• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A method for retrieving soil moisture from GNSS-Rby using experiment data①

    2015-04-17 05:33:44MaoKebiao毛克彪
    High Technology Letters 2015年2期

    Mao Kebiao (毛克彪)

    (*National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China)(**International Agricultural Big Data and Nutrition Research Institute in China, Pokfulam, Hong Kong, P.R.China) (***State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences and Beijing Normal University, Beijing 100875, P.R.China)(**** Hydrometeorology and Remote Sensing Laboratory, The University of Oklahoma, Norman 73072, USA)

    ?

    A method for retrieving soil moisture from GNSS-Rby using experiment data①

    Mao Kebiao (毛克彪)②

    (*National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China)(**International Agricultural Big Data and Nutrition Research Institute in China, Pokfulam, Hong Kong, P.R.China) (***State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences and Beijing Normal University, Beijing 100875, P.R.China)(****Hydrometeorology and Remote Sensing Laboratory, The University of Oklahoma, Norman 73072, USA)

    Soil moisture is a key parameter in agricultural irrigation. The L band(1.58GHz)on board global position system (GPS) satellite is well suited for monitoring the change of soil moisture. In order to investigate the potential of retrieving soil moisture using the L-band GPS bistatic radar, this paper analyzed a retrieval method by using field experiment data. In order to investigate the relationship between the soil moisture (corresponding roughly to the 0~5cm top soil layer) and the signal-to-noise ratio (Pr-SNR) to the direct GPS signal-to-noise ratio (Pd-SNR), an experiment was conducted in Hulunber grassland of China in 2009 and 2011. Six field sites in the soil moisture experiment were utilized to analyze the relationship between soil moisture and the ratio of Pr-SNRto Pd-SNRand the square of correlation coefficient was about 0.9 when the surface type was known and the elevation angle of the satellite ranged from 65 to 85 degrees approximately. The analysis shows that ratio of Pr-SNRto Pd-SNRcan be used to monitor the soil moisture, because the ratio of Pr-SNRto Pd-SNRmaximized the elimination of the influence of different signals from different GPS satellites. The estimation accuracy could be improved if we make full use of the empirical knowledge on elevation angles of GPS satellites and ground roughness of different surface types.

    soil moisture, global position system (GPS), global navigation satellite system-reflection (GNSS-R)

    0 Introduction

    Soil moisture is a key parameter in agricultural irrigation. In the development of microwave remote sensing, the radar has been proven as one of the best methods to retrieve soil moisture in the last 25 years. The global positioning system (GPS), which was developed by the United States Department of Defense in 1980, has grown from a military positioning system to an indispensable, multi-disciplinary, civilian-use commodity[1]. GPS satellite navigation system matured in the 1990s. The GPS constellation broadcasts a civilian-use carrier signal at 1.58GHz, which is an optimal frequency for soil moisture remote sensing. People first discovered the potential application of the GPS reflection signal from the ocean and the European Space Agency (ESA) thought that the L-band signal of GPS can be used as a marine scatterometer[2]. Martin-Neira[3]used the reflection of GPS signals to measure sea surface height. Many other scientists also did a lot of work using the GPS reflection signal to obtain information of the ocean surface (roughness, wind speed and sea surface height), and they obtained a series of useful results[4-16]. The technology based on the GPS reflection signal is called as the global navigation satellite system-reflection (GNSS-R) remote sensing. In many studies, the scattering of the GPS signal from the land surface has been observed, but the study about soil moisture retrieved by using reflected GPS scattering signal has not been conducted as much because the land surface is very complex[17]. Masters made some analysis of the reflected GPS reflection signal obtained from SMEX02, and initial results shows that the GPS signal reflection can be used to monitor the changes in soil moisture[17-19].

    In recent years, some initial results have also been presented in some conferences[20-22]. Not much research is done using GPS signals to retrieve soil moisture, and no one general physical algorithm has been published. The main reason is that the inversion mechanism of GPS reflection signal is still not very ripe. In this study, the theory of soil moisture retrieved from GNSS-R is introduced in Section 1 and some analysis is performed using the experiment data in Section 2. Finally, an evaluation is made on the methods of retrieving soil moisture from GNSS-R in Section 3.

    1 The principle of Soil Moisture Retrieved from GNSS-R

    Measurement of GPS signals reflected from the land surface is analogous to a bistatic radar system, with transmitters located at each GPS satellite and a separate receiver located above the surface of the Earth. In bistatic systems, the scatterings are mainly forward[18,19]. The GPS receiver can receive signals from at least 4 satellites. The theory basis for soil moisture retrieved from GPS signals reflected from ground is that the L band has a high sensitivity for soil moisture, which could be shown in Fig.1.

    Fig.1 The Illustration of GPS reflection signal from Satellite to Receiver

    The direct signal (Pd) received by GPS receiver is depicted in

    (1)

    where Ptis the transmitted power, Gtis the transmitter antennas gain, λ is the wavelength, Rdis the distance of a direct signal from the GPS signal receivers, and Gdis the receiver antenna gain. Rsis assumed to be the distance from signals to the ground, Rris a reflection signal from the ground to the receiver, σ0is the scattering coefficient per unit area , Gris the receiver antenna gain, and Pris the received power after being reflected by the ground:

    (2)

    For smooth surface, Γ is assumed as reflectivity, so Eq.(2) can be simplified as

    (3)

    Microwave observations are sensitive to soil moisture by the effects of the moisture on the dielectric constant, and hence the emissivity of the soil. The relationship between reflectivity and emissivity is displayed in

    Γ=1-E

    (4)

    The scattering coefficient (σ0) in Eq.(2) and the reflectivity in Eq.(3) are mainly affected by soil moisture and surface roughness. Therefore the strength of the GPS reflection signals can be used to monitor the change of soil moisture. On the other hand, the GPS signal receiver is influenced by noise, and the output signal contains noise. The output noise can be expressed as Nr[1].

    Nr=kTrBr

    (5)

    k is Boltzmann’s constant, Tris the equivalent noise temperature, Bris the bandwidth of the receiver. The ratio of signal to noise is

    (6a)

    (6b)

    where Pd-SNRis the ratio of the direct signal to the noise. Pr-SNRis the ratio of the reflected signal to the noise. Since signals and noises are mixed together, it is difficult to separate. Thus the matter of reducing noise and improving the signal to noise ratio is very important. Shown from Eq.(6), the signal is also influenced by the distance. The nominal orbit periods of GPS satellites around the Earth are about 11 hours and 58 minutes, so the distance from the satellite to the same position of the ground is changed. In order to eliminate the influence of distance and the different transmission powers of different GPS satellites, the Pr-SNRis normalized by Pd-SNR.

    (7)

    If the GPS receiver is on the ground, and Rs+Rs≈Rd, Gr≈Gdin Eq.(7), then Eq.(7) can be simplified as

    (8)

    Eq.(8) is not influenced by distance, the ratio of Pr-SNRto Pd-SNRis approximately equal to the reflectivity Γ.

    2 The analysis based on experiment data

    In May of 2009 and July of 2011, two experiments were conducted to collect ground reflected GPS bistatic radar data using the GPS receiver, and soil moisture measured by using TZS-I (soil moisture meter/tester). The range of measuring soil moisture was 1%~100%, the time for test was less than 2 second, the absolute error is less than 2%, and the relative error was less than 3% (http://www.94117.net/proview.asp?id=9853). The purpose was to characterize the relationship between soil moisture and ratio of GPS Pr-SNRto Pd-SNR. A cross of about 1.5 meters in height was designed to mount a low-gain, zenith RCP (right-hand circularly polarized) patch antenna viewing the sky and a replica nadir LCP (left-hand circularly polarized) patch antenna viewing the ground, which was shown in Fig.2. A processing system for the extensive GPS bistatic radar data sets collected with the DMR had been developed[23]. The processing included accurate georeferencing and time stamping, estimation of higher level parameters, and coordination with supporting ancillary data sets. The signals captured by GPS satellites were displayed on a computer, which was shown in Fig.2. Since it seldom rained in the Hulunber grassland in May of 2009 and July of 2011, the soil was very dry. In order to change soil moisture, we watered four bare soil field sites and two grass field sites and made different observations (Fig.2). A total of 168 data sets were selected when the elevation angles of GPS satellites ranged from approximately 65 to 85 degrees. Of the original set, 98 data sets were used as training data sets to build the statistical regression method (3), which was shown in Fig.3.

    (9)

    A total of 70 data sets were used as test data to evaluate the method, which is shown in Fig.4. The squared correlation coefficient was about 0.9 and the average error was about 0.012 cm3/cm3. As shown in Figs 3 and 4, the ratio of Pr-SNRto Pd-SNRwas not very sensitive when the ground soil moisture was about 0.15cm3/cm3, and the main reason for this was due to the influence of elevation angles of GPS satellites as we did not water the soil. The sensitivity improved after watering the soil. Compared with the analysis of Pr-SNRin Refs[17-19], the ratio of Pr-SNRto Pd-SNRwas more suitable for monitoring the change of soil moisture, because Pr-SNRwas normalized by Pd-SNR, which maximized the elimination of the influence of different signals from different GPS satellites. All analyses indicate that soil moisture could be retrieved from reflected signals of GPS satellite from the ground if we utilize the empirical knowledge from the elevation angles of GPS satellites, ground roughness, and surface types.

    Fig.2 Field experiment in Hulunber grassland, China, LCP (left-hand circularly polarized),RCP (right-hand circularly polarized), DMR (delaying mapping receiver)

    Fig.3 The relationship between measured ground soil moisture and the ratio of Pr-SNR to Pd-SNR.

    Fig.4 Validation

    3 Conclusion

    GPS signals are influenced slightly by the clouds and the atmosphere, which makes it advantageous for studies of global change. The GPS signals scattered by the land surface will fluctuate due to variations of soil moisture, surface roughness, permittivity, and vegetation. To investigate the potential for retrieving soil moisture by using the L-band GPS bistatic radar, this paper analyzed GPS ground reflecting signals to monitor the change of soil moisture. The analysis of field experiment data in Hulunber grassland in China showed that the square of correlation coefficient was about 0.9 between the soil moisture and the ratio of Pr-SNRto Pd-SNRwhen surface type was known and the elevation angle of satellite ranged from approximately 65 to 85 degrees. The ratio of Pr-SNRto Pd-SNRwas suitable for monitoring the change of soil moisture, because the ratio of Pr-SNRto Pd-SNRmaximized the elimination of the influence of different signals from different GPS satellites. A statistical regression method was built and the average error was about 0.012cm3/cm3after we make full use of the empirical knowledge (the elevation angles of GPS satellites, ground roughness and surface type). The method is mainly suitable for bare soil and low vegetation coverage area, and the method should be revised if the vegetation is very high.

    With the development of the European Union’s Galileo and China’s Beidou navigation satellite plans, different frequencies of the L-band and more ground reflected signals could be used. Multiple L bands can aid in overcoming inadequacies of the previous method mentioned above, thus the study of soil moisture retrieval algorithm from GNSS-R SNR remains a hot issue. On the other hand, research about how to take the advantage of radar images, passive microwave, thermal, and optical data to improve retrieval accuracy may yield critical results. The establishment of a multiple scale observational system is very important and can help provide good data source for data assimilation systems.

    Acknowledgment

    The authors would like to thank the anonymous reviewers and editors for their valuable comments, which greatly improved the presentation of this paper. Thanks to NASA for providing MODIS data. This research was financially supported by National Natural Science Foundation of China (No. 41440047), National Nonprofit Institute Research Grant of CAAS (No. IARRP-2015-26), Supported by Open Fund of State Key Laboratory of Remote Sensing Science (Grant No. OFSLRSS201515 ), National Basic Research Program of China (2013BAC03B02).

    [ 1] Masters D S. Surface remote sensing applications of GNSS bistatic, Radar soil moisture and aircraft altimetry. University of Colorado (USA), PHD Dissertation, 2004

    [ 2] Hall C, Cordey R. Multistatic scatterometry, In: Proceedings of IEEE International Geoscience Remote Sensing Symposium, Edinburgh, Scotland, 1988. 561-562

    [ 3] Martin-Neira M. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry. ESA Journal, 1993,17: 331-355

    [ 4] Auber J C. Bilbaut A, Rigal J M. Characterization of multipath on land and sea at GPS frequencies, ION GPS-94. In: Proceedings of the 7th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, USA, 1994. 1155-1171

    [ 5] Katzberg S J, Garrison J L. Utilizing GPS to determine ionospheric delay over the ocean, Technical Memorandum. TM-4750, NASA Langley Research Center, Hampton, 1996, VA:1-16

    [ 6] Garrison J L, Katzberg S J, Howell C T. Detection of ocean reflected GPS signals: theory and experiment. In: Proceedings of the IEEE Southeastcon’97, Blacksburg, USA, 1997, VA: 290-294

    [ 7] Lowe S T, Hajj G. LEO detection of an ocean-reflected GPS signal. GPS reflections Workshop at Goddard Space Flight Center, 1998, JPL, Pasadena, CA

    [ 8] Zavorotny V, Voronovich A. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Transations Geoscience and Remote Sensing, 2000, 38(2): 951-964

    [ 9] Martin-Neira M, Caprrini M, Font-Rossello J, et al. The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals. IEEE Transcations on Geoscience and Remote Sesning, 2001, 39(1):142-150

    [10] Treuhaft R N, Lowe S T, Zuffada C, et al. 2-cm GPS altimetry over crater lake. Geophysical Research Letters, 2001, 28(23): 4343-4346

    [11] Beyerle G, Hocke K. Observation and simulation of direct and reflected GPS signals in radio occultation experiment. Geophysical Research Letter, 2001, 28(9): 1895-1898

    [12] Lowe S T, Zuffada C, Chao Y, et al. 5-cm precision aircraft ocean altimetry using GPS reflection. Geophysical Research Letters, 2002, 29(10): 4359-4362

    [13] Elfouhaily T, Thompson D, Linstrom L. Delay-doppler analysis of bistatically reflected signals from the ocean surface: theory and application. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(3): 560-573

    [14] Garrison J, Komjathy A, Zavorotny V, et al. Wind speed measurement using forward scattered GPS signals. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 50-65

    [15] Cardellach E, Ruffini G, Pino D, et al. Mediterranean balloon experiment: ocean wind speed sensing from the stratosphere, using GPS reflection. Remote Sensing of Environment, 2003, 88(3):351-362

    [16] Komjathy, Armatys M, Masters D, et al. Retrieval of ocean surface wind speed and wind direction using reflected GPS signals. Journal of Atmospheric and Oceanic Technology, 2004, 21(3):515-526

    [17] Masters D, Zavorotny V, Katzberg S, et al. GPS signal scattering from land for moisture content determination. In: Proceedings of the IEEE International Geoscience Remote Sensing Symposium, Honolulu, USA, 2000. 3090-3092

    [18] Masters D, Axelrad P, Katzberg S. Initial results of land-reflected GPS bistatic radar measurements in SMEX02. Remote Sensing of Environment, 2004, 92(4):507-520

    [19] Masters D, Katzberg S, Axelrad P. Airborne GPS bistatic radar soil moisture measurements during SMEX02. In: Proceedings of the IEEE International Geoscience Remote Sensing Symposium, 2003. V2: 896-898. Doi: 10.1109/IGARSS. 2003.1293956

    [20] Chew C, Small E E, Larson K M, et al. Modeling the Effects of Soil Moisture at a GPS-Interferometric Reflectometry Station. American Geophysical Union, Fall Meeting, 2011, abstract H21F-1209

    [21] López, Fabián Rolando Jiménez, et al. Field variables monitoring in real time (GPS, soil moisture, temperature) with precision farming applications. In: Proceedings of the Telematics and Information Systems (EATIS), Valencia, Spain, 2012. 1-5

    [22] Clara C C, Eric E S, Kristine M L, et al. The effect of vegetation on soil moisture retrievals from GPS signal-to-noise ratio data. In: Proceedings of the American Geophysical Union’s 45th annual Fall Meeting, San Francisco, USA, 2012

    [23] Yao Y X, Zhang Q S, Yang D K. A novel method for estimating reflected signal parameters. IEICE Transactions letter, 2009, E92-B(3): 1062-1065

    Mao Kebiao, born in 1977. He received the Ph.D. degree in geographic information systems from the Chinese Academy of Sciences in 2007,the M.S. degree from Nanjing University in 2004, and the B.S. degree from Northeast Normal University in 2001.He is currently with the Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, and Chinese Agricultural Big Data and Nutrition Research Institute, Pokfulam, Hong Kong. He has published more than 90 papers in international and Chinese scientific journals and applied for ten patents for inventions. His research interests include global climate change, Agricultural Big Data, agricultural disaster, geophysical parameters retrieval (like land surface temperature and emissivity, soil moisture, water vapor content).

    10.3772/j.issn.1006-6748.2015.02.015

    ①Supported by the National Key Basic Research Program of China (No. 2010CB951503, 2013BAC03B00).

    ②To whom correspondence should be addressed. E-mail: maokebiao@126.com Received on Jan. 23, 2014******, Ma Ying***, Shen Xinyi****, Xia Lang*, Tian Shiying*, Han Jiaqi*, Liu Qing*

    成人综合一区亚洲| 在线天堂最新版资源| 麻豆精品久久久久久蜜桃| 美女 人体艺术 gogo| 国产精品嫩草影院av在线观看 | 观看美女的网站| 久久精品国产亚洲av香蕉五月| 此物有八面人人有两片| 婷婷精品国产亚洲av| 国产免费男女视频| 亚洲av成人精品一区久久| 蜜桃久久精品国产亚洲av| 国产久久久一区二区三区| 亚洲精品乱码久久久v下载方式| 免费看日本二区| 午夜福利成人在线免费观看| 69av精品久久久久久| 69av精品久久久久久| 成人午夜高清在线视频| 天堂动漫精品| 五月玫瑰六月丁香| 我的女老师完整版在线观看| 此物有八面人人有两片| 日韩欧美 国产精品| 国产亚洲精品久久久久久毛片| 在线国产一区二区在线| 日韩欧美在线乱码| 午夜日韩欧美国产| 成人一区二区视频在线观看| 国产色婷婷99| 欧美潮喷喷水| 国产伦精品一区二区三区四那| av在线老鸭窝| 国产aⅴ精品一区二区三区波| 欧美高清性xxxxhd video| 男插女下体视频免费在线播放| 夜夜爽天天搞| 露出奶头的视频| 天堂动漫精品| 日本精品一区二区三区蜜桃| 婷婷六月久久综合丁香| 久久这里只有精品中国| 久久精品国产亚洲av香蕉五月| 深夜a级毛片| 免费观看在线日韩| 成年版毛片免费区| 在线观看66精品国产| 国产视频一区二区在线看| 国产精品亚洲一级av第二区| 伊人久久精品亚洲午夜| 国产精品人妻久久久久久| 亚洲无线观看免费| 日日摸夜夜添夜夜添小说| 国产 一区 欧美 日韩| 久久久久精品国产欧美久久久| 亚洲精品乱码久久久v下载方式| 亚洲天堂国产精品一区在线| 色尼玛亚洲综合影院| 国产69精品久久久久777片| 一级av片app| 免费黄网站久久成人精品| 日本一本二区三区精品| 最近最新中文字幕大全电影3| 又爽又黄a免费视频| 99久久精品热视频| 国产三级中文精品| 国产高潮美女av| 精品福利观看| 国产精品98久久久久久宅男小说| 欧美日韩瑟瑟在线播放| 小说图片视频综合网站| 日韩欧美 国产精品| 精品一区二区三区视频在线观看免费| 熟女电影av网| 欧美绝顶高潮抽搐喷水| 一个人看视频在线观看www免费| 91狼人影院| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精华国产精华液的使用体验 | 亚洲欧美日韩无卡精品| 婷婷精品国产亚洲av| 人妻夜夜爽99麻豆av| 日本黄色视频三级网站网址| 麻豆成人av在线观看| 成年女人看的毛片在线观看| 大型黄色视频在线免费观看| 午夜福利在线在线| 少妇人妻一区二区三区视频| 婷婷色综合大香蕉| 波多野结衣高清无吗| 日韩欧美 国产精品| 午夜免费成人在线视频| 亚洲性久久影院| 久久久久免费精品人妻一区二区| 亚洲欧美日韩高清在线视频| 啦啦啦韩国在线观看视频| 老女人水多毛片| 联通29元200g的流量卡| 人妻制服诱惑在线中文字幕| 美女被艹到高潮喷水动态| 国产在线男女| 亚洲欧美日韩东京热| 亚洲国产日韩欧美精品在线观看| 国产免费男女视频| 成年女人看的毛片在线观看| 午夜福利18| 国产伦精品一区二区三区视频9| 少妇的逼好多水| 嫩草影院精品99| 久久亚洲真实| 18禁黄网站禁片午夜丰满| 国产亚洲欧美98| 国产高清三级在线| 欧美高清成人免费视频www| 免费av不卡在线播放| 国产乱人视频| 18禁黄网站禁片免费观看直播| 一进一出好大好爽视频| 国产一区二区激情短视频| 日本免费a在线| 性色avwww在线观看| 国产成人av教育| 亚洲av不卡在线观看| 免费观看精品视频网站| 看免费成人av毛片| 在线a可以看的网站| 久久精品人妻少妇| 黄片wwwwww| 日本 av在线| 男女边吃奶边做爰视频| 一级毛片久久久久久久久女| 18禁裸乳无遮挡免费网站照片| 久久久色成人| 狂野欧美白嫩少妇大欣赏| 国产精品久久电影中文字幕| 久久久久精品国产欧美久久久| 成人欧美大片| 可以在线观看毛片的网站| 亚洲欧美日韩东京热| 日韩欧美国产一区二区入口| 婷婷六月久久综合丁香| 亚洲精品粉嫩美女一区| 狠狠狠狠99中文字幕| 99久久精品国产国产毛片| 可以在线观看的亚洲视频| 欧美3d第一页| 亚洲欧美日韩高清在线视频| 亚洲最大成人中文| 婷婷精品国产亚洲av| 男女啪啪激烈高潮av片| 久久这里只有精品中国| 精品久久久久久久久av| 久久久久久大精品| 99久久无色码亚洲精品果冻| 少妇人妻精品综合一区二区 | 观看免费一级毛片| 日韩大尺度精品在线看网址| 亚洲va日本ⅴa欧美va伊人久久| 日本成人三级电影网站| 久久精品人妻少妇| 18禁黄网站禁片免费观看直播| 亚洲熟妇中文字幕五十中出| 国产伦人伦偷精品视频| 欧美色视频一区免费| 色视频www国产| 久久久久久久久久久丰满 | 国产又黄又爽又无遮挡在线| 欧美高清成人免费视频www| 一区二区三区激情视频| 中文字幕av成人在线电影| 久久精品国产亚洲av香蕉五月| 亚洲最大成人av| 欧美激情在线99| 简卡轻食公司| 蜜桃亚洲精品一区二区三区| 国产高清三级在线| 精品久久久久久久人妻蜜臀av| 亚洲最大成人中文| 夜夜看夜夜爽夜夜摸| 国产高清视频在线播放一区| 他把我摸到了高潮在线观看| 欧美性猛交黑人性爽| 最近最新免费中文字幕在线| aaaaa片日本免费| 精品久久久久久久久久久久久| 日日摸夜夜添夜夜添小说| 国产黄片美女视频| 久久热精品热| 91av网一区二区| 哪里可以看免费的av片| 日本爱情动作片www.在线观看 | 欧美在线一区亚洲| x7x7x7水蜜桃| 99热这里只有是精品50| 精品福利观看| 国产三级在线视频| 有码 亚洲区| 日韩欧美精品免费久久| 国产精品伦人一区二区| 中文字幕久久专区| av在线蜜桃| 亚洲综合色惰| 亚洲七黄色美女视频| 免费在线观看成人毛片| 啦啦啦观看免费观看视频高清| 亚洲成人免费电影在线观看| 黄色女人牲交| 国产精品女同一区二区软件 | 国产精品98久久久久久宅男小说| 美女免费视频网站| 男女边吃奶边做爰视频| 久久久久九九精品影院| 免费看av在线观看网站| 成人一区二区视频在线观看| 日本成人三级电影网站| 久久精品国产自在天天线| 国产精品自产拍在线观看55亚洲| 在现免费观看毛片| 欧美高清性xxxxhd video| 国产免费男女视频| 人人妻人人澡欧美一区二区| 九色成人免费人妻av| a在线观看视频网站| 亚洲精品乱码久久久v下载方式| 伦精品一区二区三区| 精品人妻1区二区| 变态另类丝袜制服| 亚洲va在线va天堂va国产| 亚洲图色成人| 熟妇人妻久久中文字幕3abv| 日日啪夜夜撸| 少妇的逼好多水| 真人一进一出gif抽搐免费| 直男gayav资源| 伊人久久精品亚洲午夜| 精品人妻视频免费看| 色哟哟·www| 日本一二三区视频观看| 久久人妻av系列| 婷婷亚洲欧美| 人人妻,人人澡人人爽秒播| АⅤ资源中文在线天堂| 久久九九热精品免费| 亚洲久久久久久中文字幕| 天天一区二区日本电影三级| 亚洲欧美日韩无卡精品| 听说在线观看完整版免费高清| 99热6这里只有精品| 99久国产av精品| 真人做人爱边吃奶动态| 在线天堂最新版资源| 色吧在线观看| 免费人成视频x8x8入口观看| 别揉我奶头 嗯啊视频| 免费av不卡在线播放| 国产精品久久久久久精品电影| 女人十人毛片免费观看3o分钟| 中文字幕免费在线视频6| 亚洲av五月六月丁香网| www日本黄色视频网| 亚洲欧美日韩卡通动漫| 免费看日本二区| 尾随美女入室| 国产一区二区三区视频了| 国产高清视频在线观看网站| 在现免费观看毛片| 国产探花在线观看一区二区| 又紧又爽又黄一区二区| 搡老岳熟女国产| 美女xxoo啪啪120秒动态图| 欧美zozozo另类| 成人鲁丝片一二三区免费| 天堂av国产一区二区熟女人妻| 亚洲一区二区三区色噜噜| 国产男人的电影天堂91| 午夜福利在线观看吧| 午夜福利成人在线免费观看| 黄色配什么色好看| 日本黄大片高清| 五月伊人婷婷丁香| 欧美黑人欧美精品刺激| 亚洲七黄色美女视频| 欧美极品一区二区三区四区| 黄色一级大片看看| 亚洲真实伦在线观看| 久久久久久久午夜电影| 亚洲男人的天堂狠狠| 床上黄色一级片| 国产欧美日韩一区二区精品| 国产伦精品一区二区三区四那| 精品人妻1区二区| 我要搜黄色片| 女的被弄到高潮叫床怎么办 | 国产一区二区亚洲精品在线观看| 男人和女人高潮做爰伦理| 日韩大尺度精品在线看网址| 色哟哟哟哟哟哟| 高清日韩中文字幕在线| 中国美女看黄片| 久久人妻av系列| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久久久久精品电影| 日本 欧美在线| 亚洲av不卡在线观看| 99久久九九国产精品国产免费| 日韩欧美一区二区三区在线观看| 国内精品宾馆在线| av专区在线播放| 国产精品综合久久久久久久免费| 欧美一区二区国产精品久久精品| 美女 人体艺术 gogo| netflix在线观看网站| 美女大奶头视频| 一个人观看的视频www高清免费观看| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸| 亚洲精品色激情综合| 少妇猛男粗大的猛烈进出视频 | 欧美日本视频| 自拍偷自拍亚洲精品老妇| 岛国在线免费视频观看| 中出人妻视频一区二区| 黄色一级大片看看| 日日撸夜夜添| 亚洲最大成人手机在线| 可以在线观看毛片的网站| 亚洲美女黄片视频| 一区二区三区四区激情视频 | 88av欧美| 在线免费观看不下载黄p国产 | 日韩强制内射视频| 女人被狂操c到高潮| 天天一区二区日本电影三级| 久久精品国产自在天天线| 国产成人影院久久av| 成人美女网站在线观看视频| 男女啪啪激烈高潮av片| 欧美成人性av电影在线观看| 久久精品国产亚洲av天美| 欧美日韩黄片免| 国产一区二区亚洲精品在线观看| 欧美3d第一页| 变态另类成人亚洲欧美熟女| 99热只有精品国产| 简卡轻食公司| 搞女人的毛片| 国产精品免费一区二区三区在线| 国产人妻一区二区三区在| 欧美日韩国产亚洲二区| avwww免费| 亚洲最大成人手机在线| 91在线观看av| 草草在线视频免费看| 亚洲国产色片| 国产免费男女视频| 国产精品一及| 亚洲成人久久爱视频| 搞女人的毛片| 99久久中文字幕三级久久日本| 国产精品美女特级片免费视频播放器| 尤物成人国产欧美一区二区三区| 欧美日韩综合久久久久久 | 国模一区二区三区四区视频| av专区在线播放| 亚洲欧美日韩无卡精品| 国产亚洲精品久久久com| 搞女人的毛片| 丰满人妻一区二区三区视频av| 两人在一起打扑克的视频| av天堂中文字幕网| 日韩强制内射视频| 精品久久久久久成人av| 老熟妇仑乱视频hdxx| 欧美日韩乱码在线| 久久久久精品国产欧美久久久| 亚洲精品在线观看二区| 色播亚洲综合网| 久久久国产成人精品二区| 小说图片视频综合网站| 麻豆国产97在线/欧美| 欧美xxxx性猛交bbbb| 久久久久国产精品人妻aⅴ院| 婷婷六月久久综合丁香| 简卡轻食公司| 久久久久久久久久成人| 一级a爱片免费观看的视频| 欧美xxxx黑人xx丫x性爽| 窝窝影院91人妻| 久久欧美精品欧美久久欧美| 欧美黑人巨大hd| 桃色一区二区三区在线观看| 一个人看的www免费观看视频| 长腿黑丝高跟| 很黄的视频免费| 欧美日韩瑟瑟在线播放| 国产精品一区二区三区四区久久| 国产淫片久久久久久久久| 国产精品人妻久久久久久| 久久这里只有精品中国| av女优亚洲男人天堂| 老司机深夜福利视频在线观看| 天堂√8在线中文| 女的被弄到高潮叫床怎么办 | 欧美在线一区亚洲| 日本五十路高清| 日韩亚洲欧美综合| 白带黄色成豆腐渣| 18禁在线播放成人免费| 成人美女网站在线观看视频| 热99在线观看视频| 在线看三级毛片| 中文字幕av成人在线电影| 男插女下体视频免费在线播放| 免费看光身美女| 少妇的逼好多水| 99热这里只有精品一区| 日韩欧美国产一区二区入口| 久久久久国内视频| 老司机深夜福利视频在线观看| 欧美精品国产亚洲| 中文字幕免费在线视频6| 在线观看av片永久免费下载| 午夜福利在线观看吧| 亚洲av中文字字幕乱码综合| 国产精品一区二区三区四区久久| 蜜桃久久精品国产亚洲av| 国产男靠女视频免费网站| 在线观看午夜福利视频| 国产精品人妻久久久久久| av国产免费在线观看| 午夜精品久久久久久毛片777| av在线亚洲专区| 天堂√8在线中文| 日韩欧美在线二视频| 国产精品综合久久久久久久免费| 国产亚洲av嫩草精品影院| 人妻制服诱惑在线中文字幕| 91麻豆精品激情在线观看国产| 亚洲av不卡在线观看| 日本五十路高清| aaaaa片日本免费| 日本五十路高清| 乱系列少妇在线播放| 免费在线观看影片大全网站| 最近在线观看免费完整版| 悠悠久久av| 国产成人aa在线观看| 亚洲精品在线观看二区| 极品教师在线视频| 亚洲一级一片aⅴ在线观看| 成人欧美大片| 校园人妻丝袜中文字幕| 99视频精品全部免费 在线| 午夜精品久久久久久毛片777| 国产av在哪里看| 精品日产1卡2卡| 国产私拍福利视频在线观看| 看片在线看免费视频| 制服丝袜大香蕉在线| 色5月婷婷丁香| 亚洲欧美日韩卡通动漫| 国产午夜福利久久久久久| 午夜激情欧美在线| 国产不卡一卡二| 九九爱精品视频在线观看| 91麻豆精品激情在线观看国产| 成人美女网站在线观看视频| 国产精品精品国产色婷婷| 黄色视频,在线免费观看| 亚洲七黄色美女视频| 欧美激情国产日韩精品一区| 狂野欧美激情性xxxx在线观看| 中文字幕人妻熟人妻熟丝袜美| 日日撸夜夜添| 老师上课跳d突然被开到最大视频| 男女做爰动态图高潮gif福利片| 十八禁网站免费在线| 非洲黑人性xxxx精品又粗又长| 日韩人妻高清精品专区| 久久久国产成人免费| 成年女人看的毛片在线观看| 亚洲欧美清纯卡通| 亚洲人成网站在线播放欧美日韩| 国产成人影院久久av| 亚洲电影在线观看av| 嫁个100分男人电影在线观看| av福利片在线观看| 天天躁日日操中文字幕| 欧美日韩瑟瑟在线播放| 免费大片18禁| 人人妻人人看人人澡| АⅤ资源中文在线天堂| 老女人水多毛片| 他把我摸到了高潮在线观看| 99热这里只有精品一区| 一区福利在线观看| 欧美高清性xxxxhd video| 日韩欧美一区二区三区在线观看| 久久久久久久久久久丰满 | 老女人水多毛片| 男女做爰动态图高潮gif福利片| 成人亚洲精品av一区二区| 国产精品亚洲一级av第二区| 国产91精品成人一区二区三区| 美女高潮的动态| 1000部很黄的大片| 午夜精品久久久久久毛片777| 久久精品91蜜桃| 最近在线观看免费完整版| 日本成人三级电影网站| 国产精品久久视频播放| 国产精品国产高清国产av| 欧美成人性av电影在线观看| 久久久久久久久久成人| 一夜夜www| 尾随美女入室| 天堂√8在线中文| 联通29元200g的流量卡| 五月玫瑰六月丁香| 99热这里只有是精品50| 欧美日韩精品成人综合77777| 性欧美人与动物交配| 国产爱豆传媒在线观看| 99精品久久久久人妻精品| 又紧又爽又黄一区二区| 亚洲精华国产精华精| 九九在线视频观看精品| 性色avwww在线观看| 日本黄色视频三级网站网址| 丝袜美腿在线中文| 亚洲经典国产精华液单| 国模一区二区三区四区视频| 亚洲成人免费电影在线观看| 俺也久久电影网| 日本黄大片高清| 午夜精品久久久久久毛片777| 日本免费一区二区三区高清不卡| 91久久精品国产一区二区成人| 国产精品乱码一区二三区的特点| 国产伦人伦偷精品视频| 中文资源天堂在线| 精品免费久久久久久久清纯| 欧美日韩瑟瑟在线播放| 久久午夜福利片| 中文亚洲av片在线观看爽| 久久久精品欧美日韩精品| 变态另类成人亚洲欧美熟女| 男女视频在线观看网站免费| 欧美+亚洲+日韩+国产| 亚洲久久久久久中文字幕| 国产精品日韩av在线免费观看| 少妇高潮的动态图| 在现免费观看毛片| 国产一区二区在线观看日韩| 成人一区二区视频在线观看| 亚洲av第一区精品v没综合| 99久久九九国产精品国产免费| 国产成人影院久久av| 悠悠久久av| x7x7x7水蜜桃| 在线天堂最新版资源| 好男人在线观看高清免费视频| 久久欧美精品欧美久久欧美| 一进一出抽搐动态| 亚洲av五月六月丁香网| 午夜老司机福利剧场| 欧美日韩黄片免| 亚洲四区av| 国产精品综合久久久久久久免费| 国产人妻一区二区三区在| 男人舔奶头视频| 性欧美人与动物交配| 国产三级在线视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一级一片aⅴ在线观看| 日日摸夜夜添夜夜添小说| 久久久精品欧美日韩精品| 亚洲,欧美,日韩| 99国产精品一区二区蜜桃av| 国产熟女欧美一区二区| 俺也久久电影网| 国产乱人视频| 热99re8久久精品国产| 国内精品美女久久久久久| 狂野欧美白嫩少妇大欣赏| 国产三级在线视频| 亚洲不卡免费看| 久久婷婷人人爽人人干人人爱| 精品午夜福利视频在线观看一区| 亚洲av免费在线观看| 啦啦啦韩国在线观看视频| a级毛片a级免费在线| 午夜日韩欧美国产| 观看美女的网站| 国产老妇女一区| 男插女下体视频免费在线播放| 99国产极品粉嫩在线观看| 精品久久久久久成人av| 亚洲18禁久久av| 小蜜桃在线观看免费完整版高清| 国产精品精品国产色婷婷| 国产乱人伦免费视频| 高清毛片免费观看视频网站| 此物有八面人人有两片| 亚洲欧美精品综合久久99| 88av欧美| 在线观看舔阴道视频| 久久亚洲真实| 国产女主播在线喷水免费视频网站 | 我要搜黄色片| 在线a可以看的网站| 国产成人aa在线观看| 亚洲美女黄片视频| 老女人水多毛片| 国产精品精品国产色婷婷|