• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fractional Angular Momentum of an Atom on a Noncommutative Plane?

    2019-11-07 02:58:58JianJing荊堅QiuYueZhang張秋月QingWang王青ZhengWenLong隆正文andShiHaiDong董世海
    Communications in Theoretical Physics 2019年11期
    關(guān)鍵詞:王青正文

    Jian Jing (荊堅), Qiu-Yue Zhang (張秋月), Qing Wang (王青), Zheng-Wen Long (隆正文), and Shi-Hai Dong (董世海)

    1Department of Physics and Electronic, School of Science, Beijing University of Chemical Technology, Beijing 100029,China

    2College of Physics and Technology, Xinjiang University, Urumqi 830046, China

    3Department of Physics, Guizhou University, Guiyang 550025, China

    4Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, CDMX 07700, Mexico

    Abstract The mechanism of obtaining the fractional angular momentum by employing a trapped atom which possesses a permanent magnetic dipole moment in the background of two electric fields is reconsidered by using an alternative method.Then, we generalize this model to a noncommutative plane.We show that there are two different mechanisms,which include cooling down the atom to the negligibly small kinetic energy and modulating the density of electric charges to the critical value to get the fractional angular momentum theoretically.

    Key words:noncommutative, fractional angular momentum, magnetic dipole moment

    1 Introduction

    The concept of spatial noncommutativity has a long history in physics.[1?2]It has attracted considerable attention in recent years due to superstring theories[3?5]since it arises naturally in the D-branes at the presence of background NS-NS B-field.[6?9]Fluctuations of D-branes are described by noncommutative gauge field theories.As a result, there are tremendous papers about quantum field theories in noncommutative space.[10?13]Noncommutative quantum mechanics has also been studied extensively.[14?20]The general study method is to map the noncommutative variables to the commutative ones,which satisfy the standard Heisenberg algebra by Boppshift (or generalized Bopp-shift), and then to solve dynamical equations in commutative space.[21]Exactly solvable models, such as noncommutative harmonic oscillator, Landau problem and some relativistic quantum mechanics models[22?23]are studied by using this method.The path integral formulation in noncommutative quantum mechanics has also been investigated.[24?25]Recently, Chaichianet al.studied the relativistic hydrogen atom with noncommutative corrections perturbatively and found that the degeneracy of several energy levels was lifted due to spatial noncommutativity.[26]Corrections to various quantum phases due to the spatial noncommutativity had also attracted many interests.[27?31]Interestingly, based on the path integral formulation in noncommutative space,Refs.[32?33]proposed a semi-classical effective Lagrangian to study the Aharonov-Bohm effect[34]in noncommutative space and presented explicit corrections due to the spatial noncommutativity.

    The fractional angular momentum(FAM)has become a popular research topic since the early of 1980s[35?36]because of its applications both in quantum Hall effect and highTcsuperconductivity.[37?40]It has received renewed interests in recent years.[41?43]As we know, eigenvalues of the canonical angular momentum should be quantized in three-dimensional space because of the non-Abelian rotation group.However, this conclusion does not hold any more in the (2+1)-dimensional space-time since the rotation group in two-dimensional space is an Abelian one which cannot impose any constraints on eigenvalues of the canonical angular momentum.Due to the dynamical nature of the Chern-Simons gauge field and in the absence of the Maxwell term, one can realize the FAM in (2+1)-dimensional space-time by coupling a charged particle to the Chern-Simons gauge field.[44?47]Reference [48]found that it is possible to realize the FAM by coupling a cold ion to magnetic fields.This work was generalized to a noncommutative space in Ref.[49]It is argued that the FAM can also be generated by the spatial noncommutativity.[50]The purpose of this work is to realize the FAM on the noncommutative plane.Different from Ref.[49]in which the FAM is realized by a trapped charged particle on the noncommutative plane, we realize it by a trapped neutral particle, i.e., a trapped atom which possesses a permanent magnetic dipole moment in the background of electric fields.

    This paper is organized as follows.For the purpose of fixing our conventions and further studies, we start from the commutative plane in Sec.2.Although this model has been investigated in Ref.[51], we shall analyze it by applying a different method.In Sec.3, we generalize the model studied in Sec.2 to the noncommutative plane.We show that there are two different mechanisms to realize the FAM on the noncommutative plane.Some concluding remarks will be given in last section.

    2 The FAM in the Commutative Plane

    In order to fix our convention, we re-exam the model which was proposed in Ref.[51]in this section by applying a different method.The Hamiltonian that describes dynamics of an atom with a permanent magnetic dipole moment in the background of an electric field is given by

    wherem,p=?i?,μ,c,n, andEare the mass of the atom, canonical momentum, magnitude of the permanent magnetic dipole moment, speed of light in vacuum, unit vector along magnetic dipole moment, and the electric field respectively.

    Hamiltonian (1) is the non-relativistic limit of a spinhalf relativistic neutral particle, which possesses a permanent magnetic dipole moment interacting with an electric field.We assume that the atom is trapped by a harmonic potential and confined in a plane perpendicular to the magnetic dipole moment.Apart from these, two electric fieldsE=E(1)+E(2)are applied simultaneously, i.e.,

    whereE(1)is generated by a long filament with a uniform chargesλeper unit length,?0is the dielectric constant,ρeis the density of electric charges which is the source of electric fieldE(2),eris the unit vector along radial direction on the plane.In fact, only the electric fieldE(2)contributes to the term?·Esince?·E(1)=0 in the arear≠ 0 where the atom moves.Therefore, one has?·E=?·E(2)=ρe/?0.

    The Lagrangian which corresponds to Hamiltonian(1)is

    Starting from this Lagrangian, Ref.[51]shows that eigenvalues of the canonical angular momentum of the reduced model which is obtained by cooling down the atom to the negligible kinetic energy, i.e., neglecting the kinetic energy term in the Lagrangian (2), will take fractional values.Here,we apply an alternative method to analyze this problem.

    Observing the termn×Ein Lagrangian(3)plays the same role as the magnetic vector potential in describing a charged particle in the background of a magnetic field,it is convenient to introduce the effective vector potentialAeff=n ×E.The direction of the effective magnetic potential is parallel to the plane since the magnetic dipole moment and electric fields (2) are perpendicular and parallel to the plane respectively.As a result, the effective magnetic field which is given byBeff=?×Aeffobviously is perpendicular to the plane.

    In terms of the effective vector potential, we write Lagrangian (3) in the form

    Since we only focus on the dynamics on the plane, we write the above Lagrangian as

    where a harmonic potential(1/2)Kx2i,which is applied to trap the atom is included and the summation convention is applied.In two-dimensional space, the effective magnetic vector potential and magnetic field are expressed explicitly as

    Instead of contributing to the effective magnetic field, the electric fieldE(1)only has contributions to the effective vector potential due to its topological nature.

    We shall show that the result in Ref.[51]can be reproduced by basing on the first-order Lagrangian(5).The first-order form of the Lagrangian (5) is

    in whichHis given by

    For the sake of further studies, we quantize model (7)canonically.To this end,we introduce canonical momenta(πxi, πpi)with respect to variables(xi, pi)in the standard way.They are

    in which we replaceby a symmetric form(1/2)(1/2)and drop a total time derivative term in Lagrangian (7).The non-vanishing Poisson brackets among canonical variables (xi, pi, πxi, πpi) are{xi, πxj}={pi, πpj}=δij.The canonical angular momentum is defined by

    Since there are no “velocities” on the right-hand sides of Eq.(9), the introduction of canonical momenta leads to primary constraints.[52]They are

    where “≈” is weak equivalence, which means equivalent on the constraint surface.

    Since we are interested in the case of cooling down the atom to the limit of negligibly small kinetic energy,there are two additional constraintsχi=pi ≈0 appear in this limit.We treat all constraintsχi ≈0,?(0)i ≈0,and0 on the same footing although they originate differently from model (7).We label them in a unified way as ΦI=(?i, ψi, χi), I=1,2,...,5,6.One must make sure whether there are secondary constraints before proceeding on.For this purpose,we apply the consistency condition to ΦI ≈0,

    whereHT=H+λIΦIis the total Hamiltonian withλIbeing Lagrange multipliers.[52]

    The matrix of Poisson brackets among constraints ΦI,i.e., {ΦI,ΦJ} is

    from which we can calculate the determinant of the matrix {ΦI,ΦJ}.It gives det {ΦI,ΦJ}=((μ/c2)Beff)2.Thus,the consistency condition of the primary constraints (12)can only determine Lagrangian multipliers.According to Ref.[52], there are no secondary constraints and all constraints ΦI ≈0 belong to the second class.Therefore,they can be regarded as “strong” equivalence and can be used to eliminate dependent degrees of freedom.After substituting constraints ΦI ≈0 into the canonical angular momentum (10), we get

    In order to get its eigenvalues, we must know commutators between variablesxi.The classical version of commutators, i.e., Dirac brackets betweenxican be calculated according to the definition,{xi, xj}D={xi, xj}?{xi,ΦI}{ΦI,ΦJ}?1{ΦJ, xj},in which {ΦI,ΦJ}?1is the inverse of the matrix {ΦI,ΦJ}and can be written explicitly as

    After some direct algebraic calculations, we get{xi, xj}D=?c2?ij/μBeff.Thus, commutators betweenxiare [xi, xj]=?ic2?ij/μBeff(in the unit of=1).

    Using above commutators betweenxi, one finds that apart from a constantμλe/2πc2?0, the canonical angular momentum (14) is analogous to the Hamiltonian of a one-dimensional harmonic oscillator with unit frequency.Thus,eigenvalues of the canonical angular momentum are

    Obviously, besides the “normal” partn+ 1/2, the last term which is proportional toλecan take fractional values because of the classic parameterλe.Therefore, the eigenvalues of canonical angular momentum can take fractional values when the atom is cooled down to the limit of negligible kinetic energy.The result obtained by using this method is in accordance with previous work.[51]The advantage of this method is that it can be easily generalized to the noncommutative plane as to be shown below.

    3 The FAM on a Noncommutative Plane

    We now generalize above studies to the noncommutative plane.We shall show that there are two different mechanisms to get the FAM on the noncommutative plane.

    The noncommutative plane is characterized by the algebraic relations

    in whichθis the noncommutative parameter.It can be checked that the classical version of the above commutators can be realized by the first-order Lagrangian[25,53?54]

    in whichHis a specific Hamiltonian.

    There are two different ways to incorporate a magnetic field in noncommutative quantum mechanics.One is to modify the commutators between momenta directly,[14]the other is by the minimal coupling.[53]It is shown that due to the Jacobi identity,the former way is only valid for the uniform magnetic field.[54]In order to have a wider application, we choose the latter to introduce the magnetic field.The minimal coupling is achieved by substitutingpibypi+(μ/c2), i.e.,pi →pi+(μ/c2)in the first term of Lagrangian (17).Thus, the Lagrangian in our model takes the following form

    where we have symmetrized the termas (1/2)(1/2)xi˙piand dropped a total time derivative term,His given in Eq.(8).Similar to the commutative case, in order to quantize it canonically, we introduce canonical momenta with respect to variablesxi, pias

    By definition, the canonical angular momentum takes the same form as Eq.(10).

    The introduction of canonical momenta (19) will lead to primary constraints which are labeled as

    One must make sure whether there are other constraints besides constraints0 and0 in model (18).In doing so,we apply the consistency condition to primary constraints,

    where

    is the total Hamiltonian withζi,ξibeing Lagrange multipliers.After some algebraic calculations, we arrive at

    in which

    Obviously, Lagrange multipliersζi, ξican be determined providedκ≠ 0.In this case, there are no secondary constraints.On the contrary, constraint chains are not ended and the consistency condition of primary constraints will produce further constraints.We will analyze these two cases separately and show that the FAM can arise from both cases by different mechanisms.

    3.1 The Case of κ≠0

    In this case, there are no secondary constraints since the Lagrange multipliersζi, ξiare completely determined by the consistency condition (21).Therefore, constraint chains are ended.In order to get the FAM, we cool down the atom to the limit of negligible kinetic energy.Thus,besidesthere are two additional constraintsξi=pi ≈0.We label all constraintsin a unified way asThe matrix of the Poisson brackets among constraints ΨIis

    which can be verified that det {ΨI,ΨJ}≠ 0.Therefore,besides ΨI, there are no secondary constraints, all constraints ΨIbelong to the second class.Thus, they can be used to eliminate dependent degrees of freedom.

    Taking constraints ΨIinto consideration, we find that the canonical angular momentum(10)reduces to the same form as Eq.(14).However,one must determine commutators betweenxiso as to get eigenvalues.The classical version of commutators betweenxi, namely, Dirac brackets betweenxican be calculated according to the definition.

    The inverse matrix of {ΨI,ΨJ} is

    With the help of {ΨI,ΨJ}, we can calculate the Dirac brackets betweenxi.They are{xi, xj}D=?c2?ij/μBeff.Replacing above Dirac brackets by the quantum commutators,{ , }D →(1/i)[,], we get commutators betweenxi, i.e.

    Substituting the constraints ΨIinto the expression (10)and after some direct algebraic calculation, we get the canonical angular momentum.It takes the same form as Eq.(14).According to these commutators and the expression of canonical angular momentum,we get the eigenvalues of the canonical angular momentum.They take the same form as Eq.(16).This means that in the case ofκ≠0, we can cool down the atom to the limit of negligibly small kinetic energy to get the FAM from the model(18) on the noncommutative plane.

    Both commutators amongxiand FAM in the commutative case are equivalent to its noncommutative counterpart when the kinetic energy of the atom is cooled down to negligibly small.This can be understood from Lagrangian(18) which implies that when the atom moves in a very low speed, the third term in Lagrangian (18), which is responsible for the spatial noncommutativity, is negligible.So, all results (including commutators among coordinates and fractional angular momentum) of the noncommutative case are equivalent to the commutative case when the atom is cooled down to the negligible kinetic energy.

    3.2 Special Case κ=0

    In this subsection, we analyze the special caseκ=0.This case can also be understood as the effective magnetic fieldBefftakes critical value, i.e.,Beff=Bc=c2/θμ.We will show that the FAM arises naturally in this case.

    The consistency condition of primary constraints (22)show that constraint chains are not ended and there are secondary constraints whenκ=0.A straightforward calculation shows that consistency conditions(21)lead to the same secondary constraints whenκ=0.We choose the former and label them as

    It can be checked that consistency conditions of secondary constraintsχi ≈0 does not lead to further constraints and all constraints are second class.We label these constraints asAs a result, they can be used to reduce dependent degrees of freedom in the canonical angular momentum (10).Substituting constraints (20) and(27) into Eq.(10), we get the canonical angular momentum

    The matrix of Poisson brackets among constraints ΓIis

    Its inverse is calculated as

    whereτ=(mc2θK+μBc).The commutators between variablesxican also be obtained as

    With the help of these commutators,one can obtain eigenvalues of canonical angular momentum.They are nothing but Eq.(16).It shows that the FAM appears naturally in this special caseκ=0.

    4 Concluding Remarks

    Based on the first-order Lagrangian(18), we study rotation properties of an atom which possesses a permanent magnetic dipole moment in the background of electric fields on a noncommutative plane.The interaction between a magnetic dipole moment and an electric field is similar with the minimal coupling between a charged particle and a magnetic field.Thus, it is convenient to introduce the effective magnetic vector potential and the corresponding effective magnetic field.Compared with previous work which realizes the FAM by charged particles, we realize it by an atom which possesses a permanent magnetic dipole moment.The present work can be regarded as a noncommutative generalization of the study in Ref.[51].

    We show that there are two different ways to realize the FAM on the noncommutative plane.One is to cool down the atom to the negligible kinetic energy, the other is to modulate the intensity of the effective magnetic field to the critical value.The effective magnetic field relates the density of the electric charge byBeff=ρe/?0,it means that the later way of getting the FAM is in fact, by modulating the density of the electric charges to the critical valueρe=c2?0/θμ.

    These two ways belong to different mechanisms.In the former mechanism,two additional constraintsχi=pi ≈0 arise during the process of cooling down the atom.These two additional constraints originate differently from the ones?i ≈0 andψi ≈0 which originate from the singularities of the first-order Lagrangian (18).This procedure of getting the FAM is analogous to the commutative counterpart of the model (18).The latter mechanism is related to the spatial noncommutativity of the plane where the atom moves.When the intensity of the effective magnetic field approaches the critical value, the consistency condition of primary constraints will lead to two secondary constraints.These two secondary constraints play crucial roles in producing the FAM.

    猜你喜歡
    王青正文
    《熬波圖》煮鹽盤鐵的考古學(xué)探索
    更正聲明
    傳媒論壇(2022年9期)2022-02-17 19:47:54
    更正啟事
    Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces*
    城隍廟
    城隍廟
    Solution of the Dipoles in Noncommutative Space with Minimal Length?
    Wave Functions for Time-Dependent Dirac Equation under GUP?
    大鼠腦缺血/再灌注后bFGF和GAP-43的表達(dá)與神經(jīng)再生
    王青柴窯青花
    99精品久久久久人妻精品| 桃红色精品国产亚洲av| 男人舔奶头视频| 赤兔流量卡办理| 欧洲精品卡2卡3卡4卡5卡区| 亚洲最大成人手机在线| 亚洲国产精品成人综合色| 欧美性猛交╳xxx乱大交人| 男女边吃奶边做爰视频| 色吧在线观看| 国产高清激情床上av| 少妇人妻一区二区三区视频| 久久热精品热| 三级国产精品欧美在线观看| h日本视频在线播放| 一个人看视频在线观看www免费| 欧美日本视频| 中国美白少妇内射xxxbb| 国产av麻豆久久久久久久| 男女那种视频在线观看| 尤物成人国产欧美一区二区三区| 如何舔出高潮| 在线看三级毛片| 国产亚洲欧美98| 亚洲欧美激情综合另类| 美女 人体艺术 gogo| 在线免费观看不下载黄p国产 | av在线老鸭窝| 级片在线观看| 日韩欧美免费精品| 亚洲一级一片aⅴ在线观看| www.色视频.com| 男女做爰动态图高潮gif福利片| 美女免费视频网站| 亚洲精品日韩av片在线观看| 国产精品福利在线免费观看| 最好的美女福利视频网| 国产av在哪里看| 男人舔奶头视频| 神马国产精品三级电影在线观看| 身体一侧抽搐| 亚洲专区中文字幕在线| 国产高清视频在线播放一区| 不卡一级毛片| 成年女人看的毛片在线观看| 一个人看的www免费观看视频| 国产精品一区二区三区四区免费观看 | 日本与韩国留学比较| 亚洲精品一区av在线观看| 成人国产一区最新在线观看| 身体一侧抽搐| 国产女主播在线喷水免费视频网站 | 国产精品亚洲一级av第二区| 久久久久国产精品人妻aⅴ院| 国产探花极品一区二区| 免费看光身美女| 欧美+日韩+精品| 国产精品乱码一区二三区的特点| 日本熟妇午夜| 欧美激情久久久久久爽电影| 国产精品乱码一区二三区的特点| 国内精品一区二区在线观看| 免费无遮挡裸体视频| 看十八女毛片水多多多| 亚洲国产精品合色在线| 国产乱人伦免费视频| 少妇熟女aⅴ在线视频| 黄色配什么色好看| 成人永久免费在线观看视频| 国产精品99久久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 国产亚洲精品av在线| 91狼人影院| 国产精品乱码一区二三区的特点| 国语自产精品视频在线第100页| 不卡视频在线观看欧美| 亚洲欧美日韩东京热| 两性午夜刺激爽爽歪歪视频在线观看| 婷婷精品国产亚洲av| 色哟哟哟哟哟哟| 悠悠久久av| 亚洲中文字幕日韩| 国产一区二区三区视频了| 亚洲一区二区三区色噜噜| 日韩一本色道免费dvd| 又粗又爽又猛毛片免费看| 韩国av一区二区三区四区| 久久精品国产自在天天线| 国产精品一区二区三区四区久久| 日本黄大片高清| 成年女人永久免费观看视频| 熟女电影av网| 午夜福利在线观看免费完整高清在 | 男女啪啪激烈高潮av片| 1000部很黄的大片| 免费av不卡在线播放| 成人国产综合亚洲| 波野结衣二区三区在线| 黄色配什么色好看| 一个人看的www免费观看视频| 日韩,欧美,国产一区二区三区 | 欧美一级a爱片免费观看看| 成人精品一区二区免费| 欧美日韩国产亚洲二区| 日韩,欧美,国产一区二区三区 | 亚洲av中文字字幕乱码综合| 成人永久免费在线观看视频| 亚洲人成网站在线播放欧美日韩| 999久久久精品免费观看国产| 日本-黄色视频高清免费观看| 啦啦啦观看免费观看视频高清| videossex国产| 久久午夜亚洲精品久久| 久久久久性生活片| 中文字幕免费在线视频6| 大又大粗又爽又黄少妇毛片口| 午夜免费男女啪啪视频观看 | 成人美女网站在线观看视频| 成人美女网站在线观看视频| 亚洲成av人片在线播放无| netflix在线观看网站| 日韩,欧美,国产一区二区三区 | 少妇的逼水好多| 精品一区二区三区av网在线观看| 九色国产91popny在线| av专区在线播放| 日本熟妇午夜| 国产精品久久久久久久电影| ponron亚洲| 亚洲成人精品中文字幕电影| 搡女人真爽免费视频火全软件 | 精品福利观看| 999久久久精品免费观看国产| 草草在线视频免费看| 国产真实伦视频高清在线观看 | 蜜桃亚洲精品一区二区三区| 国产又黄又爽又无遮挡在线| av专区在线播放| 熟妇人妻久久中文字幕3abv| 99视频精品全部免费 在线| 国产爱豆传媒在线观看| 午夜福利在线在线| 色噜噜av男人的天堂激情| 99热网站在线观看| 精品久久国产蜜桃| 国产高清有码在线观看视频| 日本一二三区视频观看| xxxwww97欧美| 色尼玛亚洲综合影院| 精品久久久噜噜| 日本熟妇午夜| 欧美区成人在线视频| 成人国产一区最新在线观看| 成人国产麻豆网| 亚洲精品粉嫩美女一区| 69av精品久久久久久| av女优亚洲男人天堂| 91精品国产九色| 午夜精品一区二区三区免费看| 久久精品国产亚洲av涩爱 | 91在线精品国自产拍蜜月| 亚洲精品影视一区二区三区av| 可以在线观看的亚洲视频| 亚洲美女搞黄在线观看 | 啦啦啦观看免费观看视频高清| 成人高潮视频无遮挡免费网站| 国产高潮美女av| 五月伊人婷婷丁香| 长腿黑丝高跟| 午夜亚洲福利在线播放| 人妻少妇偷人精品九色| 亚洲男人的天堂狠狠| 大又大粗又爽又黄少妇毛片口| 内射极品少妇av片p| .国产精品久久| 精品久久久久久,| 五月玫瑰六月丁香| 亚洲av一区综合| 国内精品宾馆在线| 又爽又黄无遮挡网站| 中文在线观看免费www的网站| 亚洲精华国产精华液的使用体验 | 乱人视频在线观看| 美女cb高潮喷水在线观看| 两人在一起打扑克的视频| 黄色欧美视频在线观看| 国内精品一区二区在线观看| 91午夜精品亚洲一区二区三区 | 在线看三级毛片| 又爽又黄a免费视频| 国产伦在线观看视频一区| 国产午夜福利久久久久久| 欧美日韩黄片免| 日本 av在线| 最近视频中文字幕2019在线8| 性色avwww在线观看| 午夜激情福利司机影院| 欧美日韩亚洲国产一区二区在线观看| 99热精品在线国产| av天堂中文字幕网| 亚洲美女黄片视频| 日韩欧美三级三区| 亚洲av一区综合| 日韩亚洲欧美综合| 乱码一卡2卡4卡精品| 亚洲av五月六月丁香网| 成人av一区二区三区在线看| 国内揄拍国产精品人妻在线| 丰满乱子伦码专区| 一边摸一边抽搐一进一小说| xxxwww97欧美| 国产色爽女视频免费观看| 久久精品国产亚洲av天美| 窝窝影院91人妻| 看十八女毛片水多多多| 午夜福利在线在线| 国产国拍精品亚洲av在线观看| 嫩草影院入口| 国产精品久久久久久久久免| 人妻丰满熟妇av一区二区三区| 少妇的逼水好多| 999久久久精品免费观看国产| 亚洲av.av天堂| 听说在线观看完整版免费高清| 成年人黄色毛片网站| 国产精品久久久久久久久免| 成人一区二区视频在线观看| 国产视频一区二区在线看| 久久热精品热| 91麻豆精品激情在线观看国产| 亚洲欧美日韩卡通动漫| 国产麻豆成人av免费视频| 十八禁国产超污无遮挡网站| 网址你懂的国产日韩在线| 国产精品福利在线免费观看| 国产黄a三级三级三级人| 俺也久久电影网| 欧美成人免费av一区二区三区| 成人美女网站在线观看视频| 一区二区三区激情视频| 久久中文看片网| 久久6这里有精品| 国产v大片淫在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲专区中文字幕在线| 国产一区二区在线观看日韩| 制服丝袜大香蕉在线| 国产人妻一区二区三区在| 国产成人a区在线观看| 亚洲电影在线观看av| 久久精品国产亚洲av香蕉五月| 日本a在线网址| 免费在线观看成人毛片| 午夜视频国产福利| 国产精品综合久久久久久久免费| 亚洲av成人av| 一区二区三区免费毛片| 国产精品伦人一区二区| 亚洲午夜理论影院| 人人妻,人人澡人人爽秒播| 亚洲精品粉嫩美女一区| 午夜精品在线福利| 国产久久久一区二区三区| 国产精品乱码一区二三区的特点| 波多野结衣高清无吗| 99久久中文字幕三级久久日本| 天天躁日日操中文字幕| 91精品国产九色| 国产午夜精品论理片| 我的老师免费观看完整版| 在线免费观看的www视频| 夜夜爽天天搞| 亚洲第一电影网av| 一个人看的www免费观看视频| 午夜a级毛片| 免费搜索国产男女视频| 国产精品久久久久久久久免| 国产伦在线观看视频一区| 久久久午夜欧美精品| 亚洲精品粉嫩美女一区| 午夜精品在线福利| 99热这里只有是精品50| 国产老妇女一区| 国产免费av片在线观看野外av| 色播亚洲综合网| 内地一区二区视频在线| 成人国产综合亚洲| 午夜a级毛片| 性插视频无遮挡在线免费观看| 欧美中文日本在线观看视频| 国产伦在线观看视频一区| 又粗又爽又猛毛片免费看| 女生性感内裤真人,穿戴方法视频| 成人性生交大片免费视频hd| 久久久精品大字幕| 国产乱人伦免费视频| 国产精品国产三级国产av玫瑰| 一本久久中文字幕| 亚洲不卡免费看| 免费av不卡在线播放| 男女做爰动态图高潮gif福利片| 岛国在线免费视频观看| 成年免费大片在线观看| 熟妇人妻久久中文字幕3abv| 男人舔奶头视频| 噜噜噜噜噜久久久久久91| 精品无人区乱码1区二区| 18+在线观看网站| 大型黄色视频在线免费观看| 少妇的逼好多水| 亚洲av免费高清在线观看| 日日摸夜夜添夜夜添小说| 国产三级中文精品| 黄色视频,在线免费观看| 国产亚洲欧美98| 看免费成人av毛片| 日本 av在线| 嫁个100分男人电影在线观看| 精品久久久久久久久久免费视频| 成人av一区二区三区在线看| 有码 亚洲区| 很黄的视频免费| 久久久久久久久久成人| 精华霜和精华液先用哪个| 国产精品久久久久久av不卡| 国产aⅴ精品一区二区三区波| 亚洲成人免费电影在线观看| 久久精品影院6| 美女 人体艺术 gogo| 国产伦在线观看视频一区| 亚洲美女黄片视频| 亚洲五月天丁香| 一本精品99久久精品77| 一区二区三区激情视频| 哪里可以看免费的av片| 亚洲国产色片| 国产精品不卡视频一区二区| 3wmmmm亚洲av在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品99又大又爽又粗少妇毛片 | 俺也久久电影网| 成熟少妇高潮喷水视频| 亚洲经典国产精华液单| 久久婷婷人人爽人人干人人爱| 日韩高清综合在线| 老师上课跳d突然被开到最大视频| 亚洲第一区二区三区不卡| 精品久久久久久久久av| 精品无人区乱码1区二区| 欧美精品啪啪一区二区三区| 国产蜜桃级精品一区二区三区| 春色校园在线视频观看| 99热这里只有是精品50| 97碰自拍视频| 两个人视频免费观看高清| 久久久久久久亚洲中文字幕| ponron亚洲| 精品免费久久久久久久清纯| 亚洲男人的天堂狠狠| 日本黄色视频三级网站网址| 国产男人的电影天堂91| 国产日本99.免费观看| 日本熟妇午夜| 一进一出好大好爽视频| 男人的好看免费观看在线视频| 国产探花在线观看一区二区| 亚洲真实伦在线观看| 最近中文字幕高清免费大全6 | 中国美白少妇内射xxxbb| 无遮挡黄片免费观看| 欧美成人性av电影在线观看| 亚洲天堂国产精品一区在线| 国产高潮美女av| 欧美日韩中文字幕国产精品一区二区三区| 热99re8久久精品国产| 色综合色国产| 欧美一区二区国产精品久久精品| 最新在线观看一区二区三区| 伊人久久精品亚洲午夜| 国产精品一及| 俺也久久电影网| 日韩欧美在线乱码| 99久久精品热视频| 精品人妻熟女av久视频| 老司机深夜福利视频在线观看| 亚洲精品成人久久久久久| 午夜免费激情av| 精品国内亚洲2022精品成人| 亚洲成人精品中文字幕电影| www.www免费av| 日日摸夜夜添夜夜添小说| 成人三级黄色视频| 亚洲av一区综合| 国产又黄又爽又无遮挡在线| 午夜免费成人在线视频| 中国美女看黄片| 真人做人爱边吃奶动态| 日本 av在线| 亚洲欧美日韩高清专用| 久久久久久久久中文| 男女做爰动态图高潮gif福利片| 国产精品嫩草影院av在线观看 | 1000部很黄的大片| 国产精品女同一区二区软件 | 久久这里只有精品中国| 精品人妻熟女av久视频| 午夜免费男女啪啪视频观看 | 精华霜和精华液先用哪个| 99riav亚洲国产免费| 小蜜桃在线观看免费完整版高清| 亚洲国产精品sss在线观看| 男人的好看免费观看在线视频| 欧美日本视频| 国产精品av视频在线免费观看| 最近在线观看免费完整版| 久久久久久久久久成人| 日日撸夜夜添| 无人区码免费观看不卡| 在线观看免费视频日本深夜| 丰满人妻一区二区三区视频av| 可以在线观看的亚洲视频| 国产探花极品一区二区| 免费高清视频大片| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕av成人在线电影| 欧美在线一区亚洲| 美女被艹到高潮喷水动态| 热99在线观看视频| 亚洲人成伊人成综合网2020| 国产视频一区二区在线看| 亚洲性夜色夜夜综合| 又黄又爽又刺激的免费视频.| 99国产极品粉嫩在线观看| 美女cb高潮喷水在线观看| 欧美+日韩+精品| 国产男人的电影天堂91| 99久国产av精品| 久久久久久九九精品二区国产| 亚洲av熟女| 日日摸夜夜添夜夜添小说| 日本色播在线视频| 国产人妻一区二区三区在| 欧美不卡视频在线免费观看| 精品久久久久久久久av| 亚洲欧美日韩无卡精品| 韩国av一区二区三区四区| 99热网站在线观看| 久久九九热精品免费| 亚洲欧美日韩东京热| 日韩欧美三级三区| 一级av片app| 精品人妻偷拍中文字幕| 嫩草影院入口| 国产亚洲精品综合一区在线观看| 久久婷婷人人爽人人干人人爱| 夜夜夜夜夜久久久久| 日韩欧美 国产精品| 国模一区二区三区四区视频| 日日摸夜夜添夜夜添av毛片 | 欧美极品一区二区三区四区| 国产乱人视频| 禁无遮挡网站| 亚洲欧美日韩东京热| 露出奶头的视频| 天堂网av新在线| 久久精品91蜜桃| 床上黄色一级片| 直男gayav资源| 国产精品无大码| 午夜爱爱视频在线播放| 亚洲成人免费电影在线观看| 校园人妻丝袜中文字幕| 啦啦啦韩国在线观看视频| 久久天躁狠狠躁夜夜2o2o| 国产精品美女特级片免费视频播放器| 国产精品久久久久久久久免| 欧美色欧美亚洲另类二区| 精品99又大又爽又粗少妇毛片 | 欧美日韩中文字幕国产精品一区二区三区| 人妻久久中文字幕网| 国产精品一区二区性色av| 久久亚洲真实| 成人高潮视频无遮挡免费网站| 亚洲最大成人av| 看片在线看免费视频| 波多野结衣高清作品| 亚洲第一电影网av| 午夜福利欧美成人| 欧美丝袜亚洲另类 | 国产高清有码在线观看视频| 91狼人影院| 欧美一区二区国产精品久久精品| 日韩大尺度精品在线看网址| 国产高清激情床上av| 亚洲av不卡在线观看| av中文乱码字幕在线| x7x7x7水蜜桃| 老熟妇仑乱视频hdxx| 嫁个100分男人电影在线观看| netflix在线观看网站| 天堂√8在线中文| 亚洲av成人精品一区久久| av国产免费在线观看| 久久99热6这里只有精品| 一进一出抽搐gif免费好疼| 免费观看的影片在线观看| 波野结衣二区三区在线| 乱人视频在线观看| 看黄色毛片网站| 在线免费观看的www视频| 级片在线观看| 欧美日韩精品成人综合77777| xxxwww97欧美| 午夜免费成人在线视频| 中文字幕精品亚洲无线码一区| 1000部很黄的大片| a在线观看视频网站| 日本成人三级电影网站| 欧美黑人巨大hd| 又黄又爽又免费观看的视频| 一级毛片久久久久久久久女| 亚洲成av人片在线播放无| 久久精品影院6| 欧美潮喷喷水| 天堂√8在线中文| 精品久久久噜噜| 亚洲av免费在线观看| 老师上课跳d突然被开到最大视频| 搡女人真爽免费视频火全软件 | 午夜福利在线观看吧| 欧美不卡视频在线免费观看| 搡老妇女老女人老熟妇| 国产精品99久久久久久久久| 听说在线观看完整版免费高清| 久久久久久久久中文| 国产精品日韩av在线免费观看| 啦啦啦观看免费观看视频高清| 亚洲精品色激情综合| 精品一区二区三区av网在线观看| 国产伦精品一区二区三区视频9| 精品日产1卡2卡| 国产一区二区在线观看日韩| 99久国产av精品| 黄片wwwwww| 欧美3d第一页| 97人妻精品一区二区三区麻豆| 女人被狂操c到高潮| 美女免费视频网站| 国产精品伦人一区二区| 大型黄色视频在线免费观看| 欧美xxxx性猛交bbbb| 午夜免费成人在线视频| 国产亚洲欧美98| 搡老岳熟女国产| 亚洲av电影不卡..在线观看| 国产一区二区在线观看日韩| 极品教师在线视频| 日韩精品有码人妻一区| 亚洲不卡免费看| 色综合亚洲欧美另类图片| 老司机福利观看| 亚洲成人中文字幕在线播放| 精品午夜福利视频在线观看一区| 人人妻人人澡欧美一区二区| 免费在线观看成人毛片| 亚洲专区中文字幕在线| 热99re8久久精品国产| 欧美又色又爽又黄视频| 亚洲欧美激情综合另类| 日本与韩国留学比较| 国产视频内射| 亚洲成人精品中文字幕电影| 成人二区视频| av国产免费在线观看| 精品久久久久久成人av| 黄色女人牲交| 日韩欧美国产在线观看| 日本精品一区二区三区蜜桃| 午夜精品一区二区三区免费看| 少妇的逼好多水| 国产精品野战在线观看| 狂野欧美激情性xxxx在线观看| 色5月婷婷丁香| 成人午夜高清在线视频| 婷婷亚洲欧美| 嫁个100分男人电影在线观看| 国产一级毛片七仙女欲春2| 好男人在线观看高清免费视频| 午夜福利在线观看免费完整高清在 | 精品日产1卡2卡| 国产伦精品一区二区三区视频9| 久久人妻av系列| АⅤ资源中文在线天堂| 18+在线观看网站| 在线观看美女被高潮喷水网站| 国产毛片a区久久久久| 国模一区二区三区四区视频| 亚洲第一区二区三区不卡| 熟女人妻精品中文字幕| 日本五十路高清| 老司机福利观看| 亚洲综合色惰| 九色国产91popny在线| 亚洲国产欧美人成| 韩国av一区二区三区四区| 男女之事视频高清在线观看| 欧美日本视频| 一区二区三区四区激情视频 | 99精品久久久久人妻精品| 精品人妻1区二区| 欧美成人免费av一区二区三区| 国产高清激情床上av| 国产精品久久电影中文字幕| 国产私拍福利视频在线观看| 欧美潮喷喷水|