.002

    ①Supported by the National Natural Science Foundation of China (No. 61133016), the Sichuan Science and Technology Support Project(No. 2013GZ0022), the Scientific Research Fund of Xinjiang Provincial Education Department (No. XJEDU2013I28) and the Technology Supporting Xinjiang Project (No. 201491121).

    ②To whom correspondence should be addressed. E-mail: wangjh@uestc.edu.cn Received on Feb. 10, 2014*, Bao Honglai*, Yang Xiaoming***, Wang Ruijin*, Qin Zhiguang*

    svipshipincom国产片| 大片免费播放器 马上看| 97精品久久久久久久久久精品| 日本五十路高清| 80岁老熟妇乱子伦牲交| 中文字幕人妻丝袜制服| 日本一区二区免费在线视频| 99国产精品99久久久久| 午夜视频精品福利| 久热这里只有精品99| 欧美日韩亚洲综合一区二区三区_| 日韩一本色道免费dvd| 国产精品秋霞免费鲁丝片| 男女国产视频网站| 一边摸一边抽搐一进一出视频| 女人被躁到高潮嗷嗷叫费观| 啦啦啦 在线观看视频| 超色免费av| 国产亚洲午夜精品一区二区久久| 手机成人av网站| 国产精品麻豆人妻色哟哟久久| 久久鲁丝午夜福利片| 天天躁夜夜躁狠狠久久av| 国产一区亚洲一区在线观看| 久久青草综合色| 亚洲欧美精品综合一区二区三区| 国产淫语在线视频| 大话2 男鬼变身卡| 亚洲国产欧美在线一区| www日本在线高清视频| 午夜精品国产一区二区电影| 亚洲成人国产一区在线观看 | 亚洲一区二区三区欧美精品| 国产高清国产精品国产三级| 亚洲成人免费电影在线观看 | 啦啦啦在线免费观看视频4| 日韩中文字幕欧美一区二区 | 高清不卡的av网站| 999久久久国产精品视频| 欧美人与善性xxx| 最新的欧美精品一区二区| 男女边吃奶边做爰视频| 亚洲精品第二区| 另类亚洲欧美激情| 母亲3免费完整高清在线观看| 色综合欧美亚洲国产小说| 亚洲欧美清纯卡通| 涩涩av久久男人的天堂| 精品免费久久久久久久清纯 | 久久毛片免费看一区二区三区| 你懂的网址亚洲精品在线观看| 免费不卡黄色视频| 99久久99久久久精品蜜桃| 国产爽快片一区二区三区| 看免费成人av毛片| 国产精品秋霞免费鲁丝片| 亚洲中文日韩欧美视频| 女人高潮潮喷娇喘18禁视频| 中文字幕另类日韩欧美亚洲嫩草| 日韩大片免费观看网站| 国产精品久久久久成人av| 欧美 日韩 精品 国产| 青春草视频在线免费观看| tube8黄色片| 大香蕉久久网| 日本午夜av视频| 日韩av免费高清视频| 美女福利国产在线| 悠悠久久av| 91字幕亚洲| 亚洲第一av免费看| 久久精品人人爽人人爽视色| 各种免费的搞黄视频| 好男人视频免费观看在线| 婷婷色av中文字幕| 国产一卡二卡三卡精品| 色精品久久人妻99蜜桃| 免费久久久久久久精品成人欧美视频| www日本在线高清视频| 天天躁夜夜躁狠狠躁躁| 欧美激情极品国产一区二区三区| 久久精品亚洲av国产电影网| 一级毛片电影观看| 水蜜桃什么品种好| 欧美黑人精品巨大| 亚洲黑人精品在线| 久久久精品国产亚洲av高清涩受| 国产免费一区二区三区四区乱码| 黄色 视频免费看| 国产欧美日韩一区二区三 | 色播在线永久视频| 天天躁夜夜躁狠狠躁躁| 亚洲精品久久成人aⅴ小说| 欧美精品一区二区大全| 成年女人毛片免费观看观看9 | 一级毛片我不卡| 妹子高潮喷水视频| 深夜精品福利| 老鸭窝网址在线观看| 亚洲精品乱久久久久久| 欧美性长视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲九九香蕉| e午夜精品久久久久久久| 免费在线观看日本一区| 久久精品久久久久久久性| 嫩草影视91久久| 久久精品国产a三级三级三级| 侵犯人妻中文字幕一二三四区| 久久人人爽人人片av| 亚洲 国产 在线| 人妻 亚洲 视频| 肉色欧美久久久久久久蜜桃| 极品人妻少妇av视频| 午夜免费鲁丝| 中文字幕亚洲精品专区| av有码第一页| 午夜老司机福利片| 亚洲欧美清纯卡通| 亚洲国产看品久久| 中文字幕人妻丝袜制服| 可以免费在线观看a视频的电影网站| 亚洲中文日韩欧美视频| 999精品在线视频| 亚洲av美国av| 久9热在线精品视频| 日本av手机在线免费观看| 亚洲三区欧美一区| 18禁国产床啪视频网站| 亚洲精品自拍成人| www.熟女人妻精品国产| 国产黄色视频一区二区在线观看| 考比视频在线观看| 大香蕉久久成人网| 我的亚洲天堂| 国产精品国产三级国产专区5o| 十八禁网站网址无遮挡| 欧美人与性动交α欧美精品济南到| 青春草亚洲视频在线观看| 欧美精品亚洲一区二区| 午夜福利一区二区在线看| av网站免费在线观看视频| 午夜激情久久久久久久| 欧美精品啪啪一区二区三区 | 亚洲精品久久成人aⅴ小说| 大型av网站在线播放| 最黄视频免费看| 精品一区在线观看国产| 国产精品久久久久久精品电影小说| 日韩 欧美 亚洲 中文字幕| 亚洲一码二码三码区别大吗| 欧美少妇被猛烈插入视频| 一二三四在线观看免费中文在| 日韩视频在线欧美| 视频在线观看一区二区三区| 亚洲精品久久午夜乱码| 嫩草影视91久久| videosex国产| 免费不卡黄色视频| 日日爽夜夜爽网站| av天堂在线播放| 永久免费av网站大全| 777米奇影视久久| 手机成人av网站| 午夜免费男女啪啪视频观看| 免费观看a级毛片全部| 校园人妻丝袜中文字幕| 韩国精品一区二区三区| 人体艺术视频欧美日本| 少妇的丰满在线观看| 中文字幕精品免费在线观看视频| 一区福利在线观看| 欧美亚洲 丝袜 人妻 在线| 大片电影免费在线观看免费| a级毛片黄视频| 人妻一区二区av| 中文欧美无线码| 黄色a级毛片大全视频| 国产欧美日韩一区二区三区在线| 国产高清不卡午夜福利| 日本vs欧美在线观看视频| 女人爽到高潮嗷嗷叫在线视频| av在线app专区| 精品国产乱码久久久久久男人| 精品久久蜜臀av无| 麻豆乱淫一区二区| 99国产精品免费福利视频| 久9热在线精品视频| 99国产精品99久久久久| 日本欧美视频一区| 欧美精品一区二区免费开放| 热re99久久国产66热| 日本五十路高清| 亚洲国产日韩一区二区| 国产成人一区二区三区免费视频网站 | 亚洲国产av新网站| 不卡av一区二区三区| 久久精品aⅴ一区二区三区四区| 这个男人来自地球电影免费观看| 久久热在线av| 久久人人97超碰香蕉20202| 国产欧美亚洲国产| 两人在一起打扑克的视频| 国产精品99久久99久久久不卡| 国产一卡二卡三卡精品| 观看av在线不卡| av国产久精品久网站免费入址| 丝袜喷水一区| 久久99一区二区三区| 熟女少妇亚洲综合色aaa.| 一级黄片播放器| 人妻一区二区av| 国产极品粉嫩免费观看在线| 一本大道久久a久久精品| 亚洲第一av免费看| 欧美精品一区二区免费开放| 午夜福利影视在线免费观看| 无遮挡黄片免费观看| 最新的欧美精品一区二区| 国产99久久九九免费精品| 乱人伦中国视频| 大话2 男鬼变身卡| 欧美日韩视频高清一区二区三区二| 999精品在线视频| 久久女婷五月综合色啪小说| 高清av免费在线| 秋霞在线观看毛片| 成人免费观看视频高清| 一边亲一边摸免费视频| 在线亚洲精品国产二区图片欧美| 日韩av在线免费看完整版不卡| 中文字幕最新亚洲高清| 中文字幕制服av| 黄频高清免费视频| 久久综合国产亚洲精品| 欧美成人精品欧美一级黄| 成年美女黄网站色视频大全免费| 欧美久久黑人一区二区| 午夜久久久在线观看| 国产日韩欧美视频二区| 国产亚洲欧美在线一区二区| 免费观看a级毛片全部| 大片免费播放器 马上看| 青春草视频在线免费观看| 日韩人妻精品一区2区三区| 色视频在线一区二区三区| 精品亚洲乱码少妇综合久久| 香蕉国产在线看| 大片免费播放器 马上看| 美女午夜性视频免费| 又大又爽又粗| 亚洲国产最新在线播放| 欧美黄色片欧美黄色片| 国产精品亚洲av一区麻豆| 欧美性长视频在线观看| 日韩 欧美 亚洲 中文字幕| 国产伦人伦偷精品视频| 国产人伦9x9x在线观看| 日韩视频在线欧美| 国产精品一国产av| netflix在线观看网站| 男人添女人高潮全过程视频| 免费人妻精品一区二区三区视频| 9191精品国产免费久久| 高清视频免费观看一区二区| 熟女少妇亚洲综合色aaa.| 少妇粗大呻吟视频| 亚洲中文av在线| 搡老乐熟女国产| 欧美日韩黄片免| 亚洲九九香蕉| 亚洲精品av麻豆狂野| 久久精品aⅴ一区二区三区四区| 丝袜美腿诱惑在线| 亚洲精品自拍成人| 国产1区2区3区精品| 国产日韩欧美在线精品| e午夜精品久久久久久久| 午夜激情av网站| 成人免费观看视频高清| 9色porny在线观看| 无遮挡黄片免费观看| 只有这里有精品99| 少妇 在线观看| 国产精品九九99| 色综合欧美亚洲国产小说| 国产在线一区二区三区精| 久久久亚洲精品成人影院| 青青草视频在线视频观看| 晚上一个人看的免费电影| 99国产综合亚洲精品| 欧美少妇被猛烈插入视频| 高清欧美精品videossex| 欧美变态另类bdsm刘玥| 视频在线观看一区二区三区| 91九色精品人成在线观看| 少妇被粗大的猛进出69影院| 纵有疾风起免费观看全集完整版| 精品国产国语对白av| 赤兔流量卡办理| 操美女的视频在线观看| 美女视频免费永久观看网站| 19禁男女啪啪无遮挡网站| 一边亲一边摸免费视频| 国产又爽黄色视频| 日本wwww免费看| 午夜福利影视在线免费观看| 久久久久精品人妻al黑| 欧美中文综合在线视频| 黄色 视频免费看| 男女下面插进去视频免费观看| 看免费av毛片| 久久狼人影院| xxx大片免费视频| 亚洲国产成人一精品久久久| 伊人亚洲综合成人网| 日日爽夜夜爽网站| 免费在线观看完整版高清| 日韩一卡2卡3卡4卡2021年| 建设人人有责人人尽责人人享有的| 99国产综合亚洲精品| 黄色怎么调成土黄色| 乱人伦中国视频| 99热国产这里只有精品6| 狂野欧美激情性bbbbbb| 国产成人精品久久久久久| 亚洲欧美日韩高清在线视频 | 国产成人a∨麻豆精品| 久久av网站| 午夜久久久在线观看| 天天影视国产精品| 大片电影免费在线观看免费| 精品一品国产午夜福利视频| 日本wwww免费看| 国产欧美日韩一区二区三区在线| 国产精品成人在线| 亚洲欧美一区二区三区国产| 男女之事视频高清在线观看 | 欧美97在线视频| 精品国产乱码久久久久久小说| 青青草视频在线视频观看| 日韩精品免费视频一区二区三区| 女人精品久久久久毛片| 亚洲国产精品国产精品| 一级片免费观看大全| 大片免费播放器 马上看| 19禁男女啪啪无遮挡网站| 久久午夜综合久久蜜桃| 久久久精品免费免费高清| 亚洲美女黄色视频免费看| 亚洲欧美日韩另类电影网站| 精品福利永久在线观看| 一本综合久久免费| 夫妻性生交免费视频一级片| 成人18禁高潮啪啪吃奶动态图| av在线老鸭窝| 操美女的视频在线观看| 国产成人欧美| 欧美xxⅹ黑人| 真人做人爱边吃奶动态| 十八禁网站网址无遮挡| 精品第一国产精品| 亚洲视频免费观看视频| 日韩一卡2卡3卡4卡2021年| 热re99久久精品国产66热6| 老鸭窝网址在线观看| 2021少妇久久久久久久久久久| 久久精品国产亚洲av涩爱| 欧美日韩亚洲国产一区二区在线观看 | 久热爱精品视频在线9| 午夜福利在线免费观看网站| 欧美日韩视频高清一区二区三区二| 欧美黑人精品巨大| 操美女的视频在线观看| 亚洲 国产 在线| a级毛片在线看网站| netflix在线观看网站| 精品人妻熟女毛片av久久网站| 国产精品免费大片| 亚洲第一av免费看| av片东京热男人的天堂| 男人舔女人的私密视频| 色婷婷av一区二区三区视频| 欧美成人精品欧美一级黄| 又大又爽又粗| 9热在线视频观看99| 国产熟女欧美一区二区| 美女福利国产在线| 99国产综合亚洲精品| 黄色毛片三级朝国网站| 精品人妻熟女毛片av久久网站| 男女国产视频网站| 赤兔流量卡办理| 免费不卡黄色视频| 国产日韩欧美亚洲二区| 69精品国产乱码久久久| 亚洲三区欧美一区| 色精品久久人妻99蜜桃| 69精品国产乱码久久久| 韩国高清视频一区二区三区| 母亲3免费完整高清在线观看| 国产精品99久久99久久久不卡| 国产成人精品久久久久久| 99九九在线精品视频| 99re6热这里在线精品视频| 欧美中文综合在线视频| 国产日韩欧美在线精品| 观看av在线不卡| 好男人电影高清在线观看| 欧美日韩视频精品一区| 亚洲欧美日韩另类电影网站| 高清黄色对白视频在线免费看| av国产久精品久网站免费入址| 久久鲁丝午夜福利片| 精品少妇内射三级| www.av在线官网国产| 我的亚洲天堂| 亚洲久久久国产精品| 制服人妻中文乱码| 黄色一级大片看看| 亚洲 欧美一区二区三区| 久久亚洲国产成人精品v| 国产精品 欧美亚洲| 欧美在线黄色| 久久久久国产一级毛片高清牌| 成年av动漫网址| 香蕉国产在线看| 在线观看www视频免费| 久久精品成人免费网站| 亚洲精品第二区| 美女脱内裤让男人舔精品视频| 精品少妇久久久久久888优播| 国产在线一区二区三区精| 高清黄色对白视频在线免费看| 欧美精品一区二区免费开放| www.999成人在线观看| 观看av在线不卡| 午夜91福利影院| 午夜影院在线不卡| 两性夫妻黄色片| 欧美成人午夜精品| 成在线人永久免费视频| 久久综合国产亚洲精品| 无遮挡黄片免费观看| 久久久国产精品麻豆| 国产精品久久久人人做人人爽| 制服诱惑二区| 亚洲欧洲精品一区二区精品久久久| 丝袜在线中文字幕| 最近中文字幕2019免费版| av天堂久久9| 好男人电影高清在线观看| 亚洲av成人不卡在线观看播放网 | 午夜影院在线不卡| 成年女人毛片免费观看观看9 | 久久久久精品人妻al黑| 人人妻人人添人人爽欧美一区卜| 深夜精品福利| 亚洲,一卡二卡三卡| 国产一区二区三区综合在线观看| 一级毛片 在线播放| 国产爽快片一区二区三区| 91国产中文字幕| 黄色视频在线播放观看不卡| 一级毛片黄色毛片免费观看视频| 在线 av 中文字幕| 欧美在线一区亚洲| 亚洲欧美一区二区三区国产| 日韩人妻精品一区2区三区| 一边摸一边抽搐一进一出视频| 国产免费福利视频在线观看| 日本欧美国产在线视频| 性色av乱码一区二区三区2| 午夜福利影视在线免费观看| 亚洲精品自拍成人| 亚洲成人免费电影在线观看 | 国产在视频线精品| 日本a在线网址| 欧美久久黑人一区二区| 欧美激情极品国产一区二区三区| 热re99久久国产66热| 免费高清在线观看日韩| 精品少妇内射三级| 久久人妻福利社区极品人妻图片 | 久久久精品免费免费高清| 一级毛片电影观看| 欧美97在线视频| 免费不卡黄色视频| 天天影视国产精品| 久久久精品94久久精品| 亚洲国产精品999| 亚洲精品国产色婷婷电影| 两个人免费观看高清视频| 香蕉国产在线看| 好男人电影高清在线观看| 免费不卡黄色视频| 天天影视国产精品| √禁漫天堂资源中文www| 男人添女人高潮全过程视频| svipshipincom国产片| 一区福利在线观看| 久久午夜综合久久蜜桃| 十八禁网站网址无遮挡| 在线观看免费高清a一片| 精品国产一区二区三区久久久樱花| 国产成人精品久久二区二区免费| 一二三四社区在线视频社区8| 色视频在线一区二区三区| 日本黄色日本黄色录像| 亚洲av片天天在线观看| 成年美女黄网站色视频大全免费| 九色亚洲精品在线播放| 亚洲欧美成人综合另类久久久| 涩涩av久久男人的天堂| 又大又黄又爽视频免费| avwww免费| av天堂久久9| 黑丝袜美女国产一区| 好男人视频免费观看在线| 成年美女黄网站色视频大全免费| 天堂俺去俺来也www色官网| 中文字幕人妻熟女乱码| 韩国精品一区二区三区| 免费av中文字幕在线| 久久av网站| 亚洲精品国产色婷婷电影| 午夜福利免费观看在线| 欧美 亚洲 国产 日韩一| 一级,二级,三级黄色视频| 蜜桃国产av成人99| 国产精品秋霞免费鲁丝片| 国产一区有黄有色的免费视频| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩一区二区三 | 日本a在线网址| 亚洲av综合色区一区| 免费在线观看黄色视频的| 欧美日韩亚洲高清精品| 十分钟在线观看高清视频www| 久久精品熟女亚洲av麻豆精品| 欧美少妇被猛烈插入视频| 亚洲成色77777| 欧美性长视频在线观看| 99国产精品一区二区蜜桃av | 亚洲成人免费av在线播放| 伊人久久大香线蕉亚洲五| 观看av在线不卡| 国产日韩欧美亚洲二区| 美女扒开内裤让男人捅视频| 亚洲视频免费观看视频| av国产精品久久久久影院| av有码第一页| 精品久久久精品久久久| 伊人亚洲综合成人网| 久久久久久免费高清国产稀缺| av福利片在线| 一区二区日韩欧美中文字幕| 91老司机精品| 亚洲成av片中文字幕在线观看| 久久国产亚洲av麻豆专区| 天堂中文最新版在线下载| 亚洲午夜精品一区,二区,三区| 亚洲精品久久久久久婷婷小说| 婷婷成人精品国产| 亚洲国产av影院在线观看| 亚洲欧美色中文字幕在线| 日韩一卡2卡3卡4卡2021年| 国产不卡av网站在线观看| 日日爽夜夜爽网站| 狠狠婷婷综合久久久久久88av| 日韩 亚洲 欧美在线| 十八禁人妻一区二区| 国产日韩欧美视频二区| 爱豆传媒免费全集在线观看| 热99久久久久精品小说推荐| 久久 成人 亚洲| 少妇裸体淫交视频免费看高清 | 婷婷色麻豆天堂久久| 女人高潮潮喷娇喘18禁视频| 久久热在线av| 男女下面插进去视频免费观看| 久久人人97超碰香蕉20202| 中文字幕最新亚洲高清| 亚洲欧美精品自产自拍| 男人舔女人的私密视频| 久久ye,这里只有精品| 亚洲九九香蕉| 国产高清视频在线播放一区 | 激情视频va一区二区三区| 精品欧美一区二区三区在线| 在线天堂中文资源库| 国产黄色视频一区二区在线观看| 最新在线观看一区二区三区 | 国产高清国产精品国产三级| 久久人妻熟女aⅴ| 国产爽快片一区二区三区| 制服人妻中文乱码| 男女免费视频国产| 精品福利观看| 午夜av观看不卡| 午夜影院在线不卡| 免费av中文字幕在线| 五月开心婷婷网| 亚洲精品国产av成人精品| 精品熟女少妇八av免费久了| 亚洲第一av免费看| 国产一区二区 视频在线| 亚洲精品美女久久久久99蜜臀 | 精品人妻在线不人妻| 国产av国产精品国产| 国产精品.久久久| 在线 av 中文字幕| 亚洲五月婷婷丁香| 亚洲精品一区蜜桃| 久久久久国产一级毛片高清牌|