• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structure, Electronic, and Mechanical Properties of Three Fully Hydrogenation h-BN:Theoretical Investigations?

    2019-11-07 02:59:04ChunYingPu濮春英LinXiaLv呂林霞DaWeiZhou周大偉JiaHuiYu于家輝andXinTang唐鑫
    Communications in Theoretical Physics 2019年11期
    關(guān)鍵詞:大偉

    Chun-Ying Pu (濮春英), Lin-Xia Lv (呂林霞), Da-Wei Zhou (周大偉), Jia-Hui Yu (于家輝), and Xin Tang (唐鑫)

    1College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China

    2School of Electronics and Electronical Engineering, Nanyang Institute of Technology, Nanyang 473061, China

    3College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China

    Abstract The structural, electronic, elastic, mechanical properties and stress-strain relationship of chair, boat, and stirrup conformers of fully hydrogenated h-BN (fh-BN) are investigated in this work using the Perdew-Burke-Ernzerhof(PBE) function in the frame of density functional theory.The achieved results for the lattice parameters and band gaps of three conformers in this research are in good accordance with other theoretical results.The band structures of three conformers show that the chair, boat, and stirrup are direct band gap with a band gaps of (3.12, 4.95, and 4.95 eV), respectively.To regulate the band structures of fh-BN, we employ a hybrid functional of Heyd-Scuseria-Ernzerhof (HSE06) calculations and the band gaps are 3.84 (chair), 6.12 (boat), and 6.18 eV (stirrup), respectively.The boat and stirrup fh-BN exhibits varying degrees of mechanical anisotropic properties with respect to the Young’s modulus and Poisson’s ratio, while the chair fh-BN exhibits the mechanical isotropic properties.Furthermore, tensile strains are applied in the armchair and zigzag directions related to tensile deformation of zigzag and armchair nanotubes,respectively.We find that the ultimate strains in zigzag and armchair deformations in stirrup conformer are 0.34 and 0.25, respectively, larger than the strains of zigzag (0.29) and armchair (0.18) deformations in h-BN although h-BN can surstain a surface tension up to the maximum stresses higher than those of three conformers of fh-BN.Furthermore, the band gap energies in three conformers can be modulated effectively with the biaxial tensile strain.

    Key words:first-principles calculations, mechanical properties, strain-stress

    1 Introduction

    Two-dimensional hexagonal boron nitride (2D h-BN)has an sp2-hybridized honeycomb structure similar with graphene.However, it is optical transparent and thus called as white graphene.2D h-BN has aroused extensive research interest due to its many intriguing properties such as high chemical stabilities, high thermal conductivity, and excellent mechanical properties.[1?2]Different from graphene with zero-gap,[3]2D h-BN opens a large gap due to the strongn ionicity of B-N bonds.To overcome limitation of the wide band gap and further modify the electronic properties of h-BN layers, a lot of works have been carried out.For example, the variation in band gaps of h-BN nanoribbons with their widths,[4]Stark effect and Hydrogen Passivations[5]have been reported.The functionalization of 2D h-BN using different materials including H,[6]C,[7]metals,[8?9]functional groups[10?12]and organic molecules[13?17]also have been investigated theoretically.Among those methods, hydrogenation is a simple and important approach to modify the physical and chemical properties of 2D materials.For example, hydrogenation leads to widening of the band gap of graphene,[18]while results in a reduction in the band gap of 2D BN sheet.[19]Furthermore,Hydrogenation can lead to hydrogen-induced ferromagnetism and even a phase transition of 2D materials.Hydrogenation also affects the mechanical properties of 2D materials,For example, the Young’s modulus of graphene is found to reduce from 354 N·m?1in graphene to 248 N·m?1in fully hydrogenated graphene.[20]In fact,the mechanical properties of a material is an important parameter for the application of the material, which also is an important way to tune the physical and chemistry properties of materials.[21?28]

    In this paper, we focus on the strain-dependent mechanical properties of fully hydrogenation h-BN (fh-BN).As we know, h-BN has excellent mechanical properties,which are stable under high temperature up to 1000 K.Full hydrogenation also may affect greatly the mechanical properties of 2D h-BN.Up to now,the fh-BN has been reported to have three possible conformers,which are chair,boat, and stirrup.The effect of full hydrogenation on the mechanical properties of h-BN remains unclear.In this paper, we calculate elastic constant, Young’s modulus, Poisson ratio, stress-strain curves, and the band gaps under biaxial tensile strain of three fh-BN, and further compared those properties with h-BN.

    2 Computational Methods

    Our first-principle calculations were carried out using Density Functional Theory (DFT) with a plane wave basis set as implemented in the CASTEP code.[29]The core electrons are treated with Vanderbilt ultrasoft pseudopotentials.[30]Exchange and correlation are treated within the generalized gradient approximation of Perdew,Burke, and Ernzerhof.[31]All calculations are done with a cutoff energy of 520 eV and the first Brillouin zone sampling grid with a resolution of 2π×0.03 is adopted.The optimization of atomic positionsand unit cell are stopped when the change in energy is less than 1×10?5eV/atom,the force on each atom is less than 0.01 eV/?A, the displacements are less than 1×10?3, and the tress on the cell is less than 0.02 GPa.To reduce the inter-layer interaction to model the single layer system, there was a 30thick vacuum region.

    3 Results and Discussion

    Figure 1 presents the top and perspective views of three configurations of fully hydrogenation h-BN.For chair structure, it has the hexagonal lattice with space groupP3m1(156) and optimized lattice parameters beinga=b=2.5910.Four inequivalent atomic positions are (2/3, 1/3, 0.53392), (1/3, 2/3, 0.44207), (1/3,2/3, 0.48201) and (2/3, 1/3, 0.49916) for H1, H2, B, and N, respectively.The boat and stirrup structures possess to the same orthorhombic lattice with space group ofPmn21(31),which have the optimized lattice constants ofa=2.5769,c=4.3424for boat and the lattice constants ofa=2.5932,c=3.8328for stirrup.Both structures also contain four inequivalent atomic positions that are H1(0.500 00,0.457 69,0.243 28),H2(0.500 00, 0.447 62,0.765 57), B (0.5000, 0.486 77, 0.690 71),N (0.500 00,0.490 12, 0.324 51) in boat conformer and H1 (0.500 00, 0.556 84, 0.142 85), H2 (1.000 00, 0.547 42, 0.679 96), B (0.500 00, 0.521 24, 0.297 92), N (1.000 00, 0.518 50, 0.532 19) in stirrup conformer, respectively.Three structure conformers of fh-BN have two different types of H bonds:the connecting boron bonded to hydrogen atoms (B-H) and the connecting nitrogen atoms bonded to hydrogen atoms (N-H).The bond lengths of N-H are 1.043, 1.035, and 1.036and that of B-H are 1.200, 1.220, and 1.224for chair, boat, and stirrup, respectively, which are close to the previous work of hydrogenated h-BN sheet (B-H bond 1.20and N-H bond length 1.03).[19]The B-N (1.568) bond length in the stirrup conformer is the shortest corresponding the B-N bond lengths in chair (1.582) and boat (1.575),respectively.The hydrogenated h-BN leads to strentching of the B-N bond compared with the bond of h-BN(1.44).[19]

    To evaluate the thermal stability of three conformers of fh-BN, we calculate their cohesive energy, which is defined asEcoh=(xEB+xEN+2xEH?xEBNHH)/4x,whereEB,EN, andEHare the total energies of a single B atom,a single N atom, a single H atom, and one unit cell of the fh-BN, respectively.In our calculations, the cohesive energy values of chair, boat, and stirrup are estimated to be about 5.79 eV/atom, 5.81 eV/atom, and 5.83 eV/atom,respectively.The high cohesive energies in three conformers of fh-BN implied strongly bonded network with high stability.By comparison, the stirrup conformer is found to have the highest stability as seen in Fig.1(c).

    Fig.1 (Color online)Schematic illustration of the top and perspective(bottom panels)views of two-dimensional fh-BN for (a)chair, (b) boat, and (c)stirrup.B, N, and H atoms are represented by pink, blue, and white spheres, respectively.Black dashed line indicates the unit cell of fh-BN and the red solid line represents its first brilloun zone.

    Fig.2 The energy band structures for the conformers of (a) h-BN, (b) chair, (c) boat, (d) stirrup fh-BN.

    Fig.3 The projected density of states (DOS) for (a) h-BN, (b) chair, (c) boat, (d) stirrup.

    The band structure and projected density of states of h-BN and fh-BN are shown in Figs.2 and 3.Our calculations on h-BN sheet show that it has an indirect band gap of 4.67 eV,which is in agreement with the LDA(4.5 eV)[32]and GGA (4.6 eV)[19,33]results reported.It is intersting to note that the boat and stirrup conformers have direct band gaps with the same values of 4.95 eV, larger than the value of h-BN.The character of band gap widen is in consistent with graphane.[18]However, chair fh-BN is estimated to have direct band gap of 3.12 eV, which is in consistent with the previous result (3.1 eV) calculated by Bhattacharyaet al.[19]Due to the density functional theory calculation always underestimates the energy gap,we employed a hybrid functional of Heyd-Scuseria-Ernzerhof (HSE06) calculations[34]to calculate the structural electronic structure more accurately.The calculated band gaps of h-BN and fh-BN are 5.69 (h-BN), 3.84(chair), 6.12 (boat), and 6.18 eV (stirrup), respectively.From the projected density of states, we can see that the mixed existence of the states of N_p, B_p, and H_s around the valence band maximum (VBM) in boat and stirrup conformers but only small contributions of H_s on VBM in chair structure.The formants of partial density of states in three atoms near the Fermi-level implies strong interactions between B-H, N-H, and B-N bond for boat and stirrup conformers of fh-BN, which lead to the results of the band gap widen.

    The mechanical properties are investigated by calculating its linear elastic constants.The calculated elastic constants of chair,boat,stirrup fh-BN together with h-BN are listed in Table 1.Due to the symmetry,the hexagonal structures haveC11=C22and have the additional relation thatC66=(1/2)(C11?C12).The four independent elastic constants (C11,C22,C12,C66) of h-BN monolayer are calculated to beC11=C22=289.4 Nm?1,C12=65.2 Nm?1, andC66=112.1 Nm?1, respectively, in consistent with previous calculated results.[35?36]The elastic constants in hexagonal chair fh-BN areC11=C22=185.7 Nm?1,C12=25.1 Nm?1, andC66=80.2 Nm?1, respectively.For orthogonal phase, there are also four independent elastic constantsC11,C22,C12, andC44.The elastic constants in stirrup fh-BN are calculated to beC11=217.2 Nm?1,C22=91.2 Nm?1,C12=15.3 Nm?1, andC44=58.3 Nm?1, respectively.For boat fh-BN,the elastic constants areC11=198.3 Nm?1,C22=169.2 Nm?1,C12=7.8 Nm?1,andC44=66.5 Nm?1,respectively.All the calculated elastic constants meet the necessary mechanical equilibrium conditions[37]for mechanical stability:C11C22?C212>0 andC11,C22,C44(C66)>0.

    Table 1 Calculated elastic constants Cij(Nm?1) of 2D h-BN and fh-BN (chair, boat, and stirrup).

    The in-plane Young’s modulus and Poisson ratio along an arbitrary directionθ(θis the angle relative to the positivexdirection in the sheet) can be expressed as[38]

    wherec=cosθands=sinθ.C44is changed to beC66for hexagonal structure above equations.The calculatedE(θ) andv(θ) of fh-BN are depicted in the polar diagrams in Fig.4, and that of h-BN is also calculated to be compared.The digrams show that h-BN and chair fh-BN display isotropic mechanical properties,since the shape of orientation-dependent of Young’s modulus and Possion’s ratio in-plane are all a standard circle.As for boat and stirrup fh-BN,Young’s modulus and Poisson ratio exhibit anisotropic due to theC11is not equal toC22, which affects its mechanical properties and electronic properties.The anisotropic characteristic originated from the arrangement of the boron, nitrogen, and hydrogen atoms.In addition, we noticed that the values of Young’s modulus and Poisson ratio along arbitrary direction are smaller than those for h-BN.The minimum Young’s modulus is 90.1 Nm?1for stirrup, which is larger than the value of silicene (62 Nm?1).[39]For boat fh-BN, the minumum Young’s modulus is 156.6 Nm?1, which can comparable with the value of MoS2(129 Nm?1).[40]

    To estimate the elastic limit of h-BN and fh-BN, we calculated the surface tension (force perunit length)[41]of h-BN and fh-BN using the method described in the references.[42?43]This method of calculating stress-strain relation was originally introduced for three-dimensional crystals.In a 2D layer compounds, the stress calculated from the Hellmann-Feynman theorem was modified to be the surface tension.[41]

    Firstly, the tensile strain is loaded in either the zigzag or armchair direction forh-BN and three conformers of fh-BN.As shown in Fig.5,the maximum stress for uniaxial tension in armchair direction is 84.7 GPa atε=0.18.h-BN is stronger in zigzag direction with maximum stress of 102.2 GPa atε=0.29.The calculated peak strength is consistent with the earlier DFT estimation,[35]validating our calculation reliable.For the tension-strain relations of three fh-BN conformers,it shows that fh-BN can sustain a surface tension up to (39.1, 34.6, and 65.8 GPa) for chair,boat, and stirrup conformers in the armchair directions,respectively.The corresponding tensile strain limits are 0.12, 0.13, and 0.25 along the armchair directions, respectively.The maximum stress in zigzag directions are(54.0,54.7, and 54.5 GPa) for chair, boat, and stirrup, respectively, corresponding the tensile strain at 0.24, 0.17, and 0.34.The predicted elastic strain limit suggests that the chair and boat fh-BN are highly flexible while the stirrup fh-BN can surstain tensile strain stronger than h-BN.One also notices that strain is more easily applied along the armchair direction than the zigzag direction for h-BN and fh-BN.

    Strain modulation has been commonly used in low-dimensional systems to tune the electronic structures.Then we analyze the biaxial strain effects on the electronic band structures of fh-BN.As shown in Fig.6,the direct band gap of three conformers was maintained.As seen in Fig.7, the band gap energiesEgin chair and boat conformers increase in the form of parobolic but increase linearly in stirrup by increasing the biaxial tensile strain from 0% to 12%.By fitting to the band gap energies using quadratic and linear functions, we obtainedy=0.111x2?0.003x+3.120,y=0.063x2?0.003x+4.955,andy=0.043x+4.951 for chair, boat, and stirrup conformers, respectively.

    Fig.4 (Color online) Polar diagram for (a) Young’s modulus E (N/m) and (b) Poisson’s ratio v of h-BN (red solid line), chair fh-BN (green solid line), boat fh-BN (bluesolid line), and stirrup fh-BN (pink solid line).

    Fig.5 (Color online)Induced tensile stress as a function of applied strain deformation along the zigzag (diamond shape)and armchair(triangle shape)directions for h-BN and fh-BN.

    4 Conclusion

    In summary, based on first-principles calculations, we investigated the electronic, mechanical properties,stressstrain relations, and biaxial strain effects on the energy band structures for three fully hydrogenated h-BN.The boat and stirrup conformers of fh-BN are electronically different from h-BN sheet, not only showing the band gap is widen to be about 4.95 eV, but also showing an anisotropic elastic mechanical behavior by the Polar diagram of Young’s modulus and Poisson’s ratio thus exhibiting great potential application in direction-dependent devices.Importantly, the predicted elastic strain limit suggests that the stirrup fh-BN can surstain tensile strain stronger than h-BN and the band gaps in three conformers can be modulated in the condition of biaxial tensile strain.Furthermore, the band gap energiesEgin chair and boat conformers increase in the form of parobolic but increase linearly in stirrup conformer.

    Fig.6 (Color online)Band structures of fh-BN with biaxial strains for(a)chair,(b)boat,and(c)stirrup.

    Fig.7 (Color online) Band gap energies as a function of biaxial-tensile strain of three conformers of fh-BN.

    猜你喜歡
    大偉
    張大偉作品
    Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
    Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform?
    Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide?
    為你守候
    歌海(2021年2期)2021-06-22 01:58:38
    神奇的邊界線:一不留神就出國
    智慧少年(2017年8期)2018-01-10 21:39:12
    Ultrafast interlayer photocarrier transfer in graphene–MoSe2 van der Waals heterostructure?
    第三十一個蛋
    貨比三家VS 嘗遍五味
    愛你(2015年8期)2015-11-15 03:31:13
    不會說話
    故事會(2015年2期)2015-02-26 01:10:34
    日韩欧美在线二视频| 在线观看一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲在线观看片| 天堂网av新在线| 色尼玛亚洲综合影院| 我的老师免费观看完整版| av天堂中文字幕网| 成人高潮视频无遮挡免费网站| 欧美日本视频| 中文字幕av在线有码专区| 亚洲,欧美,日韩| 九九在线视频观看精品| 亚洲精品亚洲一区二区| 日韩精品有码人妻一区| 国产精品三级大全| 十八禁网站免费在线| 国产精品自产拍在线观看55亚洲| 亚洲黑人精品在线| 熟女人妻精品中文字幕| 最新在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 熟女人妻精品中文字幕| 岛国在线免费视频观看| 亚洲国产精品合色在线| 99热这里只有是精品50| 老司机福利观看| 九九爱精品视频在线观看| 久久人妻av系列| 又黄又爽又刺激的免费视频.| 日韩大尺度精品在线看网址| 亚洲男人的天堂狠狠| 少妇人妻精品综合一区二区 | 国模一区二区三区四区视频| 免费观看的影片在线观看| 麻豆国产av国片精品| 日韩欧美国产在线观看| 999久久久精品免费观看国产| 99热网站在线观看| 国产精华一区二区三区| 国产 一区 欧美 日韩| 97碰自拍视频| 日韩欧美国产一区二区入口| 精品人妻视频免费看| 高清日韩中文字幕在线| 一级毛片久久久久久久久女| 男人的好看免费观看在线视频| 好男人在线观看高清免费视频| 国产精品伦人一区二区| 99热精品在线国产| 国产老妇女一区| 美女免费视频网站| 露出奶头的视频| 国内精品宾馆在线| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久久久免费视频| 免费无遮挡裸体视频| 一进一出抽搐gif免费好疼| 一a级毛片在线观看| 天堂动漫精品| 日本免费a在线| 国产精品一区二区三区四区久久| or卡值多少钱| 成人无遮挡网站| 1024手机看黄色片| 在线看三级毛片| 成年免费大片在线观看| 乱码一卡2卡4卡精品| 在线国产一区二区在线| 日韩在线高清观看一区二区三区 | 成人鲁丝片一二三区免费| 亚洲欧美激情综合另类| 欧美另类亚洲清纯唯美| 国产精品一区二区免费欧美| 午夜免费男女啪啪视频观看 | 少妇熟女aⅴ在线视频| 亚洲一区二区三区色噜噜| 国产一区二区三区视频了| 麻豆久久精品国产亚洲av| 此物有八面人人有两片| 亚洲成人中文字幕在线播放| 免费不卡的大黄色大毛片视频在线观看 | 性色avwww在线观看| 天堂动漫精品| 亚洲av免费在线观看| 嫩草影院精品99| 亚洲欧美清纯卡通| videossex国产| ponron亚洲| 神马国产精品三级电影在线观看| 国产高潮美女av| 变态另类成人亚洲欧美熟女| 99热这里只有是精品50| 免费看日本二区| 在线免费十八禁| 国产精品嫩草影院av在线观看 | 欧美3d第一页| 一本精品99久久精品77| 欧美精品啪啪一区二区三区| 神马国产精品三级电影在线观看| 色吧在线观看| 日本免费a在线| 18禁裸乳无遮挡免费网站照片| 人妻少妇偷人精品九色| 中文在线观看免费www的网站| 中文字幕av在线有码专区| 亚洲色图av天堂| 精品一区二区三区人妻视频| 五月伊人婷婷丁香| 九色成人免费人妻av| 欧美成人一区二区免费高清观看| 免费人成在线观看视频色| 国产乱人视频| 男女之事视频高清在线观看| 国产 一区 欧美 日韩| 成人毛片a级毛片在线播放| АⅤ资源中文在线天堂| 国产v大片淫在线免费观看| 国产黄片美女视频| 亚洲av免费在线观看| 久99久视频精品免费| 国产亚洲精品av在线| 精品人妻视频免费看| 欧美成人a在线观看| 国产又黄又爽又无遮挡在线| 日韩精品青青久久久久久| 国产黄色小视频在线观看| 成人亚洲精品av一区二区| 国产高清不卡午夜福利| 久久精品影院6| 简卡轻食公司| 人妻制服诱惑在线中文字幕| 波多野结衣高清作品| 51国产日韩欧美| 熟妇人妻久久中文字幕3abv| 久久婷婷人人爽人人干人人爱| 夜夜爽天天搞| 久久草成人影院| 少妇的逼水好多| 精品人妻偷拍中文字幕| 国产成年人精品一区二区| 成人无遮挡网站| 精品99又大又爽又粗少妇毛片 | 校园人妻丝袜中文字幕| 91精品国产九色| 又黄又爽又免费观看的视频| 久久精品人妻少妇| 少妇被粗大猛烈的视频| or卡值多少钱| 能在线免费观看的黄片| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩国产亚洲二区| 欧美日韩瑟瑟在线播放| 欧美3d第一页| 午夜视频国产福利| 国产精品一区二区三区四区免费观看 | 麻豆成人午夜福利视频| 国产精品久久久久久av不卡| 日日撸夜夜添| 免费高清视频大片| 久久精品国产清高在天天线| 在线观看av片永久免费下载| 国产高潮美女av| 99久久久亚洲精品蜜臀av| 欧美一区二区精品小视频在线| 亚洲无线观看免费| 欧美另类亚洲清纯唯美| 久久99热6这里只有精品| 久久6这里有精品| 亚洲av免费在线观看| 男女下面进入的视频免费午夜| 村上凉子中文字幕在线| 国产亚洲精品久久久久久毛片| 一级黄色大片毛片| 成人特级黄色片久久久久久久| 深夜a级毛片| 亚洲精品粉嫩美女一区| 欧美色视频一区免费| 精品99又大又爽又粗少妇毛片 | 少妇猛男粗大的猛烈进出视频 | 成人亚洲精品av一区二区| 动漫黄色视频在线观看| 日本免费a在线| 乱码一卡2卡4卡精品| 国产三级中文精品| 在线观看午夜福利视频| 亚洲精华国产精华液的使用体验 | 99国产极品粉嫩在线观看| 啪啪无遮挡十八禁网站| 看片在线看免费视频| 一级a爱片免费观看的视频| 欧美zozozo另类| 在线看三级毛片| aaaaa片日本免费| 久久久久久伊人网av| 亚洲美女视频黄频| 99久久中文字幕三级久久日本| АⅤ资源中文在线天堂| 日本爱情动作片www.在线观看 | 久久精品综合一区二区三区| 国产成人影院久久av| 99热这里只有精品一区| 国产亚洲精品av在线| 国产精品福利在线免费观看| 女生性感内裤真人,穿戴方法视频| 久久99热6这里只有精品| 国内精品一区二区在线观看| 有码 亚洲区| 欧美日韩亚洲国产一区二区在线观看| 麻豆成人av在线观看| 久久久久久伊人网av| 男女视频在线观看网站免费| 热99re8久久精品国产| 成人鲁丝片一二三区免费| 内射极品少妇av片p| eeuss影院久久| 99久久无色码亚洲精品果冻| 桃色一区二区三区在线观看| 美女被艹到高潮喷水动态| 九九在线视频观看精品| 日本 av在线| 一个人免费在线观看电影| 三级毛片av免费| 国产成人一区二区在线| 亚洲av中文av极速乱 | 久久久精品大字幕| 美女大奶头视频| 亚洲欧美清纯卡通| 伦理电影大哥的女人| 国产一区二区亚洲精品在线观看| 亚洲不卡免费看| 亚洲av中文av极速乱 | 欧美一区二区精品小视频在线| 一区二区三区四区激情视频 | 日本黄色片子视频| 三级国产精品欧美在线观看| 亚洲黑人精品在线| 18+在线观看网站| 日韩欧美一区二区三区在线观看| 精品无人区乱码1区二区| 性欧美人与动物交配| 国产亚洲精品综合一区在线观看| 国产欧美日韩精品亚洲av| 亚洲精品456在线播放app | 日本撒尿小便嘘嘘汇集6| 看十八女毛片水多多多| 国产精品久久久久久精品电影| 国产精品久久视频播放| 亚洲一区高清亚洲精品| 尾随美女入室| 午夜免费成人在线视频| av专区在线播放| 国产亚洲精品综合一区在线观看| 亚洲成人精品中文字幕电影| 亚洲av一区综合| 亚洲欧美精品综合久久99| 国产老妇女一区| 久久久久久久久久黄片| 毛片女人毛片| 黄色欧美视频在线观看| 在线观看免费视频日本深夜| 免费电影在线观看免费观看| 午夜免费激情av| 国产在线精品亚洲第一网站| 国产三级中文精品| 日韩欧美免费精品| 成年女人毛片免费观看观看9| 1024手机看黄色片| 午夜免费男女啪啪视频观看 | 国产老妇女一区| 久久久久久久久大av| 在线免费十八禁| 色综合婷婷激情| www日本黄色视频网| www.www免费av| 成人综合一区亚洲| 欧美区成人在线视频| 国产国拍精品亚洲av在线观看| 特大巨黑吊av在线直播| 精品不卡国产一区二区三区| 99在线人妻在线中文字幕| 国产视频内射| 看十八女毛片水多多多| 精品久久久久久久人妻蜜臀av| 精品人妻视频免费看| 久久亚洲真实| 免费在线观看日本一区| 日韩精品青青久久久久久| 91久久精品国产一区二区成人| 色尼玛亚洲综合影院| 成人av一区二区三区在线看| 午夜亚洲福利在线播放| 亚洲人成网站在线播| 午夜福利在线观看免费完整高清在 | 欧美激情在线99| 久久久精品大字幕| 国产精品综合久久久久久久免费| 99九九线精品视频在线观看视频| 婷婷丁香在线五月| 99久久九九国产精品国产免费| 97人妻精品一区二区三区麻豆| 一个人观看的视频www高清免费观看| 直男gayav资源| 国产精品久久久久久久电影| 亚洲18禁久久av| 人妻少妇偷人精品九色| 内射极品少妇av片p| 亚洲一级一片aⅴ在线观看| 如何舔出高潮| 五月伊人婷婷丁香| 桃色一区二区三区在线观看| 国产av在哪里看| 午夜福利视频1000在线观看| 国产激情偷乱视频一区二区| 欧美+亚洲+日韩+国产| 美女xxoo啪啪120秒动态图| 久久精品国产99精品国产亚洲性色| 尾随美女入室| 日本 av在线| 日韩高清综合在线| 午夜精品一区二区三区免费看| 国产爱豆传媒在线观看| 观看美女的网站| 久久久久精品国产欧美久久久| 91久久精品电影网| 深爱激情五月婷婷| 亚洲人成网站在线播| 国产亚洲精品久久久久久毛片| a级毛片a级免费在线| 久久精品国产亚洲网站| 国产av麻豆久久久久久久| 国产精品亚洲美女久久久| 午夜福利在线观看免费完整高清在 | 亚洲第一区二区三区不卡| 精品一区二区免费观看| 非洲黑人性xxxx精品又粗又长| 国产免费男女视频| 免费高清视频大片| 又爽又黄无遮挡网站| 波野结衣二区三区在线| 舔av片在线| 亚洲男人的天堂狠狠| 国产精品一区二区性色av| 99九九线精品视频在线观看视频| 九色国产91popny在线| 亚洲 国产 在线| 国产高清有码在线观看视频| 啦啦啦韩国在线观看视频| 村上凉子中文字幕在线| 精品欧美国产一区二区三| 亚洲,欧美,日韩| 国产精品免费一区二区三区在线| 欧美另类亚洲清纯唯美| 久久婷婷人人爽人人干人人爱| 蜜桃久久精品国产亚洲av| 少妇被粗大猛烈的视频| 别揉我奶头 嗯啊视频| 少妇被粗大猛烈的视频| 日本三级黄在线观看| 国产不卡一卡二| 亚洲人与动物交配视频| 国产爱豆传媒在线观看| 别揉我奶头~嗯~啊~动态视频| 国产高清不卡午夜福利| 毛片一级片免费看久久久久 | 我的女老师完整版在线观看| 久久精品国产鲁丝片午夜精品 | 亚洲精品乱码久久久v下载方式| 日本五十路高清| 99在线视频只有这里精品首页| 国产老妇女一区| 精品久久久久久久末码| 亚洲色图av天堂| 日日干狠狠操夜夜爽| 色5月婷婷丁香| 狂野欧美激情性xxxx在线观看| 99精品在免费线老司机午夜| 哪里可以看免费的av片| 国产av麻豆久久久久久久| 天堂√8在线中文| 久久久久久久久久久丰满 | 性插视频无遮挡在线免费观看| 看免费成人av毛片| 精品免费久久久久久久清纯| 亚洲va日本ⅴa欧美va伊人久久| 亚洲最大成人av| 中文字幕高清在线视频| 乱人视频在线观看| 中国美白少妇内射xxxbb| 九九热线精品视视频播放| 国产欧美日韩精品一区二区| 国产精品日韩av在线免费观看| 亚洲在线观看片| 国产高清视频在线观看网站| 大又大粗又爽又黄少妇毛片口| 国产欧美日韩精品亚洲av| av在线老鸭窝| 亚州av有码| 国产aⅴ精品一区二区三区波| 草草在线视频免费看| 国产久久久一区二区三区| 黄片wwwwww| 久久精品国产99精品国产亚洲性色| av在线观看视频网站免费| 在线看三级毛片| 久久欧美精品欧美久久欧美| 狂野欧美白嫩少妇大欣赏| 22中文网久久字幕| 热99re8久久精品国产| 波多野结衣高清无吗| 51国产日韩欧美| 97碰自拍视频| 欧美色欧美亚洲另类二区| 大型黄色视频在线免费观看| 少妇人妻精品综合一区二区 | 成年人黄色毛片网站| 九九在线视频观看精品| 99久久精品国产国产毛片| 成年版毛片免费区| 久久亚洲真实| 小说图片视频综合网站| 久久午夜亚洲精品久久| 99久久久亚洲精品蜜臀av| 久9热在线精品视频| 不卡一级毛片| 久99久视频精品免费| 99久久久亚洲精品蜜臀av| 可以在线观看的亚洲视频| 精品一区二区三区人妻视频| av女优亚洲男人天堂| 悠悠久久av| 别揉我奶头~嗯~啊~动态视频| 身体一侧抽搐| 成人性生交大片免费视频hd| 欧美+亚洲+日韩+国产| 可以在线观看毛片的网站| 18禁黄网站禁片免费观看直播| 国产亚洲精品久久久com| 国产精品亚洲美女久久久| 波多野结衣高清作品| 亚洲欧美精品综合久久99| 国产女主播在线喷水免费视频网站 | 国产精品人妻久久久久久| 99热只有精品国产| 久久精品国产鲁丝片午夜精品 | 三级毛片av免费| 日韩国内少妇激情av| 久久久久精品国产欧美久久久| 99热精品在线国产| 国产男靠女视频免费网站| 日韩一区二区视频免费看| 日韩一本色道免费dvd| 日日干狠狠操夜夜爽| 人人妻人人看人人澡| 97超视频在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 精品人妻1区二区| 99在线视频只有这里精品首页| 精品不卡国产一区二区三区| 两个人视频免费观看高清| 搡老熟女国产l中国老女人| 琪琪午夜伦伦电影理论片6080| 精品一区二区三区av网在线观看| 有码 亚洲区| 伦精品一区二区三区| 欧美在线一区亚洲| 亚洲中文字幕一区二区三区有码在线看| 国产成人aa在线观看| 人人妻人人澡欧美一区二区| 亚洲久久久久久中文字幕| 日韩欧美三级三区| 午夜免费男女啪啪视频观看 | 久久久久久大精品| 欧美一区二区亚洲| 亚洲一区高清亚洲精品| 亚洲 国产 在线| 毛片女人毛片| 欧美激情国产日韩精品一区| 国产精品三级大全| 啦啦啦韩国在线观看视频| 国产91精品成人一区二区三区| 国产精品久久电影中文字幕| www日本黄色视频网| 女人被狂操c到高潮| 人人妻,人人澡人人爽秒播| 国产人妻一区二区三区在| 国产极品精品免费视频能看的| 综合色av麻豆| 欧美最黄视频在线播放免费| 极品教师在线免费播放| 波野结衣二区三区在线| 亚洲成人久久爱视频| 国产午夜精品久久久久久一区二区三区 | 免费看美女性在线毛片视频| 一级黄色大片毛片| 三级毛片av免费| 欧美bdsm另类| 免费在线观看日本一区| a级毛片a级免费在线| 成人国产综合亚洲| 99在线视频只有这里精品首页| 色在线成人网| 久久人妻av系列| 国产一区二区三区在线臀色熟女| 国产乱人伦免费视频| 国产欧美日韩一区二区精品| 国产精品福利在线免费观看| 老师上课跳d突然被开到最大视频| 成人特级av手机在线观看| 国产精品一区二区三区四区免费观看 | 国产成人aa在线观看| 五月伊人婷婷丁香| 国内精品久久久久精免费| 免费观看人在逋| 亚洲成人免费电影在线观看| 99热这里只有是精品在线观看| 99久久精品热视频| 看黄色毛片网站| 丝袜美腿在线中文| 一进一出抽搐gif免费好疼| 91精品国产九色| 欧美黑人欧美精品刺激| 伦精品一区二区三区| a在线观看视频网站| 午夜福利在线在线| 午夜久久久久精精品| 噜噜噜噜噜久久久久久91| 免费av不卡在线播放| 亚洲成人久久爱视频| 日韩精品有码人妻一区| 成人欧美大片| 久久亚洲真实| 日韩精品青青久久久久久| 日本三级黄在线观看| 亚洲av日韩精品久久久久久密| 免费无遮挡裸体视频| 乱系列少妇在线播放| 国内揄拍国产精品人妻在线| 真人做人爱边吃奶动态| 免费人成视频x8x8入口观看| 国产高潮美女av| 一卡2卡三卡四卡精品乱码亚洲| 变态另类丝袜制服| 99久久九九国产精品国产免费| 成人性生交大片免费视频hd| 久久精品夜夜夜夜夜久久蜜豆| 日韩一区二区视频免费看| 99久久无色码亚洲精品果冻| 嫩草影视91久久| 国产av一区在线观看免费| 国产精品自产拍在线观看55亚洲| 在线观看66精品国产| 国内精品久久久久久久电影| 亚洲av.av天堂| 中文资源天堂在线| 给我免费播放毛片高清在线观看| 亚洲自拍偷在线| 99热这里只有是精品50| 日日干狠狠操夜夜爽| 国产精品综合久久久久久久免费| 欧洲精品卡2卡3卡4卡5卡区| 日韩强制内射视频| 中文亚洲av片在线观看爽| 性欧美人与动物交配| 欧美精品国产亚洲| 欧美精品啪啪一区二区三区| 乱系列少妇在线播放| 国产伦精品一区二区三区视频9| 午夜日韩欧美国产| 亚洲欧美清纯卡通| 一级a爱片免费观看的视频| 精品国内亚洲2022精品成人| 夜夜爽天天搞| 午夜免费成人在线视频| 亚洲人成网站高清观看| 岛国在线免费视频观看| 又粗又爽又猛毛片免费看| 天堂影院成人在线观看| 午夜亚洲福利在线播放| 国产高潮美女av| 直男gayav资源| 欧美一区二区亚洲| 亚洲成人久久性| 日本三级黄在线观看| 黄色视频,在线免费观看| 亚洲成人免费电影在线观看| 老司机午夜福利在线观看视频| 亚洲av免费在线观看| 又黄又爽又免费观看的视频| 亚洲人与动物交配视频| 免费电影在线观看免费观看| 亚洲va日本ⅴa欧美va伊人久久| 国产人妻一区二区三区在| 国产免费av片在线观看野外av| 韩国av一区二区三区四区| 在现免费观看毛片| 少妇丰满av| 国产亚洲精品av在线| 午夜精品在线福利| 日韩精品有码人妻一区| 韩国av一区二区三区四区| 精品欧美国产一区二区三| 国产主播在线观看一区二区| 国内精品久久久久精免费| 国产精品爽爽va在线观看网站| 欧美+日韩+精品| 啪啪无遮挡十八禁网站| 成年女人看的毛片在线观看| 国产亚洲欧美98| 少妇的逼好多水| 黄色日韩在线| 一级av片app| 欧美性猛交黑人性爽| 亚洲电影在线观看av| 蜜桃久久精品国产亚洲av|