• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state

    2021-07-30 07:38:10ZhiYuanWang王志遠ZiJingZhang張子靜andYuanZhao趙遠
    Chinese Physics B 2021年7期
    關(guān)鍵詞:志遠

    Zhi-Yuan Wang(王志遠), Zi-Jing Zhang(張子靜), and Yuan Zhao(趙遠)

    Department of Physics,Harbin Institute of Technology,Harbin 150001,China

    Keywords: squeezed vacuum state,quantum metrology

    1. Introduction

    Making use of Doppler frequency shifts to measure speed is very important in many applications.[1-4]The measurement precision of Doppler frequency shifts determines the measurement precision of speed. At present, the methods to improve measurement precision are mainly in two aspects: the first is to use non-classical light sources to improve measurement precision,including the precision measurement of phase,[5-10]the measurement of small beam deflection,[11-13]the measurement of gravitational waves,[14-16]and the precise measurement of the magnetic field,[17]and the second is to use a suitable measurement scheme at the receiving end. For example, Fabreet al.[18]gave the standard quantum limit of beam splitting detection when measuring a small beam deflection.Trepet al.[19]used a four-quadrant detector combined with a squeezed light source to measure the transversal displacement beyond shot noise limit. Then they adopted a balanced homodyne detection scheme to reach the Cram′er-Rao bound of information parameters in optical image. Hsuet al.[20]and Delaubertet al.[21]found that balanced homodyne detection was the optimal detection scheme for transversal displacement and the tilt measurement,and proved their theoretical scheme in experiment.

    The precision measurement of Doppler frequency shifts also occupies an important position in quantum precision measurement. Vizaet al.[22]used coherent light source and adopted a weak measurement scheme to precisely measure Doppler frequency shifts. Pinelet al.[23]used a weak measurement scheme to accurately measure the frequency modulation range of continuous wave. However,the coherent state belongs to a classical light source. No matter how the detection scheme is optimized, there is an unbreakable quantum Cram′er-Rao bound for the measurement precision. The emergence of quantum state light sources and the maturity of non-linear technology make it possible to break through the Cram′er-Rao bound of coherent light measurement,and to further improve the measurement precision of Doppler frequency shifts.

    This paper incorporates a parametric amplification technique and squeezed vacuum state into the detection system of tiny Doppler frequency shifts,and proposes a theoretical measurement scheme of Doppler frequency shifts.For weak signal detection at long distance,the use of parametric amplification is of importance for improving the measurement precision.The scheme adopts the structure of Michelson interferometer to realize the homodyne detection of local light and signal light. Our research finds that when then-order (n >0) Hermite Gaussian beam is adopted as the signal light,the Doppler measurement precision can be improved,and the measurement precision of the system can exceed the Cram′er-Rao bound of coherent light through a parametric amplification process and squeezed vacuum state injected. Then we discuss factors influencing the measurement precision in our scheme.

    The rest of this paper is organized as follows. In Section 2,the parametric amplification and squeezed vacuum state are used to precisely measure Doppler frequency shifts. In Section 3, the factors influencing tiny Doppler measurement precision are analyzed. In Section 4, some conclusions are drawn from the present study, and the perspectives are also presented,finally.

    2. Using parametric amplification and squeezed vacuum state to precisely measure Doppler frequency shifts

    As shown in Fig.1,we use a beam splitter BS1(50:50)to divide the laser into local light and signal light. After the signal light passes through an acousto-optic modulator (AOM),its frequency isω2,and then the signal light passes through an atomic pool that performs a parametric amplification process to achieve stimulated Raman scattering (SRS). At this time,the signal light is the Stokes seed light in the SRS process. After exiting from the atomic pool, the intensity of signal light will increase.

    Fig. 1. Doppler precision measurement scheme of parametric amplification and squeezed vacuum state. The laser is divided into the local light and signal light by a beam splitter BS1. The signal light passes through an acousto-optic modulator (AOM) to obtain a frequency shift. The mirror M2 moves at a tiny constant speed,and the signal light is amplified by a parametric amplification process. After the squeezed vacuum state is injected,the signal light is incident on a dispersive prism. This process converts the tiny frequency shifts into the transversal displacements of the beam. The local light that is reflected by mirror M1 and the signal light separately pass through a mode converter,which can change their transversal modes. Finally,the transversal displacement d is obtained by balanced homodyne detection(BHD),and then the tiny Doppler frequency shift Δω can be obtained.

    Fig. 2. (a) Relationship between phase difference between signal light and local light and the measurement error of frequency shifts,with parameter amplification factor g=0.When the value of φ is 2kπ,the measurement error of the system has a minimum value,which can break through the Cram′er-Rao bound of coherent light measurement. (b) Relationship among signal light power, signal light order and Cram′er-Rao bound of coherent light ΔωCRB,showing that Cram′er-Rao bound of coherent light decreases as signal light power increases. At the same time, high-order signal light has higher measurement precision.

    3. Analysis of factors influencing tiny Doppler measurement precision

    In Section 2,we have obtained the value of the transversal displacementdfrom Eq.(4),and the value of the Doppler frequency shift Δω. In this section, we will prove that the precision of our scheme is better than the one with coherent light. We analyze the factors of influencing the Doppler measurement precision, such as the amplification factor and the squeezed factor. At the same time, the modes of local light and squeezed vacuum state can also influence the measurement precision of tiny Doppler frequency shift in our system.

    3.1. Influence of amplification factor and squeezed factor on measurement precision

    Fig.3. (a)Relationship among measurement precisions of tiny Doppler frequency shifts,squeezed factor r and parametric amplification factor g,n=2,showing that larger amplification factor and larger squeezed factor will reduce measurement error of the system. (b)Diagram of the measurement errorfor different values of amplification factor g and squeezed factor r, indicating that when we choose g=1 and r=0.5, for the signal light in the same order, the measurement precision can exceed the Cram′er-Rao bound of coherent light measurement. (c)Functional diagram of ΔωBHDmin and signal light power. As the signal light power increases, the measurement error of the system will decrease. (d) Relationship between the minimum measurable displacement d of and the SNR of the detection system. When SNR=1 dB (or SNR=0 dB), we can obtain the minimum detectable transversal displacement d of the system. So we can obtain d1min <d2min <d3min in Fig.3(d). It can be seen that the measurement error of the system will be lower than the Cram′er-Rao bound of coherent light when using parametric amplification and squeezed vacuum state.

    It can be seen from Eq.(6)that when the transversal mode order of the signal light is larger, the measurement error of tiny Doppler frequency shift is smaller. As the squeezed factorrand parametric amplification factorgin this system increase, the minimum measurable frequency shift of the system decreases (as shown in Fig. 3(a)). When both the parametric amplification factor and the squeezed factor are 0, the measurement precision of the system at this time cannot exceed the Cram′er-Rao bound of coherent light. After adopting the parametric amplification and squeezed vacuum state injection, the measurement precision of the system breaks through the Cram′er-Rao bound of coherent light (as shown in Fig.3(b)). It verifies the superiority of frequency shift measurement after the parametric amplification and the squeezed vacuum state have been combined. Figure 3(b)shows that for the signal light in Gaussian mode,when the amplification factorg=1 and the squeezed factorr=0.5, the measurement error of Doppler frequency shifts is 14.4%of the error determined by the Cram′er-Rao bound of coherent light. With the increase of the signal light order, the measurement error and ΔωCRBdecrease. It is shown in Fig.3(b)that the measurement errors of Doppler frequency shifts are 17.7%and 18.7%of the Cram′er-Rao bound of coherent light, whenn=1 and 2, respectively. At the same time, as the photon number of signal light increases,our solution can always break through the shot noise limit and the Cram′er-Rao bound of coherent light (as shown in Fig.3(c)).

    Figure 3(d) shows that the minimum measurable displacement of the system is determined when the SNR is equal to 1. It can be seen from Eq. (2) that the smallest measurable displacement determines the minimum measurable frequency shift of the system. When we adopt parametric amplification and squeezed vacuum state injection, the SNR of the system is improved, and the measurable displacement is reduced. At this time, the measurement precision of the system is improved. The relevant simulation parameters in this paper areλ=1064 nm,w0=53 μm,the relevant parameters of the dispersive prism in our system are as follows:A=1.60,B=7881 nm-2,C=1.7×108nm-4, base angleγ=15°,base side lengthL=50 cm,loss rateη=96%,and resolution bandwidth RBW=0.3 kHz.

    3.2. Influence of mode of local light on measurement precision

    According to Eq.(A5)in Appendix A,it can be seen that when the signal light inn-order mode is displaced,the components of the(n-1)-order mode and(n+1)-order mode will be excited. Therefore,for the local light the superposition mode of(n-1)-order and(n+1)-order is also adopted at this time.It will maximize the SNR and the measurement precision. In order to discuss the mode of local light that makes the detection system have the greatest precision, we set the mode of local light to beu2(x)=run-1(x)+teiφun+1(x),whererandtare the weight of the (n-1)-mode and (n+1)-mode in the local light,satisfyingr2+t2=1,andφis the phase difference between (n+1)-order mode and (n-1)-order mode. At this time, we can obtain the positive frequency expression of the local light as follows:

    Figure 4 shows the error function of signal light at different orders (n=0, 1, 2, and 3). In particular, whenn=0, a minimum error is obtained atr/t=0,i.e.,un+1(x)is the best mode of the local light at this time.

    Fig.4.Curves of minimum measurable frequency shift versus energy weight ratio r/t of(n-1)-order mode to(n+1)-order mode for different values of n. When r/t=+1,the SNR of the system reaches maximum,and the measurement error is the smallest at this time.

    3.3. Influence of modes of squeezed vacuum state on measurement precision

    In addition to the mode of the local light affecting the measurement precision of the system, the mode of the squeezed vacuum state affects the measurement precision of the system. After the local light adopts the best superposition mode,the squeezed vacuum state should also adopt the mode corresponding to the local light. At this time,the photon number difference operator is

    In the above formulas,r1andr2are the squeezed degrees of squeezed vacuum state in (n-1)-order mode and (n+1)-order mode, respectively. Therefore, if the measurement precision is required to be higher,the squeezed vacuum state must adopt the same superposition mode as the local light, andr1,r2>0 must be satisfied. The influences of squeezed degrees of(n-1)-order mode and(n+1)-order mode on the SNR and measurement precision of the system are shown in Fig. 5. It can be seen from Fig. 5(a) that when the squeezed vacuum state has squeezed degrees in both the(n-1)-order mode and(n+1)-order mode,the measurement precision of the system will reach a maximum value. In particular, when the signal light is in the 0-order mode,the measurement precision at this time loses its dependence on the squeezed factorr1. The reason is that the coefficient beforer1in Eq.(13)is 0,so the precision at this time will increase withr2increasing. Figure 5(b)shows that with the increase of the squeezed factorsr1,r2,and the mode order of signal light,the Doppler measurement precision increase. Simulation related parameters are signal light powerPs=0.08 W and loss rateη=96%.

    Fig.5. (a)Influences of mode of squeezed vacuum state on precision for different orders of signal light,showing that when the squeezed vacuum state in both(n-1)-order mode and(n+1)-order mode is injected,the measurement precision of our system reaches a maximum value. (b)Influence of squeezed factors r1 and r2 on measurement precision for mode order of signal light n=2,showing that with the increase of r1 and r2,the measurement error of the system decreases.

    4. Conclusions and perspectives

    Appendix A

    In Appendix A, the relevant theoretical formulas about balanced homodyne detection are given. According to the Eq. (B1) in Appendix B, we can give the expression of the positive frequency part of the local light and the signal light as follows:

    After the two input fields interfere with the 50:50 beam splitter, the positive frequency expressions of the two output fields are expressed as

    Then the difference between the photocurrents of the two detectors is

    Appendix B

    In this section, the quantum theory of electromagnetic field and related theoretical derivation of balanced homodyne detection are given. The electromagnetic field can be expanded by using a set of orthogonal mode basis vectors. The expression of the positive frequency part of the electromagnetic field is

    In the above formula,ωis the angular frequency of the electromagnetic field,cis the speed of light,Tis the detection integration time,ε0is the permittivity of free space, ?anis the annihilation operator of then-order mode,andun(x)is then-order Hermite-Gaussian mode.

    The annihilation operator ?a=〈?a〉+δ?ais linerarized,and only the average value of then-order Hermite-Gaussian mode is not 0. For the signal light with a transversal displacementd,the positive frequency part of the light field can be written as

    Appendix C

    In this section, the theoretical derivation of the quantum Cram′er-Rao bound of coherent light measurement is presented.[24]For the coherent light with a transversal displacementd, the photon number distribution at coordinatexobeys the Poisson distribution:

    Then the logarithm likelihood function at coordinatexcan be defined as

    Then we can obtain the Fisher information expression

    For a high-order Hermite-Gaussian beam with a transversal displacementd,the average number of photons at coordinatexsatisfies ˉn(x,d)=N2u2n(x,d), whereN2is the photon number of the signal beam, andun(x,d) is a amplitude expression of a TEMn0mode.

    From this we can obtain the Fisher information expression at coordinatexas follows:

    It is worth mentioning that the calculation of the quantum Cram′er-Rao bound does not depend on the specific measurement. It can be used as a standard to evaluate the quality of measurements. The closer to the quantum Cram′er-Rao bound the variance of the measurement is, the better the evaluation will be.

    猜你喜歡
    志遠
    Corrigendum to“Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world”
    Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world
    禹志遠作品
    大眾文藝(2022年24期)2023-01-09 09:27:16
    Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications
    Quantum mechanical solution to spectral lineshape in strongly-coupled atom-nanocavity system
    呼志遠美術(shù)作品
    我最喜愛的玩具①
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    香噴噴的年喲
    Functional Equivalence Theory and Its Limitations in Translation
    學(xué)周刊(2015年1期)2015-07-09 22:04:00
    99国产极品粉嫩在线观看| 欧美黑人巨大hd| 在线观看www视频免费| 色播在线永久视频| 青草久久国产| 国产主播在线观看一区二区| 久久久久久免费高清国产稀缺| 国产精品亚洲美女久久久| 国产高清激情床上av| 在线十欧美十亚洲十日本专区| 波多野结衣巨乳人妻| 欧美色欧美亚洲另类二区| 一夜夜www| 国产蜜桃级精品一区二区三区| 美国免费a级毛片| 一本精品99久久精品77| 精品午夜福利视频在线观看一区| 亚洲精品中文字幕一二三四区| 日本成人三级电影网站| 国产av一区在线观看免费| 亚洲欧美激情综合另类| 国产高清有码在线观看视频 | 天天添夜夜摸| 黄色女人牲交| 人人妻,人人澡人人爽秒播| 老熟妇乱子伦视频在线观看| 成人一区二区视频在线观看| 日韩有码中文字幕| 国产伦人伦偷精品视频| 天堂√8在线中文| 色老头精品视频在线观看| 久久草成人影院| 国产成人影院久久av| 国产一区二区激情短视频| 国产精品久久久av美女十八| 国产视频一区二区在线看| 一级毛片精品| 亚洲欧美精品综合久久99| 黄片大片在线免费观看| 亚洲无线在线观看| 久久狼人影院| 国产成人欧美| 欧美绝顶高潮抽搐喷水| 人人澡人人妻人| 国内精品久久久久久久电影| 亚洲国产欧美一区二区综合| 亚洲精品国产精品久久久不卡| 成年版毛片免费区| 怎么达到女性高潮| 国产av一区在线观看免费| 老司机福利观看| 岛国视频午夜一区免费看| 午夜免费成人在线视频| 精品福利观看| 国语自产精品视频在线第100页| 色老头精品视频在线观看| 国内精品久久久久精免费| 国产亚洲欧美98| 桃红色精品国产亚洲av| 久久九九热精品免费| 91国产中文字幕| 国产精品九九99| 波多野结衣高清无吗| 精品国内亚洲2022精品成人| 日本一区二区免费在线视频| 免费观看人在逋| 露出奶头的视频| 久久久久久久午夜电影| 亚洲精品美女久久av网站| 午夜福利18| 国内少妇人妻偷人精品xxx网站 | 国产蜜桃级精品一区二区三区| 精品国产一区二区三区四区第35| 国产高清激情床上av| 日韩欧美 国产精品| 曰老女人黄片| 动漫黄色视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久久中文| 热re99久久国产66热| 又黄又粗又硬又大视频| 亚洲专区字幕在线| 91麻豆av在线| 国产精品久久久久久人妻精品电影| 欧美激情高清一区二区三区| 日本免费a在线| 日韩高清综合在线| 国产精品二区激情视频| 亚洲国产精品999在线| 啦啦啦韩国在线观看视频| 一本久久中文字幕| 欧美黑人精品巨大| 美女国产高潮福利片在线看| 又大又爽又粗| 免费观看人在逋| 深夜精品福利| 亚洲第一av免费看| 亚洲 欧美 日韩 在线 免费| 国产1区2区3区精品| 成熟少妇高潮喷水视频| 日本a在线网址| 宅男免费午夜| 久久精品人妻少妇| 国产精品国产高清国产av| netflix在线观看网站| 日韩大尺度精品在线看网址| 婷婷亚洲欧美| 国产av在哪里看| 久久久久久久午夜电影| 精品日产1卡2卡| 国产精品一区二区精品视频观看| 在线天堂中文资源库| 中文字幕人妻熟女乱码| 亚洲专区字幕在线| 亚洲成人国产一区在线观看| 99精品久久久久人妻精品| 中文字幕高清在线视频| 色在线成人网| 十八禁人妻一区二区| 国产精品一区二区免费欧美| 国产精品影院久久| 久久中文字幕一级| 国产人伦9x9x在线观看| 久久久久久九九精品二区国产 | 禁无遮挡网站| 人人妻人人看人人澡| 国产亚洲精品第一综合不卡| 免费人成视频x8x8入口观看| 人人澡人人妻人| 老熟妇仑乱视频hdxx| 露出奶头的视频| 久久草成人影院| 国产精品免费视频内射| 国产亚洲欧美在线一区二区| e午夜精品久久久久久久| 国产熟女xx| 日韩 欧美 亚洲 中文字幕| 色精品久久人妻99蜜桃| 一级毛片精品| 一区福利在线观看| av福利片在线| 超碰成人久久| 天堂√8在线中文| 免费在线观看成人毛片| 一边摸一边做爽爽视频免费| 听说在线观看完整版免费高清| 18禁黄网站禁片午夜丰满| 国产亚洲精品av在线| 午夜福利在线在线| 久久久久国内视频| 亚洲av中文字字幕乱码综合 | 中文字幕最新亚洲高清| 黄色 视频免费看| 亚洲无线在线观看| 99热这里只有精品一区 | 国产av一区在线观看免费| 白带黄色成豆腐渣| 国产黄a三级三级三级人| 久久这里只有精品19| 欧美 亚洲 国产 日韩一| 日韩欧美一区二区三区在线观看| 精品一区二区三区四区五区乱码| av免费在线观看网站| 亚洲精品色激情综合| 女警被强在线播放| 不卡av一区二区三区| 丰满的人妻完整版| 亚洲人成伊人成综合网2020| 变态另类成人亚洲欧美熟女| 精品久久久久久久毛片微露脸| 99久久综合精品五月天人人| 12—13女人毛片做爰片一| 香蕉丝袜av| 亚洲国产精品久久男人天堂| 国产亚洲av高清不卡| 黄色视频不卡| 日韩欧美在线二视频| 精品一区二区三区视频在线观看免费| 国产黄色小视频在线观看| 正在播放国产对白刺激| 欧美日本亚洲视频在线播放| 国产av又大| 搡老熟女国产l中国老女人| 一区福利在线观看| 亚洲人成伊人成综合网2020| 成人特级黄色片久久久久久久| 成人亚洲精品一区在线观看| 最近最新中文字幕大全电影3 | 中国美女看黄片| 中文字幕久久专区| 一区二区日韩欧美中文字幕| x7x7x7水蜜桃| 亚洲 欧美 日韩 在线 免费| 90打野战视频偷拍视频| 国内久久婷婷六月综合欲色啪| 色哟哟哟哟哟哟| 极品教师在线免费播放| 中文字幕最新亚洲高清| av天堂在线播放| 亚洲精华国产精华精| 成人一区二区视频在线观看| 色综合亚洲欧美另类图片| 国产麻豆成人av免费视频| 色婷婷久久久亚洲欧美| 久久久久久久午夜电影| xxx96com| 国产又色又爽无遮挡免费看| 99久久国产精品久久久| 熟女电影av网| 两个人视频免费观看高清| 国内精品久久久久精免费| 亚洲国产精品sss在线观看| 男人的好看免费观看在线视频 | 国产亚洲精品第一综合不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 777久久人妻少妇嫩草av网站| 啦啦啦 在线观看视频| 精品久久蜜臀av无| 18禁观看日本| 男人的好看免费观看在线视频 | 精品久久久久久,| 嫁个100分男人电影在线观看| 人人妻人人看人人澡| 国产蜜桃级精品一区二区三区| bbb黄色大片| 日韩国内少妇激情av| 99精品欧美一区二区三区四区| 十分钟在线观看高清视频www| 国产亚洲av高清不卡| 欧美性猛交╳xxx乱大交人| 99在线视频只有这里精品首页| 一区二区三区国产精品乱码| 国产私拍福利视频在线观看| 成年免费大片在线观看| 亚洲 欧美 日韩 在线 免费| 啪啪无遮挡十八禁网站| 国产伦一二天堂av在线观看| 琪琪午夜伦伦电影理论片6080| √禁漫天堂资源中文www| 黄色 视频免费看| 国产成人精品久久二区二区91| 可以在线观看毛片的网站| av在线播放免费不卡| 欧美日韩福利视频一区二区| 在线观看66精品国产| 久久久精品欧美日韩精品| 制服人妻中文乱码| 亚洲精品久久成人aⅴ小说| 久久久精品国产亚洲av高清涩受| 久久婷婷成人综合色麻豆| 国产成人精品久久二区二区91| 免费一级毛片在线播放高清视频| 久久中文看片网| 欧美中文日本在线观看视频| 亚洲专区中文字幕在线| 91国产中文字幕| 欧美性长视频在线观看| 日韩视频一区二区在线观看| 脱女人内裤的视频| 精品国产美女av久久久久小说| 亚洲成a人片在线一区二区| 亚洲中文字幕日韩| 啪啪无遮挡十八禁网站| 欧美性长视频在线观看| 亚洲无线在线观看| 脱女人内裤的视频| 国产av一区二区精品久久| xxxwww97欧美| 精品电影一区二区在线| 欧美乱妇无乱码| 老熟妇乱子伦视频在线观看| 51午夜福利影视在线观看| 欧美久久黑人一区二区| 国产蜜桃级精品一区二区三区| 亚洲成a人片在线一区二区| 999精品在线视频| 一级片免费观看大全| netflix在线观看网站| 中文字幕人妻丝袜一区二区| 色尼玛亚洲综合影院| 午夜影院日韩av| 制服诱惑二区| 亚洲成人免费电影在线观看| 18美女黄网站色大片免费观看| 国产亚洲精品一区二区www| 1024香蕉在线观看| 高清在线国产一区| 久久精品aⅴ一区二区三区四区| 国内精品久久久久久久电影| 老熟妇仑乱视频hdxx| 国产精品久久视频播放| 岛国在线观看网站| 少妇裸体淫交视频免费看高清 | 麻豆一二三区av精品| 国产欧美日韩一区二区三| 亚洲人成伊人成综合网2020| 国语自产精品视频在线第100页| 国产高清激情床上av| 这个男人来自地球电影免费观看| 国产99久久九九免费精品| 日韩欧美国产一区二区入口| 日韩av在线大香蕉| 人妻丰满熟妇av一区二区三区| 精品电影一区二区在线| 亚洲一码二码三码区别大吗| 日本一本二区三区精品| 女人高潮潮喷娇喘18禁视频| 久久精品成人免费网站| 麻豆一二三区av精品| 午夜福利18| 一级片免费观看大全| 两个人看的免费小视频| 亚洲专区中文字幕在线| 亚洲黑人精品在线| 窝窝影院91人妻| 亚洲自拍偷在线| cao死你这个sao货| 一本精品99久久精品77| 免费看a级黄色片| 欧美在线一区亚洲| 免费一级毛片在线播放高清视频| av欧美777| 久久午夜亚洲精品久久| 老司机深夜福利视频在线观看| 少妇被粗大的猛进出69影院| 免费在线观看亚洲国产| 国产亚洲精品久久久久久毛片| 成人亚洲精品一区在线观看| 亚洲国产欧美网| 老汉色av国产亚洲站长工具| 免费在线观看日本一区| 免费高清视频大片| 久久青草综合色| 欧美激情 高清一区二区三区| 亚洲第一电影网av| 黄色女人牲交| 久久午夜综合久久蜜桃| 亚洲精品色激情综合| 天堂影院成人在线观看| 香蕉av资源在线| 国内久久婷婷六月综合欲色啪| av在线播放免费不卡| 91麻豆av在线| 亚洲片人在线观看| 国产成人啪精品午夜网站| 搡老岳熟女国产| 国产单亲对白刺激| 丁香欧美五月| 亚洲成a人片在线一区二区| 男人舔奶头视频| 国产精品美女特级片免费视频播放器 | 免费观看人在逋| 男女那种视频在线观看| 男女床上黄色一级片免费看| 脱女人内裤的视频| 国产黄a三级三级三级人| 免费观看精品视频网站| 日韩三级视频一区二区三区| 一级毛片精品| 琪琪午夜伦伦电影理论片6080| 窝窝影院91人妻| 亚洲精品粉嫩美女一区| 麻豆一二三区av精品| 美女高潮到喷水免费观看| 国产精品野战在线观看| 久久久精品欧美日韩精品| 99久久99久久久精品蜜桃| videosex国产| 黑人操中国人逼视频| 90打野战视频偷拍视频| 国产成+人综合+亚洲专区| 嫩草影院精品99| 亚洲国产日韩欧美精品在线观看 | 色婷婷久久久亚洲欧美| 亚洲国产欧美一区二区综合| 午夜两性在线视频| tocl精华| 亚洲专区中文字幕在线| 欧美色欧美亚洲另类二区| 国产精品影院久久| www国产在线视频色| 国产精品久久久av美女十八| 亚洲男人的天堂狠狠| 国产高清激情床上av| 欧美国产日韩亚洲一区| 日韩欧美三级三区| 成人欧美大片| 黄色视频,在线免费观看| 一本综合久久免费| 欧美在线一区亚洲| 午夜两性在线视频| 午夜精品久久久久久毛片777| 亚洲国产欧美日韩在线播放| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久亚洲av鲁大| 少妇的丰满在线观看| 国产一区在线观看成人免费| 黄色丝袜av网址大全| 免费电影在线观看免费观看| 欧美最黄视频在线播放免费| 成人亚洲精品一区在线观看| 老司机深夜福利视频在线观看| 最近最新中文字幕大全免费视频| 777久久人妻少妇嫩草av网站| 1024视频免费在线观看| 身体一侧抽搐| 美女大奶头视频| 成人亚洲精品av一区二区| 欧美黑人精品巨大| 日本一本二区三区精品| 久久久久久久午夜电影| 中文字幕精品免费在线观看视频| 99国产精品一区二区蜜桃av| 亚洲欧美精品综合一区二区三区| 桃红色精品国产亚洲av| 亚洲专区中文字幕在线| 国产成人欧美在线观看| 亚洲片人在线观看| 欧美国产日韩亚洲一区| 亚洲成av片中文字幕在线观看| 国产激情欧美一区二区| 欧美日韩亚洲综合一区二区三区_| 黄色毛片三级朝国网站| 天堂动漫精品| 脱女人内裤的视频| videosex国产| 亚洲最大成人中文| 丝袜人妻中文字幕| ponron亚洲| 大香蕉久久成人网| 国产黄片美女视频| 一边摸一边抽搐一进一小说| 亚洲精品国产区一区二| 俺也久久电影网| 欧美国产精品va在线观看不卡| 亚洲aⅴ乱码一区二区在线播放 | 88av欧美| 真人做人爱边吃奶动态| 精品免费久久久久久久清纯| 日本成人三级电影网站| 99精品久久久久人妻精品| 人人妻,人人澡人人爽秒播| 久久精品国产99精品国产亚洲性色| 在线观看一区二区三区| 久久午夜综合久久蜜桃| 国产一区二区激情短视频| 好看av亚洲va欧美ⅴa在| 久久久久久久精品吃奶| 国产午夜福利久久久久久| 国产精品美女特级片免费视频播放器 | 丁香六月欧美| 中文字幕另类日韩欧美亚洲嫩草| 老司机在亚洲福利影院| 两性夫妻黄色片| 伊人久久大香线蕉亚洲五| 三级毛片av免费| 亚洲国产毛片av蜜桃av| 精品久久久久久久久久久久久 | 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看完整版高清| 脱女人内裤的视频| 黄色毛片三级朝国网站| 天天躁狠狠躁夜夜躁狠狠躁| 高清在线国产一区| 哪里可以看免费的av片| 欧美乱码精品一区二区三区| 大型av网站在线播放| 亚洲三区欧美一区| 国产成人一区二区三区免费视频网站| 搡老岳熟女国产| 国产高清videossex| 亚洲精品美女久久av网站| 91九色精品人成在线观看| 成人午夜高清在线视频 | 国产精品美女特级片免费视频播放器 | 亚洲国产欧美网| 两个人视频免费观看高清| 久久香蕉精品热| 精品熟女少妇八av免费久了| 亚洲国产毛片av蜜桃av| 最近最新中文字幕大全电影3 | 欧美久久黑人一区二区| 露出奶头的视频| 亚洲国产精品合色在线| 欧美成狂野欧美在线观看| 99国产极品粉嫩在线观看| 欧美另类亚洲清纯唯美| 国产欧美日韩精品亚洲av| 可以在线观看毛片的网站| 久久久国产精品麻豆| 日韩国内少妇激情av| 国产成人影院久久av| 成人国产一区最新在线观看| 精品久久久久久成人av| 亚洲成av片中文字幕在线观看| 欧美日本视频| 欧美成人一区二区免费高清观看 | 一级a爱视频在线免费观看| 欧美成狂野欧美在线观看| 国产av在哪里看| 国产久久久一区二区三区| 久久久水蜜桃国产精品网| 国产精品亚洲美女久久久| 免费看十八禁软件| 亚洲av成人不卡在线观看播放网| 法律面前人人平等表现在哪些方面| 免费高清视频大片| 亚洲自偷自拍图片 自拍| 麻豆av在线久日| 日韩欧美 国产精品| 中出人妻视频一区二区| 黄片小视频在线播放| 精品卡一卡二卡四卡免费| 一级片免费观看大全| 老熟妇仑乱视频hdxx| 欧美成人免费av一区二区三区| 亚洲av美国av| 欧美乱色亚洲激情| 一本久久中文字幕| 欧美日本亚洲视频在线播放| 国产又黄又爽又无遮挡在线| 欧美性猛交╳xxx乱大交人| 日本成人三级电影网站| 免费在线观看亚洲国产| 欧美午夜高清在线| 久久精品国产综合久久久| 1024视频免费在线观看| 97碰自拍视频| 黄色丝袜av网址大全| 成人亚洲精品一区在线观看| 一二三四在线观看免费中文在| 日本一区二区免费在线视频| 久久精品aⅴ一区二区三区四区| 一级毛片精品| 夜夜爽天天搞| 欧美+亚洲+日韩+国产| 午夜成年电影在线免费观看| 欧美性猛交黑人性爽| 亚洲欧美精品综合一区二区三区| 午夜激情福利司机影院| 黄色女人牲交| 黑人操中国人逼视频| www.www免费av| 免费看a级黄色片| 91大片在线观看| 丝袜美腿诱惑在线| 欧美三级亚洲精品| 成人国语在线视频| 亚洲国产欧洲综合997久久, | 禁无遮挡网站| 国产成人系列免费观看| 淫妇啪啪啪对白视频| 亚洲av第一区精品v没综合| 老汉色∧v一级毛片| 老司机午夜福利在线观看视频| 亚洲熟妇中文字幕五十中出| 岛国在线观看网站| bbb黄色大片| 在线永久观看黄色视频| 在线观看舔阴道视频| 18禁裸乳无遮挡免费网站照片 | 99在线视频只有这里精品首页| 国产真人三级小视频在线观看| 成人一区二区视频在线观看| 免费搜索国产男女视频| 伊人久久大香线蕉亚洲五| 国产片内射在线| 亚洲人成77777在线视频| 午夜两性在线视频| 免费看日本二区| 男女床上黄色一级片免费看| 欧美精品啪啪一区二区三区| 可以在线观看的亚洲视频| 国产蜜桃级精品一区二区三区| 黑人操中国人逼视频| 国产精华一区二区三区| 久久国产精品男人的天堂亚洲| 国产aⅴ精品一区二区三区波| 国产亚洲精品久久久久5区| 欧美成人午夜精品| e午夜精品久久久久久久| 男女床上黄色一级片免费看| 在线十欧美十亚洲十日本专区| 一边摸一边抽搐一进一小说| 日韩欧美 国产精品| 狂野欧美激情性xxxx| 亚洲精品粉嫩美女一区| 麻豆成人av在线观看| 十分钟在线观看高清视频www| 亚洲av成人av| 黄色成人免费大全| 99久久精品国产亚洲精品| 亚洲国产欧洲综合997久久, | 麻豆成人午夜福利视频| 欧美黑人精品巨大| 美国免费a级毛片| 久久久国产成人免费| 少妇被粗大的猛进出69影院| 国产成+人综合+亚洲专区| 精品熟女少妇八av免费久了| 他把我摸到了高潮在线观看| 香蕉久久夜色| 欧美日韩一级在线毛片| 久久精品国产清高在天天线| 中文字幕精品免费在线观看视频| 操出白浆在线播放| 久久中文看片网| 日韩精品中文字幕看吧| 男人操女人黄网站| 国产av一区二区精品久久| 一本大道久久a久久精品| 操出白浆在线播放| 国产精品免费一区二区三区在线| 亚洲va日本ⅴa欧美va伊人久久| 国产国语露脸激情在线看|