• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving wavelet reconstruction algorithm to achieve comprehensive application of thermal infrared remote sensing data from TM and MODIS①

    2015-04-17 05:45:12ZhouQigang周啟剛
    High Technology Letters 2015年2期

    Zhou Qigang(周啟剛)

    (Tourism and Land Resources School, Chongqing Technology and Business University, Chongqing 400067, P.R.China)

    ?

    Improving wavelet reconstruction algorithm to achieve comprehensive application of thermal infrared remote sensing data from TM and MODIS①

    Zhou Qigang(周啟剛)②

    (Tourism and Land Resources School, Chongqing Technology and Business University, Chongqing 400067, P.R.China)

    According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fusion algorithm about thermal infrared data has been proposed in the article based on improving wavelet reconstruction. Under the domain of neighborhood wavelet reconstruction, data of TM and MODIS are divided into three layers using wavelet decomposition. The texture information of TM data is retained by fusing high-frequency information. The neighborhood correction coefficient method (NCCM) is set up based on the search neighborhood of a certain size to fuse low-frequency information. Thermal infrared value of MODIS data is reduced to the space value of TM data by applying NCCM. The data with high spectrum, high spatial and high temporal resolution, are obtained through the algorithm in the paper. Verification results show that the texture information of TM data and high spectral information of MODIS data could be preserved well by the fusion algorithm. This article could provide technical support for high precision and fast extraction of the surface environment parameters.

    neighborhood wavelet reconstruction, neighborhood correction coefficient method (NCCM), thematic mapper (TM), MODIS, thermal infrared remote sensing image

    0 Introduction

    With the rapid development of remote sensing technology in the world, massive remote sensing data are acquired every day[1]. The processing technology of different remote sensing data has become a main reason to restrict the efficient application of remote sensing data. Along with the expanding application domain of remote sensing data, application limitation of remote sensing data from a single sensor is increasingly prominent. Comprehensive application research of remote sensing data in different sources or different periods is to be a hot study point at present[2]. The integration of remote sensing data with different bands or different resolutions can not only make up for the deficiencies including incomplete information, distortion and noise interference in the image of a single sensor, but also further improve the precision and accuracy of the data[3].

    The fusion of remote sensing images is a branch of handling remote sensing data. The remote sensing images are optimized by the decomposition and merging of remote sensing images from different sensors or different bands. The discrimination of remote sensing images after optimization is enhanced. The interpretation and recognition of remote sensing images are more scientific and accurate. Domestic and foreign scholars have studied the fusion of remote sensing images for a long time. These fusion algorithms, such as linear weighted, high-pass filter(HPF), principal component analysis(PCA), IHS(intensity, hue, saturation) transform, wavelet transform, curvelet transform, tetrolet transform and so on, have been applied in various fields[4-6]. The fusion algorithm based on zoom feature of wavelet transform is the most common method[7]. In general, the image is decomposed into three layers in the first step of wavelet transform method, and then images of the fusion of three layers are realized by the average weight method. But this method can’t target the partial treatment in the image region of interest. Some scholars also proposed to use the principal component analysis method or the independent component analysis method based on topological transformation to strengthen the partial information of image. But the calculation process of the two methods is cumbersome[8].

    The land surface temperature data can be achieved by using the thermal infrared band of Landsat thematic mapper(TM) with high spatial resolution. For the characteristics of satellite and sensor, it is difficult to form a time sequence data in a short time interval. The eleventh band and twelfth band of MODIS data are high time sequence data. Land surface temperature data in short time interval can be calculated based on the two bands of MODIS data. Due to the low spatial resolution characteristic of MODIS data, the application of MODIS data is limited. Hou Peng found that land surface temperature value calculated by using MODIS data is closer to the actual value of the land surface temperature than by using TM data[9]. But at present, the research about this fusion technique of texture information of TM data and high spectral information of MODIS data is rare.

    Wavelet reconstruction arithmetic has been analyzed and improved to fuse thermal infrared remote sensing data from TM and MODIS based on the traditional wavelet decomposition and reconstruction. Texture information of TM data and spectral information of MODIS data are combined to get high resolution data in spectral, spatial and temporal. This article can further improve the application depth and breadth of remote sensing image data.

    1 Theory and method

    1.1 The principle of wavelet analysis in remote sensing image fusion

    Wavelet transform is a “Digital Microscope”. It is a local analysis method of time or space frequency. This method is proposed by using expansion or translation operations to achieve multi-scale refinement of high-frequency and low-frequency signal, and to focus on any details of the signal[10].

    Applying wavelet analysis to achieve remote sensing images fusion from different source and different period, the research focuses on these aspects as follows mainly. First, the wavelet function is researched. Second, the method and layers of wavelet decomposition are researched. Finally, the wavelet reconstruction method is studied. Under the research achievements of the scholars, remote sensing image data are decomposed by breaking the images into three layers based on the bior6.8 wavelet function in this paper[11]. It focused on the reconstruction method of high-frequency and low-frequency information image in this paper. The fusion of texture information of TM data and high spectral information of MODIS data has been realized in the article.

    1.2 The wavelet fusion method of high-frequency information image

    The high-frequency information is the fast changing part of the remote sensing image information, which reflects details of image data. The high-frequency information mainly embodies the texture features of image data. The spatial resolution of MODIS data is lower than TM. The purpose of wavelet fusion of high-frequency information image data is to keep the TM texture information in this study. The TM value method is used in the fusion of high-frequency information.

    1.3 The new wavelet fusion method of low-frequency information image

    Low-frequency information is the slowly varying part of all information. It is the framework and outline of the image. Low-frequency information reflects the characteristics of image spectral information mainly. MODIS data has 36 channels. The spectral resolution and time resolution of MODIS data are superior to TM data.

    Wavelet analysis method was used to fuse the low-frequency information of TM data and MODIS data in this paper. The algorithm is designed by trying to modify the spectral information of TM data based on spectral information of MODIS data. This method reduces computing scale and selects the optimal size of the correction. Combined with the characteristics and advantages of low-frequency information of TM data and MODIS data, cells of TM data are modified one by one. By trial and error, the neighborhood correction coefficient method(NCCM) is designed based on the method of neighborhood variance .The implemented steps are as follows:

    (1) Resample grid size of MODIS data and TM data by setting sampling unit size.

    (2) Set the statistical coverage of neighborhood based on neighborhood statistics, and realize the reconstruction of low-frequency information image data. The specific calculation method is shown as

    (1)

    (2)

    (3)

    (4) The value of correction factor K is used to amend TM low-frequency information and get high spatial resolution image data.

    (4)

    2 Experiments

    2.1 The profile of the study area

    In this work, the range of nearly 41906.45 hectares where at the big terrain elevation and close to the waters in Wanzhou, was taken as the study area. Wanzhou is one typical area of the three gorges reservoir area. The water line of the three gorges reservoir area has gradually increased to 175m after 2008 from 135m before 2003. The rising water line seriously affected the environment of surrounding regions in three gorges reservoir area. The surface environment parameter value of the study area changes highlightedly in the process of retain water. The reconstruction of multi-source data can be achieved better. The reconstruction method can be verified accurately in this study region.

    2.2 Data sources

    The product data (1000×1000m) of land surface temperature from MODIS in June 2007 and thermal infrared data (120×120m) from TM in June 2007 were taken as experimental data. The MODIS product data (1000×1000m) of land surface temperature in January 2012 was taken as the verification data. The time and season of selected experimental data and validation data are different. In June 2007, three gorges reservoir area began flowing over the water. In January 2012, three gorges reservoir area completed the water storage. In the two periods, there is a great difference in land surface thermal environment. And it is also easy to test the results of experiments by choosing these data.

    2.3 Data processing

    The methods of ortho-rectification and radiometric correction of images were taken to reduce the error and deformation generated in the process of collecting and processing. By selecting 10 ground control points and 3 order polynomial to do the geometric correction of TM data and MODIS data, and the accuracy of geometric correction was controlled in a pixel.

    There were more than 8 times the gap between the spatial resolution of TM data and MODIS data. In the principle of maintaining the highest spatial resolution and quick speed in processing, the common multiple 10×10m was taken as the standard to achieve two images in a same spatial resolution . No-interpolation method was applied in the process of resampling the grid size of MODIS data and TM data to 10×10m. The land surface temperature data from TM was obtained by using the mono-window algorithm(Qin Zhihao, 2001)[12].

    2.4 The technical route of the experiment

    The grid size of image data was 10×10m. Through repeated tests, it was found that selecting 9 grids (3×3) as the field in the process of calculation could obtain the optimal experimental results. Fig.1 shows the specific technical route of experiment.

    Fig.1 The flowchart of experimental technology

    MODAj and MODDj(j=1,2,3) respectively represent the low-frequency coefficients and the high-frequency coefficients of MODIS data in the process of wavelet decomposition. TMAj and TMDj(j =1,2,3) indicate the low-frequency coefficients and the high-frequency coefficients of TM data in the process of wavelet decomposition, respectively. Dj(j=1,2,3) and A3 are the new high-frequency coefficients and low-frequency coefficients after the fusion calculation.

    2.5 The result of experiment

    In the experiment, the absolute value method (Max)[13]and neighborhood variance algorithm (NV)[14]have been used in reconstructing low-frequency coefficients and high-frequency coefficients. The Max method and NV method have been used widely, and the fusion effect has been repeatedly verified. The effect and superiority of image data obtained by different combination of reconstruction methods have been compared and analyzed. Indicators, including entropy, average gradient, degree of distortion, correlation coefficient, cross entropy and peak signal to noise ratio, are used to compare and analyze images[15,16]. These indicators are most representative, including definition, spatial detail information and spectral information which are core traits of image quality evaluation.

    Fig.2 to Fig.7 and Table 1 show that the pixel texture of the new image obtained by combining NCCM with TM value method is closer to the TM image, and the spatial resolution is higher. The spectral information of the new image is the closest to the MODIS image, and the spectral resolution is higher. In summary, selecting NCCM to obtain new high-frequency coefficients and choosing the TM value method to get the new low-frequency coefficients could achieve the combination of high spatial resolution and high spectral resolution.

    Table 1 The quantitative analysis for fusion image of TM and MODIS based on different algorithms

    Fig.2 Original MODIS surface temperature data in July, 2007

    Fig.3 Original TM surface temperature data in July, 2007

    Fig.4 The fusion result by using TM value method and NV

    Fig.5 The fusion result by using Max and NV

    Fig.6 The fusion result by using Max and NCCM

    Fig.7 The fusion result by using TM value method and NCCM

    3 Proving

    3.1 Proven methods

    The surface temperature parameter data generated by TM thermal infrared data in June 2007 and two land surface temperature data of MODIS in January 2012 and June 2007 are used to validate the new method presented in this article. Based on the new high-frequency and low-frequency fusion method, the two images with different space spectrum and time characteristic are fused into a new image. At the same time, the relationship between the fusion result images and the images of the original MODIS and TM are compared and analyzed.

    3.2 Analysis of the experimental results

    From Fig.8 to Fig.11, it could be found that the texture information of image data after fusing is consistent with TM image. The spectral characteristics of MODIS land surface temperature data in different time points and different season spaces are quite different. The image spectral information after fusing keeps high consistency with MODIS image data, and the fusion effect is better by visualizing. From Table 2, the information of fusion image obtained by using the new fusion rules and wavelet analysis method is greatly increased, and the quality and clarity of the image are improved. After the integration of the MODIS land surface temperature data in the winter of 2012 and the TM land surface temperature data in the summer of 2007, the cross entropy between the fusion result and TM data is minimal. The results show that the difference of pixel texture between the fusion result and TM data is small. There are great differences in the space spectrum characteristics between the MODIS land surface temperature data in the winter of 2012 and the land surface temperature data captured by TM in the summer of 2007. Because the spectral values of the fusion results come mainly from spectral values of MODIS data, the difference of spectrum between fusion result and TM data is larger.

    Fig.8 MODIS original surface temperature data in July, 2007

    From what has been discussed above, the NCCM and TM value method are combined to use in the fusion of images. The results show that, not only TM data can be amended by using MODIS data with high spectral resolution and high time series, but also the high spatial resolution characteristics of TM data could be got. The new surface parameter data with high temporal resolution, high spatial resolution and high spectral resolution could be obtained.

    Fig.9 The fusion result of TM(July, 2007) and MODIS(July, 2007)

    Fig.10 MODIS original surface temperature data in January, 2012

    Fig.11 The fusion result of TM(July, 2007) and MODIS(January, 2012)

    TimeofDataEntropyAverageGradientCrossEntropyDegreeofDistortionCorrelationCoefficientPeakSignaltoNoiseRatioJuly2007MODISTM7.5940.01413.59410.26525.16536.4860.7740.57417.90114.88January2012MODISTM7.5630.01412.9429.82426.17245.9360.7220.717.62613.749OriginalDataMODISin2007MODISin2012TMin20076.96.043.0780.0080.0070.013------------

    4 Conclusion

    In order to get the data of high spatial resolution and high spectral resolution, a wavelet reconstruction algorithm is applied based on the features of MODIS data and TM data in this study. Remote sensing images are decomposed by breaking the images into three layers based on the bior6.8 wavelet function. The new high-frequency coefficients after fusing are replaced by high-frequency coefficients of TM data directly. NCCM is proposed to fuse low-frequency coefficients. The advantage of the two neighborhood methods which have been used in the integration of MODIS data and TM data is compared and analyzed. It could be found from the experiment that the effect of resulting image data captured by using the new combination algorithm of NCCM and TM value method is pretty clear. The optimal texture information of TM data and high spectral information of MODIS data are preserved in resulting image. The improved wavelet reconstruction algorithm could be used to achieve the fusion of thermal infrared remote sensing data of TM data and MODIS data quickly, and to generate new remote sensing data with high temporal resolution, high spatial resolution and high spectral resolution. The reconstruction unit is smaller. It is a targeted method. Local correction effect of image data would become better by using this algorithm. The research is a breakthrough in the technology of comprehensive application of TM data and MODIS data.

    [ 1] Yang H P, Shen Z F, Luo J C, et al. Recent developments in high performance geocomputation for massive remote sensing data. Journal of Geo-information Science, 2013, 15(1): 128-136

    [ 2] Zhang X. The monitoring of antarctic snow and ice changes from the multiple-sources remote sensing data. Acta Geodaetica et Cartographica Sinica, 2014, 43(4): 437-443

    [ 3] Fu D S, Xie Y H. Multi-source remote sensing image data fusion based on wavelet multi-resolution technique. Computer Applications and Software, 2003, 1: 41-43

    [ 4] Hao H X, Liu F, Jiao L C. Image denoising based on multi-directional difference and multi-scale products of curvelet transform. Huazhong Univ Of Sci &Tech (Natural Science Edition), 2013, 41(12): 39-43

    [ 5] Yan X, Qin H L, Liu S Q, et al. Image fusion based on tetrolet transform. Journal of Optoelectronics Laser, 2013, 24(8): 1629-1633

    [ 6] Zheng Z B, Li J, Ren J L. Study on the transportation network accessibility measures based on GIS. YUNNAN Geographic Environment Research, 2007, 19(6): 96-104

    [ 7] Zhao L Q, Yang D Z, Zhou Y H, et al. Multi focus image fusion algorithm based on wavelet transform. Computer Engineering and Applications, 2014:1-6

    [ 8] Zhao X L. Image fusion based on IHS transform and principal component analysis (PCA) transform. Science Technology and Engineering, 2010, 10(20): 4954-4957

    [ 9] Hou P, Cao G Z, Jiang W G, et al. Temperature inversion of urban complex land surface by TM and its comparison with MODIS temperature product. Journal of Natural Disasters, 2009, 18(5): 113-118

    [10] Lin Z P, Li Y, Wu H W. Analysis of overlapping chromatographic peaks based on quadratic differential and wavelet transform. Journal of East China University of Science and Technology (Natural Science Edition), 2014, 40(1): 91-95

    [11] Gu X H, Han L J, Wang J H, et al. Estimation of maize planting area based on wavelet fusion of multi-resolution images. Agricultural Engineering Report, 2012, 28(3): 203-209

    [12] Qin Z H, Zhang M H, Arnon K, et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6data. ACTA GEOGRAPHICA SINICA, 2001,56(4): 456-466

    [13] Liu S T, Shen T S, Yang S Q. Mult-iresolution image fusion algorithm based on adaptive fusion rule. Laser & Inferared, 2007, 37(8): 788-791

    [14] Gou L, Cheng G, Zhao T Y. A new and effective multi-focus image fusion algorithm based on wavelet transforms and neighborhood features. Journal of Northwestern Polytechnical University, 2011, 29(3): 454-460

    [15] Li Y, Liu Y X. Multi-spectral and panchromatic image fusion based on 2DPCA-NSCT transformation. Computer Engineering & Science, 2013, 35(7): 143-148

    [16] Hu G S, Bao W X, Liang D, et al. Fusion of panchromatic image and multi-spectral image based on SVR and Bayesian method. Journal of Zhejiang University (Engineering Science), 2013, 47(7): 1258-1266

    Zhou Qigang, born in 1976. He received his Ph.D degrees in Institute of Mountain Hazards and Environment, Chinese Academy of Sciences in 2006. He also received his B.S. and M.S. degrees from Sichuan Normal University in 1998 and 2003 respectively. His research interests include “3S” technology, the research of remote sensing and infrared spectroscopic.

    10.3772/j.issn.1006-6748.2015.02.016

    ①Supported by the National Natural Science Foundation of China (No. 41101503), the National Social Science Foundation of China (No. 11&ZD161) and Graduate Innovative Scientific Research Project of Chongqing Technology and Business University (No. yjscxx2014-052-29).

    ②To whom correspondence should be addressed. E-mail: zqg1050@126.com Received on Sep. 2, 2014, Chen Dan

    国产片内射在线| 黑人欧美特级aaaaaa片| 制服人妻中文乱码| 级片在线观看| 亚洲午夜精品一区,二区,三区| 97碰自拍视频| or卡值多少钱| 精品一区二区三区四区五区乱码| 亚洲精品av麻豆狂野| 一区二区三区激情视频| 男女下面进入的视频免费午夜 | 男女下面进入的视频免费午夜 | 久久久久久久精品吃奶| 欧美丝袜亚洲另类 | 女同久久另类99精品国产91| 久久国产精品影院| 好看av亚洲va欧美ⅴa在| 久久青草综合色| 国产亚洲精品综合一区在线观看 | 丝袜人妻中文字幕| 午夜老司机福利片| 精品欧美一区二区三区在线| 国产精品一区二区在线不卡| 看免费av毛片| 欧美 亚洲 国产 日韩一| 一二三四在线观看免费中文在| 欧美亚洲日本最大视频资源| 人人妻,人人澡人人爽秒播| 久热这里只有精品99| 长腿黑丝高跟| 国产精品自产拍在线观看55亚洲| 黄频高清免费视频| 欧美乱妇无乱码| 日本vs欧美在线观看视频| 午夜老司机福利片| 69精品国产乱码久久久| 亚洲免费av在线视频| 99精品久久久久人妻精品| 好男人在线观看高清免费视频 | 黄色片一级片一级黄色片| 欧美一级毛片孕妇| 黑人欧美特级aaaaaa片| 久久青草综合色| 又黄又粗又硬又大视频| 在线观看免费视频日本深夜| 久久婷婷成人综合色麻豆| 在线免费观看的www视频| 亚洲国产欧美一区二区综合| 法律面前人人平等表现在哪些方面| 男男h啪啪无遮挡| 777久久人妻少妇嫩草av网站| 国产一区在线观看成人免费| 色精品久久人妻99蜜桃| 久久午夜综合久久蜜桃| 欧美日韩瑟瑟在线播放| 国产av一区二区精品久久| 欧美在线一区亚洲| 日韩欧美在线二视频| 亚洲色图av天堂| av欧美777| 亚洲国产精品成人综合色| 婷婷丁香在线五月| 一级黄色大片毛片| 亚洲av美国av| 国产精品美女特级片免费视频播放器 | 精品国内亚洲2022精品成人| 日韩欧美国产一区二区入口| 性色av乱码一区二区三区2| 国产亚洲欧美98| 在线国产一区二区在线| 国产亚洲精品第一综合不卡| 国产伦人伦偷精品视频| 色播亚洲综合网| 国产成人精品久久二区二区91| 51午夜福利影视在线观看| 69av精品久久久久久| 欧美色视频一区免费| 99久久精品国产亚洲精品| 亚洲一区高清亚洲精品| 成人18禁高潮啪啪吃奶动态图| 国产片内射在线| 免费一级毛片在线播放高清视频 | 一夜夜www| 国产欧美日韩一区二区精品| 欧美一级毛片孕妇| 麻豆一二三区av精品| av免费在线观看网站| 好男人电影高清在线观看| 午夜福利高清视频| 1024香蕉在线观看| 曰老女人黄片| 日日夜夜操网爽| 国产伦一二天堂av在线观看| 精品福利观看| 神马国产精品三级电影在线观看 | 俄罗斯特黄特色一大片| 午夜福利免费观看在线| 一级,二级,三级黄色视频| 欧美日韩一级在线毛片| 丰满人妻熟妇乱又伦精品不卡| 脱女人内裤的视频| 成年版毛片免费区| 精品电影一区二区在线| 国产av在哪里看| 免费av毛片视频| 国产精品av久久久久免费| 欧美黄色片欧美黄色片| 叶爱在线成人免费视频播放| 久久精品91无色码中文字幕| 三级毛片av免费| 国内久久婷婷六月综合欲色啪| 国产在线精品亚洲第一网站| 亚洲中文日韩欧美视频| 在线观看免费视频日本深夜| 亚洲第一av免费看| 国产精品爽爽va在线观看网站 | 国产精品综合久久久久久久免费 | 一夜夜www| 精品无人区乱码1区二区| 成人精品一区二区免费| 国产成人欧美| 亚洲熟妇熟女久久| 最近最新免费中文字幕在线| 久久九九热精品免费| 久久这里只有精品19| 老司机福利观看| xxx96com| 亚洲一区中文字幕在线| 又黄又爽又免费观看的视频| 午夜激情av网站| 久久人人精品亚洲av| 国产精品二区激情视频| 夜夜爽天天搞| 国产亚洲欧美98| 日日爽夜夜爽网站| 久久久久久免费高清国产稀缺| 亚洲精品久久成人aⅴ小说| 99国产综合亚洲精品| 久久久国产成人免费| 色尼玛亚洲综合影院| 欧美性长视频在线观看| 日本五十路高清| 91麻豆精品激情在线观看国产| 成在线人永久免费视频| √禁漫天堂资源中文www| 亚洲 欧美 日韩 在线 免费| 淫秽高清视频在线观看| www.精华液| 国产视频一区二区在线看| 亚洲熟妇中文字幕五十中出| 中文字幕色久视频| 成人av一区二区三区在线看| 99国产精品一区二区蜜桃av| 9色porny在线观看| 神马国产精品三级电影在线观看 | 变态另类丝袜制服| 欧美另类亚洲清纯唯美| 嫩草影视91久久| 欧美成人性av电影在线观看| 久久国产精品人妻蜜桃| 一级a爱片免费观看的视频| 亚洲国产欧美一区二区综合| 脱女人内裤的视频| 美女午夜性视频免费| 亚洲五月婷婷丁香| 熟妇人妻久久中文字幕3abv| 午夜免费观看网址| 夜夜夜夜夜久久久久| 激情在线观看视频在线高清| 亚洲精品粉嫩美女一区| 午夜久久久在线观看| 亚洲 欧美 日韩 在线 免费| 久久精品国产亚洲av高清一级| 午夜久久久久精精品| 91字幕亚洲| 大陆偷拍与自拍| 国产精品永久免费网站| 91成人精品电影| 男女下面插进去视频免费观看| 黑人欧美特级aaaaaa片| 亚洲自拍偷在线| a级毛片在线看网站| 人妻丰满熟妇av一区二区三区| 国产av在哪里看| 麻豆av在线久日| 一级毛片高清免费大全| 在线免费观看的www视频| 亚洲人成伊人成综合网2020| 动漫黄色视频在线观看| 亚洲av第一区精品v没综合| 两个人看的免费小视频| 亚洲自拍偷在线| 亚洲人成电影观看| 免费在线观看视频国产中文字幕亚洲| 免费av毛片视频| 国产精品秋霞免费鲁丝片| 两性午夜刺激爽爽歪歪视频在线观看 | 精品午夜福利视频在线观看一区| 亚洲国产欧美网| 国产一级毛片七仙女欲春2 | 婷婷精品国产亚洲av在线| 欧美老熟妇乱子伦牲交| 老鸭窝网址在线观看| 亚洲免费av在线视频| 欧美乱码精品一区二区三区| 亚洲少妇的诱惑av| 制服丝袜大香蕉在线| 婷婷丁香在线五月| 国语自产精品视频在线第100页| 欧美av亚洲av综合av国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜激情av网站| 女性生殖器流出的白浆| av天堂久久9| 亚洲精品在线观看二区| 制服诱惑二区| 黄色毛片三级朝国网站| 国产精品99久久99久久久不卡| 一卡2卡三卡四卡精品乱码亚洲| 午夜老司机福利片| 国产激情久久老熟女| 中文字幕久久专区| 欧美国产精品va在线观看不卡| 久久精品亚洲熟妇少妇任你| 国产成人系列免费观看| 日韩欧美免费精品| 人妻久久中文字幕网| 国产精品亚洲美女久久久| 丁香欧美五月| 久久亚洲真实| 亚洲国产精品久久男人天堂| 99国产精品一区二区三区| 国产精品1区2区在线观看.| 精品国产一区二区三区四区第35| 搡老妇女老女人老熟妇| 精品欧美一区二区三区在线| 久久午夜综合久久蜜桃| 成年版毛片免费区| 日韩精品青青久久久久久| 国产真人三级小视频在线观看| 久久亚洲真实| 久久精品亚洲熟妇少妇任你| 亚洲av电影在线进入| 国内久久婷婷六月综合欲色啪| 99国产极品粉嫩在线观看| 久久精品成人免费网站| 天天一区二区日本电影三级 | 国产精品亚洲av一区麻豆| 亚洲精品国产区一区二| 麻豆av在线久日| 一本综合久久免费| 久久久久久大精品| 夜夜躁狠狠躁天天躁| 久久狼人影院| 最新在线观看一区二区三区| 精品国产亚洲在线| 亚洲av熟女| 精品久久久久久久人妻蜜臀av | 少妇的丰满在线观看| 在线观看www视频免费| 日韩欧美免费精品| 真人做人爱边吃奶动态| avwww免费| 操出白浆在线播放| 黄色成人免费大全| 狠狠狠狠99中文字幕| 久久青草综合色| 久久精品国产亚洲av香蕉五月| 国产麻豆成人av免费视频| 精品不卡国产一区二区三区| 国产伦人伦偷精品视频| 搡老熟女国产l中国老女人| 十八禁网站免费在线| 午夜老司机福利片| 久久久久国产精品人妻aⅴ院| 国产高清激情床上av| 久久久久国内视频| 欧美另类亚洲清纯唯美| 又黄又粗又硬又大视频| 亚洲欧美日韩另类电影网站| 9热在线视频观看99| 亚洲精品中文字幕在线视频| 精品久久久久久久久久免费视频| 久久久久国产精品人妻aⅴ院| 亚洲国产看品久久| 大型av网站在线播放| 久久久久亚洲av毛片大全| 久久精品亚洲熟妇少妇任你| 一a级毛片在线观看| cao死你这个sao货| 久久草成人影院| 欧美不卡视频在线免费观看 | 成人18禁在线播放| 黄色 视频免费看| 欧美日韩中文字幕国产精品一区二区三区 | 两人在一起打扑克的视频| 在线观看舔阴道视频| 日韩精品免费视频一区二区三区| 久久久久国内视频| 可以在线观看毛片的网站| 亚洲精品在线观看二区| 久久人妻熟女aⅴ| 亚洲第一电影网av| 夜夜看夜夜爽夜夜摸| 男女之事视频高清在线观看| 一本大道久久a久久精品| 久久香蕉国产精品| 亚洲 欧美一区二区三区| 黄色女人牲交| 成人18禁在线播放| 久久精品国产亚洲av香蕉五月| 国产成人欧美在线观看| 亚洲欧美日韩无卡精品| 性欧美人与动物交配| 日韩精品青青久久久久久| 好男人在线观看高清免费视频 | 免费av毛片视频| 成人亚洲精品av一区二区| 亚洲美女黄片视频| 三级毛片av免费| 免费在线观看影片大全网站| 一区在线观看完整版| 在线观看66精品国产| 大型av网站在线播放| 中文字幕精品免费在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 9191精品国产免费久久| 日韩视频一区二区在线观看| 日本在线视频免费播放| 国产精品98久久久久久宅男小说| 91老司机精品| 又紧又爽又黄一区二区| 国产欧美日韩一区二区三| 精品无人区乱码1区二区| 女性被躁到高潮视频| 亚洲精品国产精品久久久不卡| 精品欧美国产一区二区三| 午夜激情av网站| 91成年电影在线观看| 午夜成年电影在线免费观看| 在线观看www视频免费| 国产成人精品在线电影| 大香蕉久久成人网| 国产1区2区3区精品| 国产亚洲精品av在线| 麻豆久久精品国产亚洲av| 亚洲av日韩精品久久久久久密| 婷婷丁香在线五月| 国产一区二区三区视频了| 少妇裸体淫交视频免费看高清 | 一边摸一边做爽爽视频免费| 久久久久久大精品| 日本三级黄在线观看| 久久人人97超碰香蕉20202| 一个人观看的视频www高清免费观看 | 国产精品 国内视频| 免费久久久久久久精品成人欧美视频| 亚洲色图av天堂| 午夜福利免费观看在线| √禁漫天堂资源中文www| 久久久久亚洲av毛片大全| 麻豆av在线久日| 亚洲专区字幕在线| 老汉色av国产亚洲站长工具| 美女扒开内裤让男人捅视频| 一区二区三区高清视频在线| 欧美在线一区亚洲| 亚洲专区字幕在线| 国产成人精品久久二区二区91| 亚洲最大成人中文| 久久久久久久久久久久大奶| 在线观看免费视频日本深夜| 欧美成狂野欧美在线观看| 欧美日韩黄片免| 黄片大片在线免费观看| 999久久久精品免费观看国产| 国产精华一区二区三区| 亚洲成人久久性| 在线观看日韩欧美| 日韩精品青青久久久久久| 久久久精品国产亚洲av高清涩受| 国产野战对白在线观看| 91麻豆av在线| 欧美黑人精品巨大| 中文字幕最新亚洲高清| www.999成人在线观看| 怎么达到女性高潮| 成人亚洲精品一区在线观看| 好看av亚洲va欧美ⅴa在| 久久人妻福利社区极品人妻图片| 欧美 亚洲 国产 日韩一| 51午夜福利影视在线观看| 亚洲最大成人中文| 久久精品91无色码中文字幕| www.熟女人妻精品国产| 欧美日韩黄片免| 国产熟女午夜一区二区三区| 成人国产一区最新在线观看| 国产亚洲欧美98| 亚洲欧美日韩无卡精品| www.精华液| 免费av毛片视频| 最近最新中文字幕大全电影3 | 亚洲成人国产一区在线观看| 一级毛片女人18水好多| 久久精品人人爽人人爽视色| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品在线电影| 亚洲va日本ⅴa欧美va伊人久久| 亚洲七黄色美女视频| 亚洲色图av天堂| 视频在线观看一区二区三区| 身体一侧抽搐| 极品人妻少妇av视频| 波多野结衣av一区二区av| 性欧美人与动物交配| 国产野战对白在线观看| 可以在线观看的亚洲视频| av免费在线观看网站| 90打野战视频偷拍视频| 国产片内射在线| 在线观看www视频免费| 色播亚洲综合网| 色婷婷久久久亚洲欧美| 久久久精品欧美日韩精品| 亚洲欧美日韩高清在线视频| 国产精品久久久人人做人人爽| e午夜精品久久久久久久| 国产精品1区2区在线观看.| 精品乱码久久久久久99久播| 久久精品国产99精品国产亚洲性色 | 亚洲少妇的诱惑av| 国产亚洲欧美精品永久| 精品国产美女av久久久久小说| 9色porny在线观看| 久久久久久大精品| 欧美精品啪啪一区二区三区| 亚洲精华国产精华精| 激情视频va一区二区三区| 别揉我奶头~嗯~啊~动态视频| 波多野结衣高清无吗| 少妇的丰满在线观看| 久久精品aⅴ一区二区三区四区| 久久影院123| 啦啦啦 在线观看视频| 99久久99久久久精品蜜桃| 一夜夜www| 亚洲专区国产一区二区| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久久久亚洲av鲁大| 成人三级做爰电影| 日韩欧美三级三区| 一级毛片高清免费大全| 欧美成人性av电影在线观看| 国产91精品成人一区二区三区| www.精华液| 欧美黄色片欧美黄色片| 久久国产亚洲av麻豆专区| 免费看美女性在线毛片视频| 免费无遮挡裸体视频| 青草久久国产| 自线自在国产av| 国产精品秋霞免费鲁丝片| 美女免费视频网站| 在线播放国产精品三级| 国产黄a三级三级三级人| 国产亚洲精品一区二区www| 夜夜爽天天搞| 少妇粗大呻吟视频| 热99re8久久精品国产| 亚洲精品一区av在线观看| aaaaa片日本免费| 国产男靠女视频免费网站| 老司机福利观看| 日韩欧美三级三区| 亚洲国产日韩欧美精品在线观看 | 18禁黄网站禁片午夜丰满| 久久久国产欧美日韩av| 色av中文字幕| 黄片小视频在线播放| 真人做人爱边吃奶动态| 国产成人精品无人区| 国产精品亚洲一级av第二区| 啦啦啦免费观看视频1| 成年人黄色毛片网站| 午夜免费成人在线视频| 亚洲avbb在线观看| 岛国视频午夜一区免费看| 丝袜美足系列| av网站免费在线观看视频| www.熟女人妻精品国产| 涩涩av久久男人的天堂| 日本在线视频免费播放| 国产三级黄色录像| 欧美绝顶高潮抽搐喷水| 久久性视频一级片| 91字幕亚洲| 日韩高清综合在线| 亚洲欧美激情在线| 狠狠狠狠99中文字幕| 熟女少妇亚洲综合色aaa.| 亚洲全国av大片| 久久精品成人免费网站| 变态另类成人亚洲欧美熟女 | 怎么达到女性高潮| 啦啦啦 在线观看视频| 免费一级毛片在线播放高清视频 | 看片在线看免费视频| 岛国视频午夜一区免费看| 久久热在线av| 在线永久观看黄色视频| 成年女人毛片免费观看观看9| 久久国产乱子伦精品免费另类| 最新在线观看一区二区三区| 亚洲成人精品中文字幕电影| 国产单亲对白刺激| 国产xxxxx性猛交| 成熟少妇高潮喷水视频| 一a级毛片在线观看| 国产激情久久老熟女| 欧美在线黄色| 中出人妻视频一区二区| 美女午夜性视频免费| 免费久久久久久久精品成人欧美视频| 在线观看一区二区三区| 高清在线国产一区| 亚洲,欧美精品.| 黄色a级毛片大全视频| 99在线人妻在线中文字幕| 久久人人爽av亚洲精品天堂| 99精品欧美一区二区三区四区| 黑人欧美特级aaaaaa片| 十八禁网站免费在线| 日日夜夜操网爽| 久久久国产精品麻豆| 亚洲午夜理论影院| 天天添夜夜摸| 日韩国内少妇激情av| 69av精品久久久久久| 久热爱精品视频在线9| 桃红色精品国产亚洲av| 99久久久亚洲精品蜜臀av| 很黄的视频免费| 亚洲成人精品中文字幕电影| 亚洲avbb在线观看| 国产私拍福利视频在线观看| 国产av一区在线观看免费| 久久国产精品男人的天堂亚洲| 十八禁网站免费在线| 制服丝袜大香蕉在线| 又紧又爽又黄一区二区| 99精品久久久久人妻精品| 日本免费一区二区三区高清不卡 | 最新在线观看一区二区三区| 自线自在国产av| 日韩一卡2卡3卡4卡2021年| 好男人电影高清在线观看| 日本vs欧美在线观看视频| 巨乳人妻的诱惑在线观看| 成年女人毛片免费观看观看9| 精品久久久久久,| 精品久久久久久成人av| 久久天堂一区二区三区四区| 高潮久久久久久久久久久不卡| 琪琪午夜伦伦电影理论片6080| 国产成+人综合+亚洲专区| 亚洲精品美女久久久久99蜜臀| 免费一级毛片在线播放高清视频 | 啦啦啦韩国在线观看视频| 国产成年人精品一区二区| 国产在线精品亚洲第一网站| 国产精品二区激情视频| 看片在线看免费视频| 国产精品精品国产色婷婷| 亚洲 欧美一区二区三区| 久久香蕉国产精品| 午夜福利影视在线免费观看| 日韩欧美免费精品| 我的亚洲天堂| 99国产精品免费福利视频| 亚洲国产欧美网| 免费高清在线观看日韩| 欧美日韩精品网址| 午夜精品久久久久久毛片777| 亚洲精品一区av在线观看| av片东京热男人的天堂| 免费看a级黄色片| 成人三级做爰电影| 亚洲第一青青草原| 啦啦啦韩国在线观看视频| 午夜福利免费观看在线| 天天一区二区日本电影三级 | 女性被躁到高潮视频| 香蕉国产在线看| 精品卡一卡二卡四卡免费| √禁漫天堂资源中文www| 精品一品国产午夜福利视频| 黑人欧美特级aaaaaa片| 国产精品免费一区二区三区在线| 9色porny在线观看| 国内毛片毛片毛片毛片毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 一进一出抽搐动态| 精品国产一区二区三区四区第35| 精品第一国产精品| 国产av精品麻豆| 欧美不卡视频在线免费观看 | 亚洲成a人片在线一区二区| 国产又爽黄色视频| 国内精品久久久久精免费| 亚洲国产精品999在线| 中文字幕色久视频| 91麻豆精品激情在线观看国产| 国产成人免费无遮挡视频| 亚洲欧美一区二区三区黑人|