• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetocaloric Effect in Anisotropic Mixed Spin–1 System:Pair Approximation Method

    2019-11-07 02:59:06AbderrazakBoubekriMoulayYoussefElHafidiandMohamedElHafidi
    Communications in Theoretical Physics 2019年11期

    Abderrazak Boubekri, Moulay Youssef El Hafidi, and Mohamed El Hafidi

    Laboratory of Condensed Matter Physics, Faculty of Sciences Ben M’sik, Hassan II University of Casablanca, BP 7955,Casablanca, Morocco

    Abstract We use the Pair Approximation method to analyze the magnetic and magnetocaloric behaviors of diluted mixed spin SA=1 and spin SB=1/2 with the anisotropic Heisenberg model, on a cubic lattice with coordination number z=6.Our system is described in presence of an external magnetic field;the phase diagram and thermodynamic properties related to the concentration of magnetic atom (A or B) and the single ion anisotropy are constructed and discussed.Special attention is paid to magnetocaloric properties provided by isothermal entropy change as well as the cooling capacity.These cooling power keys are plotted and discussed as a function of interaction anisotropy and magnetic component concentration of two sublattices ions A and B.Numerical results show a double peak structure in the entropy change curve and the inverse magnetocaloric effect related to the presence of the negative single-ion anisotropy.

    Key words:anisotropic Heisenberg model, dilution, entropy change, mixed spin system, inverse magnetocaloric effect, pair approximation, magnetic Grüneisen ratio

    1 Introduction

    In recent years,the study of the magnetic properties of two-sublattices of the mixed Ising systems has attracted considerable attention.Since such systems are important for technological applications, one can observe new behaviours and phenomena in these systems,which have less translational symmetry, such as the tricritical points and the re-entrant phenomenon, which are not observed in a single spin system.

    Most researches have been devoted to mixed spin systems consisting of spin-1/2 and spin-S (S>1/2).These investigations have been carried out by a variety of methods, namely mean-field approximation (MFA),[1]effective field theory (EFT),[2?3]Monte Carlo simulation,[4]Pair approximation[5?7]and exact method.[8?9]In their paper, Dakhamaet al.[10]have argued that the presence of second-nearest neighbour interactions is essential for the occurrence of a compensation point, for ferrimagnetic models.

    Besides, some authors have studied the diluted mixed Ising system with different kinds of dilution methods.In the work of Xinet al.,[11?12]the authors investigated the properties of mixed spin system by using the effective field theory (EFT), when the two sublatticesAandBare diluted independently with concentrationspAandpB,which means that the site occupied by magnetic atoms in sublatticeAhas a mean concentration 0< pA ≤1 whereas the site occupied by magnetic atoms in sublatticeBhas a concentration 0< pB ≤1.The authors found that the re-entrant phenomena and two compensation points appear for certain ranges ofD/J.The same kind of dilution method has been used by Bobaket al.[13]where the crystalline fiedD/Jzis ignored,while Benyoussefet al.[14]used another type of dilution approach.In their last model,the two sublattices are diluted with the same concentrationp.

    In the present paper, we consider a system of two sublatticesAandBrespectively, consisting of spin-1 and spin-1/2, independently diluted.Our investigation will be made for the system where the sublatticeAis diluted(0.25≤pA ≤1),while the sublatticeBis not diluted(thus,in this workpB=1),as it is displayed in(Fig.1).The spin-1 atoms are subjected to the local single-ion anisotropy.Thus, we examine the effects of single-ion anisotropy and dilution on the magnetic and magnetocaloric properties of the mixed diluted system, with Heisenberg ferromagnetic model, by the use of pair approximation method(PA).[15?16]

    We are here interested in studying the magnetocaloric effect with diluted mixed spin system.This effect attracted great interest in the last two decades through several published papers dealing with this topic both theoretically and experimentally.[17?23]This phenomenon has been observed in the first time by Warburg;[24]it was characterized by the heating or cooling of the magnetic materials when these are submitted to external magnetic field change.

    The use of such effect allows us to benefit from refrigeration.Actually, this new technology of magnetic cooling is considered as one of promising alternatives to substitute conventional systems using greenhouse gases, since it is energy-efficient and environmentally friendly.However,researchers, all over the world, are looking for magnetic materials whether they are alloys or composites displaying a giant magnetocaloric effect in order to improve the cooling capacity.Thus, up to now, the magneto-refrigeration technology remains experimental and has not yet reached the stage of wide commercialization.

    The magnetocaloric performance of materials can be assessed by the isothermal entropy change(?SM)and the refrigerant capacity(RC)as a function of the temperature and external magnetic field.These parameters can provide key information about the cooling efficiency of such materials.

    The use of mixed spin systems or magnetic phase mixtures such as composites provide a potentially interesting route to the engineering of materials that might produce improved and tuned magnetic properties to satisfy the specific requirements for the magnetorefrigeration applications,

    In such systems, it is well known, that the first order component gives a larger ?SMdue to the extra contribution from latent heat, while the second order component presents a large phase transition temperature.Thus, by combining a first-order and a second-order in a single material, one should go to broaden the transition temperature and thereafter expand the region MCE.

    In Mn3GaC for example, characterized by the first order transition, one can transform it to the second order type by introducing vacancies at carbon positions or substitution of Co at Mn sites, leading to a large region of the MCE.[25?26]

    The Mn3CuN shows a large magnetic entropy change(?SM=13.5 J/kgK) but small relative cooling power(RCP=38.9 J/kg) during the first order magnetic phase transition.The researchers found that substitution of Fe for Cu sites broadened the phase transition temperature(Mn3Cu1?xFexN[27]) and enhanced the relative cooling and reduced the effective hysteresis.

    Yet, in this work, we aim to investigate the magnetocaloric properties of the anisotropic Heisenberg model,focusing on the single-ion anisotropy and the dilution effects on the entropy change(?S)and the RCP in a mixed spin 1/2 and 1 ferromagnetic system.The rest of this paper is planned as follows:in Sec.2,we outline the theoretical approach and we establish the expressions of different useful physical variables.In Sec.3, we present our numerical results obtained for different values of the ionic anisotropy strength and magnetic ion concentrations.We end with a conclusion and some relevant reflections about the properties of the best magnetic materials that would give a significantly higher cooling capacity.

    2 Theoretical Approach

    We consider a two-sublattice mixed-spin Heisenberg system; the sites of sublatticeAare occupied by spinsSiA=1 and the sites of sublatticeBare occupied by spinsSjB=1/2; with a crystal field interactionDdefined on a three-dimensional lattice (z=6), under an additional external magnetic field and described by the following Hamiltonian:

    SiAandSiBrefer to spins 1 and 1/2 located on sublatticesAandB, respectively.h=?gμBHis the external magnetic field.JzandJxyare the exchange interaction between nearest neighbors forzspin direction and for (x,y)plane respectively.The interaction between ionsAandBis ferromagnetic (Jz,Jxy >0).ξAi(respectivelyξBj) is a random variable which takes the value 1 or 0, depending on whether the sitei(j) is occupied by a magnetic atom of typeA(B) with a probabilitypA(orpB) or not (with a probability 1 –pA(or 1 –pB)).Here, the probabilitiespAandpBcan be changed independently.

    2.1 Pair Approximation Approach

    In the PA formalism, we start by obtaining the single spin and pair HamiltoniansHijandHi, which can be written for our particular system as follows:[15?16]

    For the “Pair site Hamiltonian”

    for the “Single site Hamiltonian” corresponding to the sublatticeAorBrespectively.Herezis the coordination number andλA,λBare variational parameters related to molecular fields acting on the two different spins, which have obvious physical meaning.[15]

    The pair Hamiltonian(2)can be presented in the form of 6×6 matrices, being the sum of outer products, and then one has to solve the eigenvalues equation:

    Thus,the calculated eigenvalues are formulated as follows:

    Fig.1 (Color online)A schematic view of the magnetic mixed spin system in a cubic lattice,consisting of two sublattices A and B with spin SA=1 and SB=1/2.The exchange interactions for z spin direction and (x,y) plane are respectively Jz (green dashed line) and Jxy (brown dashed line).The dilution is restricted to SA sites.

    where we have put ΛA=(z ?1)pBλB+hand ΛB=(z ?1)pAλA+h.

    The total free energy is stated by the following equation:[5]

    In case of randomly diluted system, the Gibbs energy should be averaged over configurations with this new form:

    whereGA,GBandGABare respectively the single site energy for sublatticesAandBand the pair site energy:

    In order to formulate the problem on Pair Approximation, the partition function is calculated.Its expression reads:[28]

    where ΛA=(z ?1)pBλB+hand ΛB=(z ?1)pAλA+h.We can get all the thermodynamic properties such as magnetization, entropy, magnetic specific heat from the total free energy.

    We must also determine the values of the parameterλμ(μ=AorB)from the equilibrum condition, in which the free energy reaches its minimum in the equilibrum state:

    Thus, one can obtain the total magnetization per site of the system by magnetic field derivative of energy:

    leading to the formula:

    With the average sublattice magnetization per site are given by:

    whereanddenote the thermal and random averages,mAandmBare respectively the magnetization per site of the sublatticeAandB.

    In a similar way, we can find the entropy per siteSfrom the equation

    After some mathematical manipulations, the entropy magnetic is given explicitly by:

    where

    where

    In order to describe the magnetocaloric properties, we have to calculate the magnetic entropy change,during the isothermal demagnetization process between the external fieldh >0 andh=0, which is given by the Maxwell relation:

    Let note that the positive value of??SM(T) corresponds to direct MCE, whereas the opposite case of heating (??SM(T)<0) is called the inverse MCE and the measure of performance of a substance can be calculated through this formula of refrigeration capacity:

    Another important magnetocaloric parameter is the Gruneisen ratio, which is defined as temperature change versus magnetic field under adiabatic process:[29]

    The magnetic Gruneisen ratio can be conquered experimentally, and it usually exhibits a divergence toward critical temperature in magnetic materials.[30?32]

    3 Numerical Results and Discussion

    3.1 Magnetic Properties

    At the beginning,we present the numerical results concerning the phase diagram of a mixed diluted binary system of spin-1 and 1/2, with Heisenberg anisotropic model on the (pA,kBTc/Jz) planes for given values ofD/Jz.

    Figure 2 shows the variation of critical temperature in mixed system according to the concentrationpAof magnetic component in sublatticeAfor selected values of the single-ion anisotropy strength, while we keep the concentrationspBof magnetic component in sublatticeBto be constant and external magnetic field in fixed values(pB=1 andh/Jz=0.0).As seen from this figure, the critical temperature changes in a continuous and increasing way from 0 to 1 value of concentrationpA.Each line corresponds to some values ofD/Jz=1.0; 0.0;?1.0;?1.5;?2.0;?2.2;?2.6.In the same time,the temperature transition points shift to lower values when the values ofD/Jzdecrease.This can be explained by the suppression of fluctuations induced by a strong crystal field anisotropy.It is worth to note that the MFA prediction significantly overestimatesTc, while our PA results, are much closer to the above mentioned accurate estimations of the critical temperature.

    Fig.2 (Color online) The phase diagrams of the system in (pA, kBTc/Jz) plane for the mixed spin-1 and spin 1/2 on anisotropic Heisenberg model, when the sublattice B is non-diluted (pB=1), with selected values of single anisotropy constant.

    Another way to highlight the phase changes and the critical temperature through the thermal variationeof the Gruneisen ratio Γhas shown in Figs.3(a) and 3(b) where Γhexhibits a peak or diverges atTc.It should be well to note that the values ofTcdetermined from T-Γhcurves are close to those found by the direct calculation (Fig.2).

    It is seen also that the effect of dilution on Γhratio occurs through some peaks, which are shifted toward lower temperature while the concentration of magnetic atoms decreases, in the same time these observed peaks around transition point are shifted and broadened toward higher temperature with increasing the external magnetic field.

    In Fig.4,we have outlined the concentration influence of the magnetic entities, of respective spins 1/2 and 1, on the spontaneous magnetization (h=0) forJxy/Jz=1 andD=0,ie isotropic Heisenberg system.We note that except the magnitude of the magnetization, its general behavior is preserved even if alternating the concentrationspAandpB.

    In Fig.5, we have reported the thermal variation of the spontaneous magnetizations (per spin) corresponding of the sublatticeAandBas well as the global magnetization of the system in the absence of dilution (pA=pB=1) in two significant cases:in the absence of crystalline anisotropy (D/Jz=0) and the case of strong negative anisotropy (D/Jz=?2.55).We note that when the anisotropy is negative and important, the magnetization of the sublatticeAwith spin 1 is strongly influenced by this anisotropy, which favors spin confinement in the(x,y) plane and thus leads to a remarkable reduction of the critical temperature.

    Fig.3 (Color online) The normalized Gruneisen ratio as a function of normalized temperature for fixed external magnetic field (h/Jz=0.03) for various concentration magnetic component in sublattice A (a) and for various values of external magnetic field (b).

    Fig.4 (Color online) Thermal dependence of the total magnetization for selected values of concentrations pA and pB of the two magnetic species.

    Fig.5 (Color online) Thermal dependencies of the sublattice magnetizations mA, mB and total magnetization per site mT for the mixed spin-1 and spin-1/2, for D/Jz=–2.55 and 0.0.

    In Fig.6, we conjointly analyze the effect of the concentration of spin-1 speciesAand the effect of single-ion anisotropy on the spontaneous magnetization of the system.We note that the critical temperature as well as the spontaneous magnetization at 0 K increase with the concentrationpA(a), whereas the ionic anisotropy strength impact seriously both the M (0) magnitude, theTcvalue as well as the shape of spontaneous magnetization curves(b), in particular, for negative anisotropy cases.Thus,the thermal variation of the magnetization goes from a behavior of type-Q forD >0 to type-M (D/Jz=–2.6)or type-P (D/Jz=–2.8) in the Néel Classification.[33]In fact, whenDis negative and sufficiently strong, the spins of the sublatticeAare substantially polarized in opposite directions to those of the sublatticeB,and since the spinsSAandSBare quite different, this produces a ferrimagnetic regime.It should be emphasized that our findings are similar to results for the mixed spin-1 and spin-1/2 ferrimagnet on the simple cubic lattice obtained by the earlier mean-field theory,[34]as well as those obtained by the cluster variation method[35]or those established by Monte Carlo simulation.[36]

    Fig.6 (Color online)Thermal dependencies of the total magnetization per site for different values of single-ion anisotropy D/Jz (a) and a range of site concentration 0.25≤pA ≤1.0 (b).

    3.2 Magnetocaloric Responses

    In the current subsection, we aim to elucidate the influence of various considered intrinsic parameters on the magnetocaloric responses of the system.

    Figure 7 depicts the computed isothermal magnetic entropy change (forJz/Jxy=1,D/Jz=0) versus temperature upon different external magnetic fields forpA=0.25 (a) andpA=1.0 (b).It should be stressed that for higher concentrations of spin entitiesSA,??Sbecomes larger and undergoes a higher maximum (see Fig.8), which would lead to noticeable improvements in the magnetocaloric effects of the system.

    The influence of single-ion anisotropyDon the entropy change illustrated in Figs.9(a) and 9(b).For the positive values ofDenhancing ferromagnetic behaviors,??Senlarges hugely withD, whereas for the negative values ofDwe observe a doubling of the??Smaximum and its widening (see for example the curve labeledD/Jz=?2.2 in Fig.9(a).A similar effect has been observed in composites,[37]magnetic multilayer with antiferromagnetic interlayers[38]and other materials.[39]Finally note that for higher negativeD, the system becomes ferrimagnetic (Fig.9(b)).

    To quantify the performance of the system in refrigeration (Ericsson) cycle,[40]we report on Fig.10 the RC behavior, which appears to change almost linearly with the intensity of external field for different concentrations ofSA(a) and for three extreme cases (b).It is clear from the two sets of curves that the RC improvement requires a high spin material with strong ferromagnetic couplings.

    Fig.7 (Color online) Temperature dependence of the entropy change in mixed system upon a magnetic field change when the concentration of magnetic atoms is pA=0.25 (a) or pA=1.0 (b), when the sublattice B is not diluted (pB=1).

    Fig.8 (Color online) Temperature dependence of the entropy change in mixed system upon a magnetic field change (?h/Jz=2) for different values of pA.

    Fig.9 (Color online) Thermal variation of the entropy change in mixed binary system upon a magnetic field change (?h/Jz=2) for different values the singleion anisotropy constant D.

    Fig.10 (Color online) Field dependence of RC parameter in mixed binary system upon a magnetic field change for different values the pA concentration (a) and for three cases of spin magnitude (b).

    4 Conclusion

    In this paper, we have investigated the effects of dilution, exchange coupling and single-ion anisotropy on the phase diagram and the MCE of the diluted mixed spin-1 and spin-1/2 anisotropic quantum Heisenberg model on simple cubic lattice.We have established that the spin strength, the concentration of the magnetic species and the ionic anisotropy are determining factors for the magnetic behavior of the system and govern its magnetocaloric properties.

    This study would guide experimental researchers to conceive suitable materials with improved performance for magnetic refrigeration.

    欧美绝顶高潮抽搐喷水| 老司机在亚洲福利影院| 黄色毛片三级朝国网站| 性欧美人与动物交配| 国产麻豆成人av免费视频| tocl精华| a级毛片在线看网站| 母亲3免费完整高清在线观看| 两个人视频免费观看高清| 亚洲精品美女久久av网站| 国产一区二区激情短视频| 精品乱码久久久久久99久播| 男女午夜视频在线观看| 最新在线观看一区二区三区| 欧美又色又爽又黄视频| 色av中文字幕| 高清毛片免费观看视频网站| 中文字幕人成人乱码亚洲影| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区视频在线观看免费| 国产亚洲精品av在线| 国产在线精品亚洲第一网站| 这个男人来自地球电影免费观看| 妹子高潮喷水视频| 又黄又爽又免费观看的视频| 怎么达到女性高潮| 国产欧美日韩一区二区精品| 国产亚洲欧美在线一区二区| 他把我摸到了高潮在线观看| 精品电影一区二区在线| 欧美日韩精品网址| 婷婷亚洲欧美| 亚洲欧美日韩东京热| 在线播放国产精品三级| 99久久国产精品久久久| 色精品久久人妻99蜜桃| 国产男靠女视频免费网站| 日本熟妇午夜| 国产99久久九九免费精品| 99久久国产精品久久久| 午夜视频精品福利| 久久久久国产精品人妻aⅴ院| 一进一出抽搐gif免费好疼| 成年免费大片在线观看| videosex国产| 伊人久久大香线蕉亚洲五| 看免费av毛片| 香蕉国产在线看| 色综合站精品国产| avwww免费| 国产精品一区二区精品视频观看| 蜜桃久久精品国产亚洲av| 日韩有码中文字幕| 国产精品 国内视频| 在线永久观看黄色视频| av中文乱码字幕在线| 国产99白浆流出| 成人欧美大片| 欧美色欧美亚洲另类二区| 我要搜黄色片| АⅤ资源中文在线天堂| 一级黄色大片毛片| 久久人妻av系列| 后天国语完整版免费观看| 88av欧美| 欧美精品亚洲一区二区| 日韩欧美在线二视频| 日韩大码丰满熟妇| videosex国产| 欧美在线黄色| 黑人巨大精品欧美一区二区mp4| 成年人黄色毛片网站| 一夜夜www| 我的老师免费观看完整版| 熟女少妇亚洲综合色aaa.| 久久精品国产亚洲av高清一级| 亚洲精品中文字幕在线视频| 欧美成人免费av一区二区三区| 欧美性猛交╳xxx乱大交人| 在线免费观看的www视频| 国产高清激情床上av| 欧美av亚洲av综合av国产av| 国产一区二区三区视频了| 一边摸一边做爽爽视频免费| 熟妇人妻久久中文字幕3abv| 窝窝影院91人妻| 两人在一起打扑克的视频| 欧美乱妇无乱码| 男女视频在线观看网站免费 | www.精华液| 精品熟女少妇八av免费久了| 国产黄色小视频在线观看| 久久人人精品亚洲av| 国产一级毛片七仙女欲春2| 久久久久久久久免费视频了| 亚洲国产看品久久| 亚洲欧美精品综合一区二区三区| 天天一区二区日本电影三级| 中文字幕av在线有码专区| 一级作爱视频免费观看| 日韩欧美免费精品| 成人三级黄色视频| 少妇粗大呻吟视频| 丁香六月欧美| 九色国产91popny在线| 两个人看的免费小视频| 日日摸夜夜添夜夜添小说| 欧美高清成人免费视频www| 欧美性长视频在线观看| 少妇熟女aⅴ在线视频| 成人高潮视频无遮挡免费网站| 国产乱人伦免费视频| 国产精品99久久99久久久不卡| 精品不卡国产一区二区三区| 婷婷精品国产亚洲av| 超碰成人久久| 好看av亚洲va欧美ⅴa在| 真人做人爱边吃奶动态| 国产日本99.免费观看| 午夜福利在线观看吧| av免费在线观看网站| 欧美日韩乱码在线| 欧美一区二区国产精品久久精品 | 亚洲黑人精品在线| 久久精品影院6| 人人妻,人人澡人人爽秒播| 国产精品亚洲一级av第二区| 久久香蕉精品热| 成人国产综合亚洲| 伦理电影免费视频| 可以在线观看的亚洲视频| 国产一区二区三区视频了| 欧美精品亚洲一区二区| 精品一区二区三区av网在线观看| 亚洲第一欧美日韩一区二区三区| 精品免费久久久久久久清纯| 一区福利在线观看| 中文字幕高清在线视频| 日日夜夜操网爽| 中文字幕高清在线视频| 久久精品亚洲精品国产色婷小说| 亚洲国产欧美网| 免费一级毛片在线播放高清视频| 成人欧美大片| 人妻丰满熟妇av一区二区三区| 天堂影院成人在线观看| 精品第一国产精品| xxx96com| 国内久久婷婷六月综合欲色啪| 久久久久精品国产欧美久久久| 成人精品一区二区免费| 999久久久国产精品视频| 舔av片在线| 亚洲第一欧美日韩一区二区三区| 在线观看66精品国产| 亚洲18禁久久av| 狂野欧美白嫩少妇大欣赏| 搡老熟女国产l中国老女人| 日韩精品免费视频一区二区三区| 毛片女人毛片| 国产成人精品久久二区二区免费| 国产精品久久久av美女十八| 亚洲精华国产精华精| 最近最新中文字幕大全电影3| 亚洲成人久久性| 在线观看美女被高潮喷水网站 | 一本大道久久a久久精品| 一区福利在线观看| 青草久久国产| 亚洲第一电影网av| 色老头精品视频在线观看| 日韩国内少妇激情av| 亚洲片人在线观看| 亚洲精品粉嫩美女一区| 91麻豆精品激情在线观看国产| 中文字幕人妻丝袜一区二区| АⅤ资源中文在线天堂| 丝袜人妻中文字幕| 蜜桃久久精品国产亚洲av| www日本在线高清视频| 久久久久亚洲av毛片大全| 国产亚洲欧美在线一区二区| 午夜精品久久久久久毛片777| 成人18禁高潮啪啪吃奶动态图| 日本成人三级电影网站| 午夜免费观看网址| 亚洲国产欧美一区二区综合| 国产激情久久老熟女| 久久久久久久久中文| 999久久久国产精品视频| 国产黄a三级三级三级人| 日本一二三区视频观看| 级片在线观看| 亚洲熟女毛片儿| 国产精品,欧美在线| 色精品久久人妻99蜜桃| 丰满人妻熟妇乱又伦精品不卡| 亚洲av成人精品一区久久| 国产乱人伦免费视频| 久久精品夜夜夜夜夜久久蜜豆 | 午夜老司机福利片| 国产单亲对白刺激| 一区二区三区国产精品乱码| 黄色 视频免费看| 亚洲成人国产一区在线观看| 中文字幕熟女人妻在线| 99在线视频只有这里精品首页| 久久国产精品人妻蜜桃| 熟女电影av网| 国产精品久久久人人做人人爽| 亚洲欧美一区二区三区黑人| 日韩高清综合在线| www.精华液| 黄色成人免费大全| 国产主播在线观看一区二区| 欧美成人一区二区免费高清观看 | 欧美成人一区二区免费高清观看 | bbb黄色大片| 搞女人的毛片| 亚洲成人国产一区在线观看| 亚洲黑人精品在线| 亚洲精品国产一区二区精华液| 亚洲国产精品合色在线| 欧美av亚洲av综合av国产av| 精品免费久久久久久久清纯| 国产精品亚洲av一区麻豆| 99久久综合精品五月天人人| 特级一级黄色大片| 欧美又色又爽又黄视频| 久久久精品欧美日韩精品| 免费在线观看黄色视频的| 国产成人av激情在线播放| 在线观看www视频免费| 91麻豆精品激情在线观看国产| 岛国在线免费视频观看| 亚洲av电影不卡..在线观看| 在线十欧美十亚洲十日本专区| 丁香欧美五月| 香蕉丝袜av| 天堂√8在线中文| 俺也久久电影网| 天堂影院成人在线观看| 少妇熟女aⅴ在线视频| 美女免费视频网站| 久久精品aⅴ一区二区三区四区| 国产精品久久久人人做人人爽| 午夜免费激情av| 中出人妻视频一区二区| 亚洲最大成人中文| 国产精品香港三级国产av潘金莲| 男女之事视频高清在线观看| 法律面前人人平等表现在哪些方面| 国产激情欧美一区二区| 日本免费一区二区三区高清不卡| 听说在线观看完整版免费高清| 久久久久久亚洲精品国产蜜桃av| 一本大道久久a久久精品| 大型黄色视频在线免费观看| 91av网站免费观看| 黄色片一级片一级黄色片| 久久 成人 亚洲| 一进一出抽搐gif免费好疼| 久久精品国产清高在天天线| 毛片女人毛片| 波多野结衣巨乳人妻| 午夜福利在线在线| 久久人妻福利社区极品人妻图片| 午夜福利视频1000在线观看| 在线播放国产精品三级| 小说图片视频综合网站| 日韩欧美一区二区三区在线观看| 1024视频免费在线观看| 国产又黄又爽又无遮挡在线| 午夜两性在线视频| 色综合亚洲欧美另类图片| 亚洲av日韩精品久久久久久密| 国产精品精品国产色婷婷| 欧美成人性av电影在线观看| 国产成人精品久久二区二区91| 又爽又黄无遮挡网站| 国产免费男女视频| 亚洲真实伦在线观看| 国产黄a三级三级三级人| 日韩大码丰满熟妇| 国产日本99.免费观看| 国产免费男女视频| 日本成人三级电影网站| 国产精品久久久久久亚洲av鲁大| 制服丝袜大香蕉在线| 国产成人一区二区三区免费视频网站| 看片在线看免费视频| 亚洲 国产 在线| 亚洲熟妇中文字幕五十中出| 欧美人与性动交α欧美精品济南到| 亚洲第一欧美日韩一区二区三区| 搡老妇女老女人老熟妇| 天堂动漫精品| 亚洲第一电影网av| 99re在线观看精品视频| 免费在线观看亚洲国产| 国产一区二区三区视频了| 亚洲精华国产精华精| 国产免费男女视频| 舔av片在线| 日日夜夜操网爽| 美女黄网站色视频| 熟女少妇亚洲综合色aaa.| 国产三级在线视频| 午夜老司机福利片| ponron亚洲| 久久九九热精品免费| 亚洲欧美精品综合一区二区三区| 狠狠狠狠99中文字幕| 看黄色毛片网站| 五月玫瑰六月丁香| www.熟女人妻精品国产| 男女下面进入的视频免费午夜| 国产69精品久久久久777片 | 日韩欧美三级三区| 黄色丝袜av网址大全| 97人妻精品一区二区三区麻豆| 日本一区二区免费在线视频| 两个人的视频大全免费| 亚洲精品久久国产高清桃花| 日韩精品中文字幕看吧| 男女之事视频高清在线观看| 欧美日韩国产亚洲二区| 九九热线精品视视频播放| 黄色a级毛片大全视频| 久久这里只有精品中国| 成熟少妇高潮喷水视频| 美女大奶头视频| 精品无人区乱码1区二区| 每晚都被弄得嗷嗷叫到高潮| 真人一进一出gif抽搐免费| 亚洲专区国产一区二区| 99国产精品一区二区蜜桃av| 久久精品亚洲精品国产色婷小说| 成在线人永久免费视频| 亚洲av成人一区二区三| 麻豆国产97在线/欧美 | 国产精品一及| 国产久久久一区二区三区| 国产一区在线观看成人免费| 久久久久久亚洲精品国产蜜桃av| 亚洲真实伦在线观看| 美女 人体艺术 gogo| 午夜福利高清视频| 亚洲人成电影免费在线| 一进一出抽搐gif免费好疼| 一本一本综合久久| 国产99白浆流出| 午夜福利视频1000在线观看| 亚洲中文字幕日韩| 此物有八面人人有两片| 久久午夜亚洲精品久久| 国产亚洲精品久久久久久毛片| 国产精品久久久久久人妻精品电影| 在线十欧美十亚洲十日本专区| 制服丝袜大香蕉在线| 久久久久免费精品人妻一区二区| 国产精品精品国产色婷婷| 99久久99久久久精品蜜桃| 亚洲无线在线观看| 可以在线观看毛片的网站| 男女床上黄色一级片免费看| 精品一区二区三区av网在线观看| 五月玫瑰六月丁香| 日韩大尺度精品在线看网址| 亚洲熟妇熟女久久| 丁香六月欧美| 欧美性猛交黑人性爽| 日日爽夜夜爽网站| 亚洲av日韩精品久久久久久密| 国产1区2区3区精品| 亚洲精品美女久久av网站| 精品一区二区三区av网在线观看| www.999成人在线观看| 国内精品久久久久精免费| 波多野结衣高清作品| 精品第一国产精品| 亚洲熟妇中文字幕五十中出| 成人一区二区视频在线观看| 国产亚洲欧美在线一区二区| 亚洲av片天天在线观看| 久久中文字幕人妻熟女| 亚洲一区二区三区不卡视频| 亚洲无线在线观看| 欧美乱码精品一区二区三区| 俄罗斯特黄特色一大片| 日韩国内少妇激情av| 狠狠狠狠99中文字幕| 国产精品一区二区三区四区免费观看 | 亚洲成a人片在线一区二区| 国产精品久久久久久亚洲av鲁大| 两人在一起打扑克的视频| 亚洲自拍偷在线| 久久草成人影院| 亚洲国产看品久久| 色尼玛亚洲综合影院| 欧美黑人精品巨大| 中文字幕最新亚洲高清| 国产精品,欧美在线| 精品久久久久久久久久免费视频| 欧美黑人欧美精品刺激| 国内精品久久久久精免费| 久久久水蜜桃国产精品网| 麻豆一二三区av精品| 精品久久久久久久毛片微露脸| 色综合婷婷激情| 99国产综合亚洲精品| 国产免费男女视频| 亚洲黑人精品在线| 午夜两性在线视频| 麻豆成人午夜福利视频| 国产精品久久久久久亚洲av鲁大| 欧美3d第一页| 欧美在线黄色| 伦理电影免费视频| 一二三四社区在线视频社区8| 丁香六月欧美| 国产精品av久久久久免费| 两性午夜刺激爽爽歪歪视频在线观看 | 免费在线观看日本一区| 女生性感内裤真人,穿戴方法视频| 中文字幕av在线有码专区| 99国产综合亚洲精品| 在线十欧美十亚洲十日本专区| 久久亚洲真实| 精品一区二区三区视频在线观看免费| 在线观看免费午夜福利视频| 午夜福利在线在线| 精品午夜福利视频在线观看一区| 日韩欧美在线乱码| 国产欧美日韩精品亚洲av| 麻豆一二三区av精品| 99国产综合亚洲精品| 欧美日韩瑟瑟在线播放| 高清毛片免费观看视频网站| 久久久久久九九精品二区国产 | 久久久国产欧美日韩av| 国产激情久久老熟女| 国产91精品成人一区二区三区| 国内久久婷婷六月综合欲色啪| 日韩欧美三级三区| 中文字幕高清在线视频| av视频在线观看入口| 成人永久免费在线观看视频| 亚洲精品粉嫩美女一区| 天堂av国产一区二区熟女人妻 | 国产99久久九九免费精品| 欧美一区二区国产精品久久精品 | 精品国产美女av久久久久小说| 91老司机精品| 亚洲无线在线观看| 99国产精品一区二区三区| 国产精品久久视频播放| 身体一侧抽搐| 免费在线观看亚洲国产| av欧美777| 中文在线观看免费www的网站 | 又黄又粗又硬又大视频| av超薄肉色丝袜交足视频| 成人特级黄色片久久久久久久| 日韩有码中文字幕| 精华霜和精华液先用哪个| 正在播放国产对白刺激| АⅤ资源中文在线天堂| 熟妇人妻久久中文字幕3abv| www.www免费av| 国产爱豆传媒在线观看 | 丰满人妻一区二区三区视频av | 无人区码免费观看不卡| 美女大奶头视频| 法律面前人人平等表现在哪些方面| 男女床上黄色一级片免费看| 91九色精品人成在线观看| 一个人免费在线观看电影 | 丰满的人妻完整版| 久久 成人 亚洲| 18禁美女被吸乳视频| 在线a可以看的网站| 久99久视频精品免费| 亚洲乱码一区二区免费版| 午夜福利成人在线免费观看| www.999成人在线观看| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久精品吃奶| 悠悠久久av| 国产单亲对白刺激| 美女高潮喷水抽搐中文字幕| 中文资源天堂在线| 亚洲精品久久国产高清桃花| 伊人久久大香线蕉亚洲五| 午夜福利成人在线免费观看| 波多野结衣高清作品| 国产午夜精品论理片| 母亲3免费完整高清在线观看| 在线观看www视频免费| 日本撒尿小便嘘嘘汇集6| 草草在线视频免费看| 精品久久久久久久久久免费视频| 久久中文字幕人妻熟女| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久爱视频| 中文字幕人成人乱码亚洲影| 两个人看的免费小视频| 欧美日韩亚洲综合一区二区三区_| 在线观看66精品国产| 国产成人aa在线观看| 亚洲国产看品久久| 国产精品电影一区二区三区| 国产成人精品无人区| 我的老师免费观看完整版| 久久精品国产99精品国产亚洲性色| 宅男免费午夜| 国产午夜精品论理片| 99riav亚洲国产免费| 午夜福利在线在线| 级片在线观看| av在线天堂中文字幕| 国产精品1区2区在线观看.| 一本一本综合久久| 亚洲成人中文字幕在线播放| 国产成人av激情在线播放| 欧美日韩乱码在线| 亚洲一区二区三区色噜噜| 亚洲av五月六月丁香网| 在线观看日韩欧美| 欧美在线黄色| 一级毛片精品| 99国产精品一区二区蜜桃av| 国产精品综合久久久久久久免费| 欧美另类亚洲清纯唯美| 久久久久久国产a免费观看| 精品福利观看| 久99久视频精品免费| 国内揄拍国产精品人妻在线| 看片在线看免费视频| 欧美黑人巨大hd| 欧美+亚洲+日韩+国产| 色尼玛亚洲综合影院| 露出奶头的视频| 黑人巨大精品欧美一区二区mp4| 免费在线观看亚洲国产| 男女下面进入的视频免费午夜| 脱女人内裤的视频| 最近最新中文字幕大全免费视频| 日韩欧美 国产精品| 亚洲成a人片在线一区二区| 在线视频色国产色| 午夜福利成人在线免费观看| 欧美午夜高清在线| 精品国产乱子伦一区二区三区| 国内毛片毛片毛片毛片毛片| 国产午夜福利久久久久久| 成年免费大片在线观看| 日本精品一区二区三区蜜桃| 韩国av一区二区三区四区| 在线观看免费日韩欧美大片| 一级a爱片免费观看的视频| 免费在线观看日本一区| 69av精品久久久久久| 亚洲 国产 在线| 人妻久久中文字幕网| 国产精品日韩av在线免费观看| 激情在线观看视频在线高清| 欧美日韩福利视频一区二区| 国产免费av片在线观看野外av| 久久精品国产综合久久久| 黄片大片在线免费观看| 精华霜和精华液先用哪个| 亚洲 欧美一区二区三区| 男女视频在线观看网站免费 | 欧美另类亚洲清纯唯美| 琪琪午夜伦伦电影理论片6080| 一级黄色大片毛片| 国产视频内射| 97人妻精品一区二区三区麻豆| 成人一区二区视频在线观看| 色精品久久人妻99蜜桃| 免费看a级黄色片| 国产av一区在线观看免费| 久久香蕉国产精品| 国产精品1区2区在线观看.| 99热6这里只有精品| 久久精品国产清高在天天线| 好看av亚洲va欧美ⅴa在| 亚洲精品久久国产高清桃花| 亚洲自拍偷在线| 精品国内亚洲2022精品成人| 69av精品久久久久久| 久久久久亚洲av毛片大全| 亚洲人成网站高清观看| 欧美在线一区亚洲| 国产三级中文精品| 一本精品99久久精品77| 狠狠狠狠99中文字幕| 欧美+亚洲+日韩+国产| 两个人看的免费小视频| 久久久久久久精品吃奶| 国产精品影院久久| 夜夜躁狠狠躁天天躁| a级毛片在线看网站| 久久国产乱子伦精品免费另类| 日日夜夜操网爽| 日韩大码丰满熟妇| 国产真人三级小视频在线观看| 国产成人精品久久二区二区免费| 毛片女人毛片| 亚洲精品久久成人aⅴ小说| 香蕉久久夜色| 亚洲成av人片免费观看| 久久这里只有精品中国| 无限看片的www在线观看|