• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on suppress vibration of rotor misalignment with shear viscous damper①

    2015-04-17 05:33:46HuangXiujin黃秀金HeLidong
    High Technology Letters 2015年2期

    Huang Xiujin(黃秀金), He Lidong

    (Safety Engineering Research Center of the Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, P.R.China)

    ?

    Research on suppress vibration of rotor misalignment with shear viscous damper①

    Huang Xiujin(黃秀金), He Lidong②

    (Safety Engineering Research Center of the Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, P.R.China)

    A new type of shear viscous damper for rotating machinery is designed. The new damper with good stability and reliability can inhibit all kinds of frequency multiplication vibration caused by misalignment in the condition of non-stop machine. It analyzes and discusses the use of the shear viscous damper for misalignment vibration response inhibition with a finite element method, and experiments are extensively carried out with a laboratory test rig. Both the simulation and experimental results basically agree well in that, the damper can effectively control the misalignment vibration of the rotor system and improves the stability of the entire rotor system. Experimental results show the amplitude of one time running speed component decreases by 30%, and the two time running speed vibration has been basically eliminated.

    shear viscous damper, misalignment, rotor system, vibration control

    0 Introduction

    In the practical engineering, shaft misalignment and rotor unbalance are major concerns in rotating machinery, which account for rotor system fault by over 60%[1]. The vibration due to such sources affects critical parts of the system such as bearings, gears, motor, seals, couplings, etc. Even if perfect alignment is achieved initially, it would not be possibly maintained during the operation of the machine due to various factors such as thermal distortion of housing supports of the bearings, differential thermal growth of machine parts, piping forces due to variation in pressure and temperature, movement of foundation, etc. Thus, a misalignment condition is virtually always present in machine-trains and it often needs processing in the downtime. Many researchers have given attention to shaft misalignment on its reasons[2,3], vibration characteristics and dynamic characteristics[4-10], the stability of shaft system[11-13], and the diagnostic analysis[14-17]. Wang, et al. invented a new type of high elevation and bearing lateral adjustment device for adjusting the bearing misalignment[18], but the device requires higher precision. Li, et al. proposed an electromagnetic auxiliary support, but it could control the two time running speed vibration component only, and the one time running speed vibration component still could not be controlled remarkably[19,20].

    Many scholars have done extensive research on viscous shear vibration damper in controlling bridge construction vibration since the 1960s[21,22].Such damper has good stability ,reliability and obvious damping effect. On such basis, a new type of viscous dampers for rotating machinery is proposed to inhibit various frequency components vibration caused by shaft misalignment. Using the finite element method the shear viscous dampers damping effect is analyzed for shaft misalignment, and experiments are carried out for validation.

    1 Designing of the shear viscous damper and finite element model of rotor misalignment

    1.1 Designing and performance of the shear viscous damper

    The structure of the shear viscous damper for rotating machinery is shown in Fig.1. It consists of shear elements, polymer viscous damping medium and other components. The rotor vibration passes to the shear elements through the bearing on the damper and dissipates in the damping medium, so achieves suppressing the vibration of the rotor system. The damper only acts as the equivalent of a secondary damping element acting on the shaft, adding few stiffness support, which does not replace the original bearings.

    Fig.1 Schematic diagram of the damper

    The dynamic characteristics of the shear viscous damper are primarily based on its damping liquid medium, followed by the geometry of the damping device. The most reasonable model accounting for its behavior is the Maxwell model[23], and the shear stress-strain relationship in the Maxwell model is

    P+λDr[P]=C0Dq[u]

    (1)

    In which Dr[P] is the fractional derivative of order r of the time dependent function P. And P is the damping force; u is the displacement, and Dq[u] is the q-order derivative of u; λ is the relaxation time λ=0.36and r=0.6 in the modal. For q=1, C0becomes the damping constant at zero frequency, which is determined by the structure of the damper, and generally it can be calculated as

    C0=kμA

    (2)

    where k is a test trimming coefficient k=1.2; μ is the damping force coefficient; A is the contact area between the damping fluid and damping device. The damping coefficient of the model for different speeds is

    (3)

    Therefore, the force caused by the driving shearing components of the rotor system to do steady harmonic motion is

    (4)

    1.2 Mathematical description with the finite element method

    The finite element model of a single-disc rotor system is shown in Fig.2. The rotor-bearing system is discretized into 13 equal Rayleigh beam finite elements with 14 nodes. In the present analysis, the shaft is modeled using 2-noded Rayleigh beam finite element with 4 degrees of freedom per node. Distributed mass, moment of inertia, gyroscopic effect and viscous form of internal material damping are considered along with the direct bending stiffness of the shaft. Disc is considered as a rigid element, located at node 7th of the finite element mesh (seen in Fig.2) with concentrated inertia properties and mass-unbalance (if any). The bearings are represented by appropriate linear stiffness and damping coefficients and the bearing-forces are assumed to act at node 2ndand node 12th(seen in Fig.2). The damping force p(ω,t) of the shear viscous damper is assumed to act at node 10thwith no stiffness.

    Fig.2 Finite element model of the rotor system

    Shown in Fig.3, the unit generalized coordinates of the 2-noded Rayleigh beam finite element unit with 4 degrees of freedom per node are shown as

    us=[xAyAθxAθyAxByBθxBθyB]T

    Fig.3 Discrete Rayleigh Beam - Axis element model of shaft

    (5)

    where [M],[D] and [K]are the mass , damping and stiffness matrices for the rotor system.[D],the damping matrices include internal damping of the shaft, bearing damping and gyroscopic moment . The displacement vector [u] consists of the bending of the shaft element. [G] is the gravity force; [Fq] is the unbalance force; [Fm] is the misaligned force including reaction forces and moments.

    If control action is implored by the shear viscous damper, the additional control force due to shear viscous damper must be included in the equation. As seen in Eq.(4), this control force may be expressed in terms of the damping coefficients and it is applied at the nodal location of the shear viscous damper. So the effect of the shear viscous damper can be implemented by adding the damping coefficients to the appropriate elements and [D] matrices. So considering the action of shear viscous dampers, Eq.(5) should be the final form of the system equation of motion that is

    =[G]+[Fq]+[Fm]

    (6)

    2 Simulated results and discussions

    2.1 System details

    As shown in Fig.2, the single-disc rotor shaft system (details of which is given in Table 1) is supported at the ends on two identical orthotropic bearings the stiffness and damping coefficients of each are: kxx=8.7e5N/m,kyy=2.3e6N/m,Cxx=1.1e3N.s/m,Cyy=3.6e3N.s/m.

    Table 1 Simulation parameters of the rotor

    2.2 Comparison between controlled and uncontrolled responses

    The first critical speed of the rotor system is calculated to be 2801r/min. This analysis should be carried out at near half speed of the critical speed and 1250r/min is chosen for this analysis. So here vibration suppression effect of the new shear viscous damper for rotor misalignment at speed 1250r/min is mainly analyzed. The simulation parameters are as follows: applying 0.15kg.mm unbalance in the early phase of 0 degree at node 7th(seen in Fig.2); misalignment: parallel=1mm; angular=0.12°; the effect of the shear viscous damper can be implemented by adding the damping coefficients C0=0.8N.s/mm. Then Eq.(5) not including shear viscous damping force and Eq.(6) including shear viscous damping force are integrated using the Runge Kutta integration scheme with a step size of 10-5s for a whole length of 0.3s in order to obtain the time responses and spectrum under misalignment and unbalance force at speed of 1250r/min.

    Here the time-domain waveform, amplitude spectrum and axis orbits of node 3 would be analyzed (distant from the bearing at node 2 45mm,seen in Fig.2) for demonstration. Figs.4(a)~4(c) show comparisons between controlled and uncontrolled time-domain waveform, spectrum and axis orbits by shear viscous damping force in the y direction. In Fig.4, 1X and 2X denote frequency of 1 time, 2 times frequency components of the operating speed.

    Fig.4 The comparisons of rotor misalignment simulation results with and without damper

    The simulated results in Fig.4 clearly show that the time-domain waveform appears beat vibration fluctuations(seen in Fig.4(a)) due to the force of unbalance and misalignment without the control of shear viscous dampers. In addition, apart from the 1X vibration component, the 2X and other multiples vibration components of running speed appear in the frequency spectrum (seen in Fig.4(b)); the orbit presents a “banana” shape due to the misalignment fault . However, comparing the feature after adding dampers, the time-domain waveform of the rotor changes to a stable sine wave; the 2X and other multiples vibration components of running speed almost disappear in the spectrum and also the 1X vibration component is decreased significantly and the axis orbits become stability elliptical orbits.

    3 Experimental verification

    In this section, the theoretical model for misaligned rotor systems in the cases without and with the control of shear viscous dampers is experimentally verified. And a rotor test bench is built up ,shown in Fig.5, whose parameters are consistent with the simulation parameters. The rigid disc is located at the mid -span of the shaft. The rotor is driven by a DC motor, supported by two sliding bearings at both ends of the shaft. There are 16 rotary axial threaded holes in the disc for simulating unbalanced fault. Eddy current sensor is installed on the shaft to measure radial vibration displacement of shaft.

    Fig.5 The rotor testing

    Simulation of angular and parallel misalignments with less than 1 mm positioning error is imposed at the bearing locating near the drive motor, as shown in Fig.6. In the experiments, the domain waveforms ,spectrum and axis orbits of measuring point in the cases without and with the control of shear viscous dampers are obtained by data acquisition system. Here also the running speed 1250r/min is chosen for analysis. The experimental results are shown in Fig.7.

    Fig.6 Coupling misalignment test diagram

    Fig.7 The comparisons of rotor misalignment experimental results with and without damper (1250r/min)

    The experimental results in Fig.7 illustrate that without adding the shear viscous damper, the rotor is obviously in the unbalance and misalignment fault condition: beat vibration fluctuation with M-type appears at the time-domain waveform; apart from the 1X vibration component, the 2X and 3X vibration components of running speed appear in the frequency spectrum; and the orbit presents “banana” shape. These experimental characteristics are consistent with the simulation results in Fig.4. After installing shear viscous damper on the shaft, the time-domain waveform transforms from beat vibration fluctuation condition into regular sine wave, which reduces the magnitude of 35μm to 13.5μm, with a decline of approximately 61%. In the frequency spectrum in Fig.7(b), the 2X ,3X and other multiples vibration components of running speed almost disappeared. And the amplitude of 1X is reduced from 14μm to 9.9μm, with a decline of approximately 30% ; the amplitude of 2X is reduced from 13.6μm to 1.1μm, reduced by 92%. axis trajectory into the banana-shaped oval. This is consistent with the simulation results , which shows that the shear viscous damper can suppress the multiple frequency vibration components of running speed due to misalignment.

    4 Conclusion

    This paper analyzes a new-type shear viscous damper for vibration suppression effect to misaligned rotor systems. From the simulation and the experimental analyzed results it may be concluded that the new-type shear viscous damper provides control of damping force which significantly reduces the rotor vibration due to unbalance and misalignment in the case of non-stop machine. It could not only reduce the 1X vibration component, but also could eliminate the high multiples frequency vibration components caused by shaft misalignment . And it may enhance stability of the rotor system, which has a certain reference value for the actual project.

    [ 1] Song G X, Song J H, Liang H Z, et al. Studies and analysis of high capacity rotary machines with misalignments. Turbing Technology, 2013,55(1):1-5 (In Chinese)

    [ 2] Liao M F, Liang Y Y, Wang S J, et al. Misalignment in drive train of wind turbines. Mechanical Science and Technology for Aerospace Engineering, 2011,30(2):173-180 (In Chinese)

    [ 3] Wang Y B. Shaft misalignment induced vibration in high capacity steam-turbine generator sets. Power Engineering, 2004,24(6):768-774 (In Chinese)

    [ 4] Zhang J H, Ma L, Ma W P, et al. Experiment and dynamic analysis of flexible rotor-ball-bearing system with unbalance rubbing misalignment coupling faults. Journal of Tianjin University, 2012,45(10):854-864 (In Chinese)

    [ 5] Lei W P, Han J, Li Z H, et al. Dynamic response analysis of the rotors connected by the misaligned gear coupling. Journal of Mechanical Strength, 2012,34(3):327-332 (In Chinese)

    [ 6] Sekhar A S, Prabhu B S. Effects of coupling misalignment on vibrations of rotating machinery. Journal of Sound and Vibration, 1995,185(4):655-671

    [ 7] Li M. Analysis of the coupled lateral torsional vibration of a rotor-bearing system with a misaligned gear coupling. Journal of Sound and vibration,2001, 243(2):283-300

    [ 8] Li M, Li Z G, Zhang Y B. Non-linear dynamics of unsymmetrical generator rotor systems with parallel misalignment. Proceedings of the CSEE, 2012,32(5):111-118 (In Chinese)

    [ 9] Tejas H. Patel, Ashish K. Darpe. Vibration response of misaligned rotors. Journal of Sound and Vibration, 2009,325(3): 609-628

    [10] Li X Y. Faults Dynamic Analysis and Recognition of Rotor Misalignment rubbing Coupling:[Ph.D Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. 1-5 (In Chinese)

    [11] Pennacchi P, Vania A, Chatterton S. Nonlinear effects caused by coupling misalignment in rotors equipped with journal bearings. Mechanical Systems and Signal Processing, 2012, 30:306-322

    [12] Sudhakar,G.N.D.S,Sekhar. Coupling misalignment in rotating machines modeling effects and monitoring. Noise & Vibration Worldwide, 2009, 40(1): 17-39

    [13] Wan Z, Jing J P, Meng G, et al. Nonlinear dynamic behaviors and stability of a rotor-bearing system with flexible coupling misalignment. Journal of Vibration and Shoch, 2012,31(24):20-25 (In Chinese)

    [14] Wang L, Gu Y J. Study on on-line diagnosis method of coupling parallel misalignment for turbo-generator. Modem Electric Power, 2011, 28(3): 70-74 (In Chinese)

    [15] Shen D Y. Misalignment fault diagnosis. Condition Monitoring and Diagnostics Technology, 2010,4:52-53 (In Chinese)

    [16] Wang Z. Diagnosis and analysis of bad alignment fault. China Plant Enineering, 2003,(12):40-41 (In Chinese)

    [17] Wang D W, Zhang J W. Alignment trouble analysis and diagnostic skill. Plant Maintenance Engineering, 2005,(10):29-31 (In Chinese)

    [18] Wang W G, Zhao J R, Yan T H, et,al. A new bearing adjustive device for elevation and lateral. China Patent: No.201220016574.4,2012-08-22 (In Chinese)

    [19] Li H M, Zeng S, Wang X X. On-line compensation system of rotor misalignment based on auxillury magnetic bearing. Chinese Journal of Mechanical Engineering, 2005,41(9):150-154 (In Chinese)

    [20] Li H M, Zeng S, Wang X X. The experimental study of the on line elimination of rotor misalignment using auxiliary electromagnetic bearing. Machine Tool & Hydraulics, 2004,12:102-103 (In Chinese)

    [21] Zhang G Q. Cable-stayed bridge - Polymeric Materials Using Passive Damping System[Ph.D Dissertation]. Harbin: Harbin Institute of Technology, 2011 (In Chinese)

    [22] Zheng Wanshan. Designed method and engineering application of viscous shear damper[Ph.D Dissertation]. Xi’an: Chang’an University. 2002 (In Chinese)

    [23] Nicos Makris1 and M. C. CONSTRANTINOU FRACTIONAL-DERIVATIVE MAXWELL MODEL FOR Viscous DAMPERS . J. Struct. Eng. 1991.117:2708-2724

    [24] Han Q K,Yu T, Wang D W, et al. Nonlinear Vibration Analysis and Diagnosis Method of Fault Rotor System. Beijing: Science Press, 2010. 67-88 (In Chinese)

    Huang Xiujin, born in 1989. She received her B.S. from Beijing University of Chemical Technology in 2012 and currently is a master of Beijing University of Chemical Technology. Her research interests is rotating machinery vibration reduction.

    10.3772/j.issn.1006-6748.2015.02.018

    ①Supported by the National Basic Research Program of China (No. 2012CB026000) and the Joint Project Special Fund of Education Committee of Beijing and the Ph.D. Programs Foundation of Ministry of Education of China (No. 20110010110009).

    ②To whom correspondence should be addressed. E-mail: he63@263.net Received on Feb. 18, 2014, Wang Cai

    国产一区二区激情短视频 | 下体分泌物呈黄色| 久久久久国产一级毛片高清牌| 成人亚洲精品一区在线观看| 亚洲精品中文字幕在线视频| av国产久精品久网站免费入址| 亚洲欧洲日产国产| 如日韩欧美国产精品一区二区三区| 成年动漫av网址| 国产精品久久久久久av不卡| 国产麻豆69| 国产免费现黄频在线看| 国产xxxxx性猛交| 建设人人有责人人尽责人人享有的| 国产亚洲最大av| 婷婷色综合大香蕉| 日本免费在线观看一区| 午夜福利乱码中文字幕| 国产精品蜜桃在线观看| 我要看黄色一级片免费的| 国产亚洲午夜精品一区二区久久| 中文字幕人妻熟女乱码| 天堂中文最新版在线下载| 日本黄色日本黄色录像| 亚洲国产精品国产精品| 国产精品久久久久久精品电影小说| 精品卡一卡二卡四卡免费| 国产精品一区二区在线不卡| 国产97色在线日韩免费| 国产精品偷伦视频观看了| 精品人妻熟女毛片av久久网站| 少妇的逼水好多| 人妻 亚洲 视频| 国产深夜福利视频在线观看| 久久久久国产精品人妻一区二区| 好男人视频免费观看在线| 一级毛片电影观看| 精品一区二区三区四区五区乱码 | 国产成人精品久久久久久| 少妇精品久久久久久久| 妹子高潮喷水视频| 一级毛片我不卡| 亚洲av电影在线观看一区二区三区| 侵犯人妻中文字幕一二三四区| 最近最新中文字幕免费大全7| 黑丝袜美女国产一区| 日韩一区二区视频免费看| 97精品久久久久久久久久精品| av在线播放精品| 亚洲精品乱久久久久久| 中文字幕人妻熟女乱码| 午夜福利网站1000一区二区三区| 女性生殖器流出的白浆| 欧美在线黄色| 麻豆精品久久久久久蜜桃| 99久久综合免费| 日韩三级伦理在线观看| 超色免费av| 老司机影院毛片| 久久这里有精品视频免费| 另类精品久久| 人妻人人澡人人爽人人| 啦啦啦中文免费视频观看日本| 欧美中文综合在线视频| 亚洲综合色网址| 国产精品一国产av| 最近中文字幕2019免费版| 亚洲av电影在线进入| 亚洲国产精品999| 乱人伦中国视频| 在现免费观看毛片| 中国国产av一级| 免费av中文字幕在线| 日韩中文字幕视频在线看片| av网站免费在线观看视频| kizo精华| 日本91视频免费播放| 亚洲成人一二三区av| 久久国产亚洲av麻豆专区| 啦啦啦在线免费观看视频4| 熟女少妇亚洲综合色aaa.| 街头女战士在线观看网站| 黄色配什么色好看| 亚洲国产看品久久| 亚洲少妇的诱惑av| 麻豆乱淫一区二区| 精品一区在线观看国产| 日韩中字成人| 亚洲第一区二区三区不卡| 免费在线观看完整版高清| 国产在线一区二区三区精| 一区二区三区激情视频| av卡一久久| 一级毛片电影观看| 18禁裸乳无遮挡动漫免费视频| 纵有疾风起免费观看全集完整版| 人妻 亚洲 视频| 久久精品夜色国产| 另类精品久久| 国产日韩欧美亚洲二区| 国产精品香港三级国产av潘金莲 | 不卡视频在线观看欧美| 欧美精品高潮呻吟av久久| 激情视频va一区二区三区| 日本欧美国产在线视频| 亚洲天堂av无毛| 18+在线观看网站| 中文字幕亚洲精品专区| 韩国av在线不卡| 亚洲欧美精品综合一区二区三区 | 最近2019中文字幕mv第一页| 亚洲av免费高清在线观看| 国精品久久久久久国模美| 久久午夜综合久久蜜桃| 夫妻午夜视频| av片东京热男人的天堂| 香蕉国产在线看| 久久久亚洲精品成人影院| 美女大奶头黄色视频| 亚洲国产精品一区二区三区在线| 亚洲一区二区三区欧美精品| 美女高潮到喷水免费观看| 99re6热这里在线精品视频| 黄片小视频在线播放| 久久毛片免费看一区二区三区| 巨乳人妻的诱惑在线观看| 久久久久久久亚洲中文字幕| 亚洲三级黄色毛片| 欧美精品高潮呻吟av久久| 老女人水多毛片| 一级爰片在线观看| 午夜福利视频在线观看免费| 99精国产麻豆久久婷婷| 久久99精品国语久久久| 嫩草影院入口| 一区二区日韩欧美中文字幕| 国产黄频视频在线观看| 卡戴珊不雅视频在线播放| 午夜福利视频在线观看免费| 国产黄色免费在线视频| 国产成人a∨麻豆精品| 亚洲国产毛片av蜜桃av| 午夜av观看不卡| 卡戴珊不雅视频在线播放| 丝袜喷水一区| 日韩av不卡免费在线播放| 久久久久久久精品精品| 国产一区有黄有色的免费视频| 亚洲精品aⅴ在线观看| 亚洲精品国产色婷婷电影| 亚洲国产欧美日韩在线播放| 成年美女黄网站色视频大全免费| 校园人妻丝袜中文字幕| 男人添女人高潮全过程视频| 男人操女人黄网站| 亚洲国产精品成人久久小说| 国产精品.久久久| 成人国语在线视频| 一区二区三区激情视频| 日本免费在线观看一区| 日本爱情动作片www.在线观看| 高清在线视频一区二区三区| 婷婷色麻豆天堂久久| 久久99热这里只频精品6学生| 亚洲少妇的诱惑av| 国产精品 国内视频| 黑人欧美特级aaaaaa片| 久久国产精品男人的天堂亚洲| 欧美亚洲 丝袜 人妻 在线| 日日爽夜夜爽网站| 午夜福利乱码中文字幕| 少妇人妻久久综合中文| 秋霞在线观看毛片| 狠狠婷婷综合久久久久久88av| 黑人猛操日本美女一级片| 久久久久久免费高清国产稀缺| 成人免费观看视频高清| 亚洲精品国产色婷婷电影| 成年av动漫网址| 成人毛片60女人毛片免费| 天堂8中文在线网| 亚洲伊人色综图| 成人毛片60女人毛片免费| 色视频在线一区二区三区| 久久久国产欧美日韩av| 国产精品无大码| 国语对白做爰xxxⅹ性视频网站| 国产精品香港三级国产av潘金莲 | 一级片免费观看大全| 啦啦啦在线免费观看视频4| 久久国产精品男人的天堂亚洲| 在线观看免费日韩欧美大片| 国产老妇伦熟女老妇高清| 99国产精品免费福利视频| 亚洲成国产人片在线观看| 久久精品夜色国产| 久久人妻熟女aⅴ| 天堂8中文在线网| 天天躁狠狠躁夜夜躁狠狠躁| 99热国产这里只有精品6| 亚洲国产精品成人久久小说| 80岁老熟妇乱子伦牲交| av免费在线看不卡| 狠狠精品人妻久久久久久综合| 国产成人精品久久久久久| 日韩成人av中文字幕在线观看| 国产一区有黄有色的免费视频| 两性夫妻黄色片| 中文字幕精品免费在线观看视频| 美女高潮到喷水免费观看| 一边亲一边摸免费视频| av在线app专区| 亚洲av国产av综合av卡| 免费日韩欧美在线观看| 久久久久久久久久人人人人人人| 久久人人爽av亚洲精品天堂| 美女中出高潮动态图| 哪个播放器可以免费观看大片| 老司机影院成人| 99re6热这里在线精品视频| 成年女人毛片免费观看观看9 | 校园人妻丝袜中文字幕| 亚洲人成网站在线观看播放| 777米奇影视久久| 久久久久久人人人人人| 午夜福利网站1000一区二区三区| 精品久久久精品久久久| 女性生殖器流出的白浆| 在线观看美女被高潮喷水网站| 国产日韩欧美在线精品| 亚洲国产av新网站| 欧美日韩亚洲高清精品| 亚洲人成电影观看| 一级毛片我不卡| 欧美人与善性xxx| 日韩三级伦理在线观看| 亚洲国产精品国产精品| av福利片在线| 国产日韩欧美视频二区| 久久久久久久久久久久大奶| 国语对白做爰xxxⅹ性视频网站| 高清视频免费观看一区二区| 国产亚洲最大av| 久久久国产欧美日韩av| 国产麻豆69| 韩国高清视频一区二区三区| 日韩人妻精品一区2区三区| 精品卡一卡二卡四卡免费| 亚洲第一青青草原| 日韩av免费高清视频| 国产一级毛片在线| 大香蕉久久成人网| 97人妻天天添夜夜摸| 国产白丝娇喘喷水9色精品| 中文字幕最新亚洲高清| 欧美av亚洲av综合av国产av | 久久 成人 亚洲| 国产午夜精品一二区理论片| 大片电影免费在线观看免费| 丝袜喷水一区| 亚洲av男天堂| 韩国精品一区二区三区| 少妇被粗大猛烈的视频| 韩国高清视频一区二区三区| 亚洲一区二区三区欧美精品| 黄色视频在线播放观看不卡| 天堂中文最新版在线下载| 免费观看无遮挡的男女| 精品少妇黑人巨大在线播放| 国产男女内射视频| 日韩视频在线欧美| 成年女人毛片免费观看观看9 | 一级毛片我不卡| 久久精品国产亚洲av涩爱| 一级片'在线观看视频| 亚洲图色成人| 少妇人妻 视频| 成人二区视频| 免费高清在线观看视频在线观看| 久久久久国产精品人妻一区二区| 成人毛片a级毛片在线播放| 亚洲国产最新在线播放| 夫妻性生交免费视频一级片| 91精品伊人久久大香线蕉| 亚洲欧美成人精品一区二区| 久久久精品94久久精品| 一区二区日韩欧美中文字幕| 少妇的丰满在线观看| 飞空精品影院首页| 波多野结衣一区麻豆| 免费黄色在线免费观看| 一级片免费观看大全| 免费在线观看视频国产中文字幕亚洲 | 美女国产高潮福利片在线看| 一级毛片黄色毛片免费观看视频| www.精华液| 国产亚洲av片在线观看秒播厂| 欧美bdsm另类| 老汉色∧v一级毛片| 午夜日本视频在线| 亚洲五月色婷婷综合| 永久免费av网站大全| 午夜福利影视在线免费观看| 国产av精品麻豆| 91精品国产国语对白视频| 国产精品二区激情视频| 在线观看美女被高潮喷水网站| 少妇的逼水好多| 久久久国产一区二区| 久久久a久久爽久久v久久| 又大又黄又爽视频免费| 熟妇人妻不卡中文字幕| 精品国产一区二区久久| 亚洲精品国产av蜜桃| 91aial.com中文字幕在线观看| 侵犯人妻中文字幕一二三四区| 成人毛片60女人毛片免费| 一本大道久久a久久精品| 亚洲成色77777| 天美传媒精品一区二区| 91精品三级在线观看| 久久久精品94久久精品| 久久久欧美国产精品| 欧美中文综合在线视频| 久久久精品免费免费高清| 亚洲av福利一区| 极品少妇高潮喷水抽搐| 菩萨蛮人人尽说江南好唐韦庄| 纯流量卡能插随身wifi吗| 国产精品无大码| 黄网站色视频无遮挡免费观看| 成人毛片a级毛片在线播放| 亚洲四区av| 一级毛片黄色毛片免费观看视频| 一本大道久久a久久精品| 色网站视频免费| 嫩草影院入口| 色网站视频免费| 大片免费播放器 马上看| 不卡视频在线观看欧美| 免费观看性生交大片5| 国产伦理片在线播放av一区| 天堂8中文在线网| 久久av网站| 在线观看国产h片| 秋霞伦理黄片| 夫妻午夜视频| 日韩在线高清观看一区二区三区| 国产日韩一区二区三区精品不卡| 国产毛片在线视频| 免费观看性生交大片5| 亚洲在久久综合| 亚洲国产精品一区三区| 91精品三级在线观看| 欧美日韩视频高清一区二区三区二| 久久亚洲国产成人精品v| 国产人伦9x9x在线观看 | 免费久久久久久久精品成人欧美视频| 欧美精品亚洲一区二区| 精品少妇久久久久久888优播| 王馨瑶露胸无遮挡在线观看| 一区福利在线观看| 国产男人的电影天堂91| 一二三四在线观看免费中文在| 久久国产精品大桥未久av| 亚洲情色 制服丝袜| 成年女人在线观看亚洲视频| 亚洲综合色网址| videos熟女内射| 国产一区二区在线观看av| 晚上一个人看的免费电影| 亚洲美女黄色视频免费看| 国产乱来视频区| 午夜日本视频在线| 777久久人妻少妇嫩草av网站| 狠狠婷婷综合久久久久久88av| 久久精品国产综合久久久| 在线天堂中文资源库| 黑人欧美特级aaaaaa片| 亚洲精品美女久久久久99蜜臀 | 亚洲精品日本国产第一区| 你懂的网址亚洲精品在线观看| 欧美日韩国产mv在线观看视频| 亚洲中文av在线| 黄片播放在线免费| 不卡视频在线观看欧美| 高清不卡的av网站| 国产免费现黄频在线看| 91精品国产国语对白视频| 久久久久国产网址| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 婷婷色综合www| 色网站视频免费| 欧美日韩国产mv在线观看视频| 精品国产露脸久久av麻豆| 国语对白做爰xxxⅹ性视频网站| 成人亚洲欧美一区二区av| 王馨瑶露胸无遮挡在线观看| 制服丝袜香蕉在线| 九色亚洲精品在线播放| 免费高清在线观看视频在线观看| 热re99久久精品国产66热6| 久久99蜜桃精品久久| 啦啦啦啦在线视频资源| 观看av在线不卡| 亚洲国产成人一精品久久久| 视频区图区小说| 亚洲美女搞黄在线观看| 日日撸夜夜添| 国产xxxxx性猛交| 成年女人毛片免费观看观看9 | 女性被躁到高潮视频| 国产成人精品久久二区二区91 | 老汉色∧v一级毛片| 国产精品成人在线| 香蕉精品网在线| 看非洲黑人一级黄片| 999久久久国产精品视频| 日韩精品有码人妻一区| 国产亚洲av片在线观看秒播厂| 亚洲精品乱久久久久久| 精品一品国产午夜福利视频| 久久ye,这里只有精品| 国产伦理片在线播放av一区| 亚洲 欧美一区二区三区| 国产在线免费精品| 午夜老司机福利剧场| 中文字幕人妻丝袜制服| 曰老女人黄片| 国产精品无大码| 久久久久久人人人人人| 国产成人91sexporn| 国产野战对白在线观看| av网站在线播放免费| 一区二区日韩欧美中文字幕| 久久热在线av| 大香蕉久久网| 婷婷色综合www| 男的添女的下面高潮视频| 免费黄色在线免费观看| 欧美日韩视频精品一区| av线在线观看网站| 国产男人的电影天堂91| 亚洲国产精品999| 看免费av毛片| 成人亚洲欧美一区二区av| 色网站视频免费| 免费观看在线日韩| 国产精品一区二区在线不卡| 蜜桃国产av成人99| 欧美激情极品国产一区二区三区| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 成人毛片60女人毛片免费| 中文字幕av电影在线播放| 日韩欧美一区视频在线观看| 少妇人妻久久综合中文| 一本久久精品| 国产精品不卡视频一区二区| 亚洲精品国产色婷婷电影| 欧美精品高潮呻吟av久久| 色婷婷av一区二区三区视频| 日韩精品青青久久久久久| 无人区码免费观看不卡| 国产高清视频在线播放一区| 99riav亚洲国产免费| av免费在线观看网站| 男女下面插进去视频免费观看| 日韩国内少妇激情av| 亚洲av日韩精品久久久久久密| 久久久久精品国产欧美久久久| 999精品在线视频| 免费看十八禁软件| 9热在线视频观看99| 天天添夜夜摸| 精品久久久久久久久久免费视频 | 丁香欧美五月| 最近最新免费中文字幕在线| 欧美人与性动交α欧美软件| 中文字幕人妻丝袜一区二区| 熟女少妇亚洲综合色aaa.| 国产高清视频在线播放一区| 日韩高清综合在线| 亚洲av成人一区二区三| 99精品欧美一区二区三区四区| 国产精品久久电影中文字幕| 涩涩av久久男人的天堂| 午夜老司机福利片| 激情视频va一区二区三区| 人成视频在线观看免费观看| 午夜日韩欧美国产| 亚洲精品美女久久久久99蜜臀| 黑人猛操日本美女一级片| 精品久久久久久,| 国产精品美女特级片免费视频播放器 | 亚洲色图av天堂| 长腿黑丝高跟| 成年女人毛片免费观看观看9| 亚洲中文字幕日韩| 一夜夜www| 久久久久久久久中文| 美女高潮喷水抽搐中文字幕| 国产高清videossex| 在线观看一区二区三区| 日本一区二区免费在线视频| 国产一区二区三区视频了| 免费人成视频x8x8入口观看| 真人做人爱边吃奶动态| 另类亚洲欧美激情| 欧美另类亚洲清纯唯美| 91成人精品电影| 精品久久久久久电影网| 亚洲一区二区三区色噜噜 | 精品日产1卡2卡| 久久久水蜜桃国产精品网| 成人影院久久| 婷婷六月久久综合丁香| 精品久久蜜臀av无| 亚洲自拍偷在线| 精品无人区乱码1区二区| 久久久久久人人人人人| 69精品国产乱码久久久| 欧美亚洲日本最大视频资源| 成年人黄色毛片网站| 久久精品91蜜桃| 一边摸一边抽搐一进一小说| 一本综合久久免费| 午夜福利免费观看在线| 亚洲精品久久午夜乱码| 亚洲成人国产一区在线观看| 久久久国产成人精品二区 | 午夜精品在线福利| 日韩免费av在线播放| 婷婷丁香在线五月| 91精品三级在线观看| 好看av亚洲va欧美ⅴa在| 精品福利永久在线观看| 好男人电影高清在线观看| 国产精品 欧美亚洲| 免费av毛片视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲一区二区三区色噜噜 | 午夜福利免费观看在线| 99国产精品99久久久久| 国内毛片毛片毛片毛片毛片| 精品久久久精品久久久| 日本免费a在线| 曰老女人黄片| 99riav亚洲国产免费| 国产一区二区三区视频了| bbb黄色大片| 精品人妻1区二区| 狂野欧美激情性xxxx| 国产主播在线观看一区二区| 搡老乐熟女国产| 亚洲久久久国产精品| 日日夜夜操网爽| 欧美日韩中文字幕国产精品一区二区三区 | 久久亚洲精品不卡| 久久伊人香网站| 国产一卡二卡三卡精品| 精品国内亚洲2022精品成人| 久久久国产精品麻豆| 看黄色毛片网站| 美女高潮到喷水免费观看| 亚洲在线自拍视频| 亚洲成av片中文字幕在线观看| 最近最新中文字幕大全电影3 | 美女扒开内裤让男人捅视频| 精品国产美女av久久久久小说| 免费在线观看亚洲国产| 日本撒尿小便嘘嘘汇集6| 久久婷婷成人综合色麻豆| 男人操女人黄网站| 悠悠久久av| 欧美乱妇无乱码| 成人av一区二区三区在线看| 亚洲人成伊人成综合网2020| 国产欧美日韩一区二区三区在线| 高清毛片免费观看视频网站 | 好男人电影高清在线观看| 午夜成年电影在线免费观看| 视频区欧美日本亚洲| 国产亚洲精品久久久久久毛片| 少妇的丰满在线观看| 亚洲精品美女久久久久99蜜臀| 9热在线视频观看99| 性少妇av在线| 岛国视频午夜一区免费看| 岛国在线观看网站| 美女 人体艺术 gogo| 欧美黄色片欧美黄色片| 欧美日韩瑟瑟在线播放| 久久这里只有精品19| 亚洲成人国产一区在线观看| 色婷婷久久久亚洲欧美| 在线观看日韩欧美| 80岁老熟妇乱子伦牲交| 无限看片的www在线观看| 操出白浆在线播放| 国产精品国产av在线观看| 超碰成人久久| 在线观看免费午夜福利视频| 黄色女人牲交| 免费在线观看视频国产中文字幕亚洲| 操出白浆在线播放| 精品乱码久久久久久99久播| 热99国产精品久久久久久7| 日韩有码中文字幕| 免费av毛片视频| 欧美精品啪啪一区二区三区| 很黄的视频免费| 男女床上黄色一级片免费看| 亚洲午夜精品一区,二区,三区|