• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fractional Angular Momentum of an Atom on a Noncommutative Plane?

    2019-11-07 02:58:58JianJing荊堅QiuYueZhang張秋月QingWang王青ZhengWenLong隆正文andShiHaiDong董世海
    Communications in Theoretical Physics 2019年11期
    關(guān)鍵詞:王青正文

    Jian Jing (荊堅), Qiu-Yue Zhang (張秋月), Qing Wang (王青), Zheng-Wen Long (隆正文), and Shi-Hai Dong (董世海)

    1Department of Physics and Electronic, School of Science, Beijing University of Chemical Technology, Beijing 100029,China

    2College of Physics and Technology, Xinjiang University, Urumqi 830046, China

    3Department of Physics, Guizhou University, Guiyang 550025, China

    4Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, CDMX 07700, Mexico

    Abstract The mechanism of obtaining the fractional angular momentum by employing a trapped atom which possesses a permanent magnetic dipole moment in the background of two electric fields is reconsidered by using an alternative method.Then, we generalize this model to a noncommutative plane.We show that there are two different mechanisms,which include cooling down the atom to the negligibly small kinetic energy and modulating the density of electric charges to the critical value to get the fractional angular momentum theoretically.

    Key words:noncommutative, fractional angular momentum, magnetic dipole moment

    1 Introduction

    The concept of spatial noncommutativity has a long history in physics.[1?2]It has attracted considerable attention in recent years due to superstring theories[3?5]since it arises naturally in the D-branes at the presence of background NS-NS B-field.[6?9]Fluctuations of D-branes are described by noncommutative gauge field theories.As a result, there are tremendous papers about quantum field theories in noncommutative space.[10?13]Noncommutative quantum mechanics has also been studied extensively.[14?20]The general study method is to map the noncommutative variables to the commutative ones,which satisfy the standard Heisenberg algebra by Boppshift (or generalized Bopp-shift), and then to solve dynamical equations in commutative space.[21]Exactly solvable models, such as noncommutative harmonic oscillator, Landau problem and some relativistic quantum mechanics models[22?23]are studied by using this method.The path integral formulation in noncommutative quantum mechanics has also been investigated.[24?25]Recently, Chaichianet al.studied the relativistic hydrogen atom with noncommutative corrections perturbatively and found that the degeneracy of several energy levels was lifted due to spatial noncommutativity.[26]Corrections to various quantum phases due to the spatial noncommutativity had also attracted many interests.[27?31]Interestingly, based on the path integral formulation in noncommutative space,Refs.[32?33]proposed a semi-classical effective Lagrangian to study the Aharonov-Bohm effect[34]in noncommutative space and presented explicit corrections due to the spatial noncommutativity.

    The fractional angular momentum(FAM)has become a popular research topic since the early of 1980s[35?36]because of its applications both in quantum Hall effect and highTcsuperconductivity.[37?40]It has received renewed interests in recent years.[41?43]As we know, eigenvalues of the canonical angular momentum should be quantized in three-dimensional space because of the non-Abelian rotation group.However, this conclusion does not hold any more in the (2+1)-dimensional space-time since the rotation group in two-dimensional space is an Abelian one which cannot impose any constraints on eigenvalues of the canonical angular momentum.Due to the dynamical nature of the Chern-Simons gauge field and in the absence of the Maxwell term, one can realize the FAM in (2+1)-dimensional space-time by coupling a charged particle to the Chern-Simons gauge field.[44?47]Reference [48]found that it is possible to realize the FAM by coupling a cold ion to magnetic fields.This work was generalized to a noncommutative space in Ref.[49]It is argued that the FAM can also be generated by the spatial noncommutativity.[50]The purpose of this work is to realize the FAM on the noncommutative plane.Different from Ref.[49]in which the FAM is realized by a trapped charged particle on the noncommutative plane, we realize it by a trapped neutral particle, i.e., a trapped atom which possesses a permanent magnetic dipole moment in the background of electric fields.

    This paper is organized as follows.For the purpose of fixing our conventions and further studies, we start from the commutative plane in Sec.2.Although this model has been investigated in Ref.[51], we shall analyze it by applying a different method.In Sec.3, we generalize the model studied in Sec.2 to the noncommutative plane.We show that there are two different mechanisms to realize the FAM on the noncommutative plane.Some concluding remarks will be given in last section.

    2 The FAM in the Commutative Plane

    In order to fix our convention, we re-exam the model which was proposed in Ref.[51]in this section by applying a different method.The Hamiltonian that describes dynamics of an atom with a permanent magnetic dipole moment in the background of an electric field is given by

    wherem,p=?i?,μ,c,n, andEare the mass of the atom, canonical momentum, magnitude of the permanent magnetic dipole moment, speed of light in vacuum, unit vector along magnetic dipole moment, and the electric field respectively.

    Hamiltonian (1) is the non-relativistic limit of a spinhalf relativistic neutral particle, which possesses a permanent magnetic dipole moment interacting with an electric field.We assume that the atom is trapped by a harmonic potential and confined in a plane perpendicular to the magnetic dipole moment.Apart from these, two electric fieldsE=E(1)+E(2)are applied simultaneously, i.e.,

    whereE(1)is generated by a long filament with a uniform chargesλeper unit length,?0is the dielectric constant,ρeis the density of electric charges which is the source of electric fieldE(2),eris the unit vector along radial direction on the plane.In fact, only the electric fieldE(2)contributes to the term?·Esince?·E(1)=0 in the arear≠ 0 where the atom moves.Therefore, one has?·E=?·E(2)=ρe/?0.

    The Lagrangian which corresponds to Hamiltonian(1)is

    Starting from this Lagrangian, Ref.[51]shows that eigenvalues of the canonical angular momentum of the reduced model which is obtained by cooling down the atom to the negligible kinetic energy, i.e., neglecting the kinetic energy term in the Lagrangian (2), will take fractional values.Here,we apply an alternative method to analyze this problem.

    Observing the termn×Ein Lagrangian(3)plays the same role as the magnetic vector potential in describing a charged particle in the background of a magnetic field,it is convenient to introduce the effective vector potentialAeff=n ×E.The direction of the effective magnetic potential is parallel to the plane since the magnetic dipole moment and electric fields (2) are perpendicular and parallel to the plane respectively.As a result, the effective magnetic field which is given byBeff=?×Aeffobviously is perpendicular to the plane.

    In terms of the effective vector potential, we write Lagrangian (3) in the form

    Since we only focus on the dynamics on the plane, we write the above Lagrangian as

    where a harmonic potential(1/2)Kx2i,which is applied to trap the atom is included and the summation convention is applied.In two-dimensional space, the effective magnetic vector potential and magnetic field are expressed explicitly as

    Instead of contributing to the effective magnetic field, the electric fieldE(1)only has contributions to the effective vector potential due to its topological nature.

    We shall show that the result in Ref.[51]can be reproduced by basing on the first-order Lagrangian(5).The first-order form of the Lagrangian (5) is

    in whichHis given by

    For the sake of further studies, we quantize model (7)canonically.To this end,we introduce canonical momenta(πxi, πpi)with respect to variables(xi, pi)in the standard way.They are

    in which we replaceby a symmetric form(1/2)(1/2)and drop a total time derivative term in Lagrangian (7).The non-vanishing Poisson brackets among canonical variables (xi, pi, πxi, πpi) are{xi, πxj}={pi, πpj}=δij.The canonical angular momentum is defined by

    Since there are no “velocities” on the right-hand sides of Eq.(9), the introduction of canonical momenta leads to primary constraints.[52]They are

    where “≈” is weak equivalence, which means equivalent on the constraint surface.

    Since we are interested in the case of cooling down the atom to the limit of negligibly small kinetic energy,there are two additional constraintsχi=pi ≈0 appear in this limit.We treat all constraintsχi ≈0,?(0)i ≈0,and0 on the same footing although they originate differently from model (7).We label them in a unified way as ΦI=(?i, ψi, χi), I=1,2,...,5,6.One must make sure whether there are secondary constraints before proceeding on.For this purpose,we apply the consistency condition to ΦI ≈0,

    whereHT=H+λIΦIis the total Hamiltonian withλIbeing Lagrange multipliers.[52]

    The matrix of Poisson brackets among constraints ΦI,i.e., {ΦI,ΦJ} is

    from which we can calculate the determinant of the matrix {ΦI,ΦJ}.It gives det {ΦI,ΦJ}=((μ/c2)Beff)2.Thus,the consistency condition of the primary constraints (12)can only determine Lagrangian multipliers.According to Ref.[52], there are no secondary constraints and all constraints ΦI ≈0 belong to the second class.Therefore,they can be regarded as “strong” equivalence and can be used to eliminate dependent degrees of freedom.After substituting constraints ΦI ≈0 into the canonical angular momentum (10), we get

    In order to get its eigenvalues, we must know commutators between variablesxi.The classical version of commutators, i.e., Dirac brackets betweenxican be calculated according to the definition,{xi, xj}D={xi, xj}?{xi,ΦI}{ΦI,ΦJ}?1{ΦJ, xj},in which {ΦI,ΦJ}?1is the inverse of the matrix {ΦI,ΦJ}and can be written explicitly as

    After some direct algebraic calculations, we get{xi, xj}D=?c2?ij/μBeff.Thus, commutators betweenxiare [xi, xj]=?ic2?ij/μBeff(in the unit of=1).

    Using above commutators betweenxi, one finds that apart from a constantμλe/2πc2?0, the canonical angular momentum (14) is analogous to the Hamiltonian of a one-dimensional harmonic oscillator with unit frequency.Thus,eigenvalues of the canonical angular momentum are

    Obviously, besides the “normal” partn+ 1/2, the last term which is proportional toλecan take fractional values because of the classic parameterλe.Therefore, the eigenvalues of canonical angular momentum can take fractional values when the atom is cooled down to the limit of negligible kinetic energy.The result obtained by using this method is in accordance with previous work.[51]The advantage of this method is that it can be easily generalized to the noncommutative plane as to be shown below.

    3 The FAM on a Noncommutative Plane

    We now generalize above studies to the noncommutative plane.We shall show that there are two different mechanisms to get the FAM on the noncommutative plane.

    The noncommutative plane is characterized by the algebraic relations

    in whichθis the noncommutative parameter.It can be checked that the classical version of the above commutators can be realized by the first-order Lagrangian[25,53?54]

    in whichHis a specific Hamiltonian.

    There are two different ways to incorporate a magnetic field in noncommutative quantum mechanics.One is to modify the commutators between momenta directly,[14]the other is by the minimal coupling.[53]It is shown that due to the Jacobi identity,the former way is only valid for the uniform magnetic field.[54]In order to have a wider application, we choose the latter to introduce the magnetic field.The minimal coupling is achieved by substitutingpibypi+(μ/c2), i.e.,pi →pi+(μ/c2)in the first term of Lagrangian (17).Thus, the Lagrangian in our model takes the following form

    where we have symmetrized the termas (1/2)(1/2)xi˙piand dropped a total time derivative term,His given in Eq.(8).Similar to the commutative case, in order to quantize it canonically, we introduce canonical momenta with respect to variablesxi, pias

    By definition, the canonical angular momentum takes the same form as Eq.(10).

    The introduction of canonical momenta (19) will lead to primary constraints which are labeled as

    One must make sure whether there are other constraints besides constraints0 and0 in model (18).In doing so,we apply the consistency condition to primary constraints,

    where

    is the total Hamiltonian withζi,ξibeing Lagrange multipliers.After some algebraic calculations, we arrive at

    in which

    Obviously, Lagrange multipliersζi, ξican be determined providedκ≠ 0.In this case, there are no secondary constraints.On the contrary, constraint chains are not ended and the consistency condition of primary constraints will produce further constraints.We will analyze these two cases separately and show that the FAM can arise from both cases by different mechanisms.

    3.1 The Case of κ≠0

    In this case, there are no secondary constraints since the Lagrange multipliersζi, ξiare completely determined by the consistency condition (21).Therefore, constraint chains are ended.In order to get the FAM, we cool down the atom to the limit of negligible kinetic energy.Thus,besidesthere are two additional constraintsξi=pi ≈0.We label all constraintsin a unified way asThe matrix of the Poisson brackets among constraints ΨIis

    which can be verified that det {ΨI,ΨJ}≠ 0.Therefore,besides ΨI, there are no secondary constraints, all constraints ΨIbelong to the second class.Thus, they can be used to eliminate dependent degrees of freedom.

    Taking constraints ΨIinto consideration, we find that the canonical angular momentum(10)reduces to the same form as Eq.(14).However,one must determine commutators betweenxiso as to get eigenvalues.The classical version of commutators betweenxi, namely, Dirac brackets betweenxican be calculated according to the definition.

    The inverse matrix of {ΨI,ΨJ} is

    With the help of {ΨI,ΨJ}, we can calculate the Dirac brackets betweenxi.They are{xi, xj}D=?c2?ij/μBeff.Replacing above Dirac brackets by the quantum commutators,{ , }D →(1/i)[,], we get commutators betweenxi, i.e.

    Substituting the constraints ΨIinto the expression (10)and after some direct algebraic calculation, we get the canonical angular momentum.It takes the same form as Eq.(14).According to these commutators and the expression of canonical angular momentum,we get the eigenvalues of the canonical angular momentum.They take the same form as Eq.(16).This means that in the case ofκ≠0, we can cool down the atom to the limit of negligibly small kinetic energy to get the FAM from the model(18) on the noncommutative plane.

    Both commutators amongxiand FAM in the commutative case are equivalent to its noncommutative counterpart when the kinetic energy of the atom is cooled down to negligibly small.This can be understood from Lagrangian(18) which implies that when the atom moves in a very low speed, the third term in Lagrangian (18), which is responsible for the spatial noncommutativity, is negligible.So, all results (including commutators among coordinates and fractional angular momentum) of the noncommutative case are equivalent to the commutative case when the atom is cooled down to the negligible kinetic energy.

    3.2 Special Case κ=0

    In this subsection, we analyze the special caseκ=0.This case can also be understood as the effective magnetic fieldBefftakes critical value, i.e.,Beff=Bc=c2/θμ.We will show that the FAM arises naturally in this case.

    The consistency condition of primary constraints (22)show that constraint chains are not ended and there are secondary constraints whenκ=0.A straightforward calculation shows that consistency conditions(21)lead to the same secondary constraints whenκ=0.We choose the former and label them as

    It can be checked that consistency conditions of secondary constraintsχi ≈0 does not lead to further constraints and all constraints are second class.We label these constraints asAs a result, they can be used to reduce dependent degrees of freedom in the canonical angular momentum (10).Substituting constraints (20) and(27) into Eq.(10), we get the canonical angular momentum

    The matrix of Poisson brackets among constraints ΓIis

    Its inverse is calculated as

    whereτ=(mc2θK+μBc).The commutators between variablesxican also be obtained as

    With the help of these commutators,one can obtain eigenvalues of canonical angular momentum.They are nothing but Eq.(16).It shows that the FAM appears naturally in this special caseκ=0.

    4 Concluding Remarks

    Based on the first-order Lagrangian(18), we study rotation properties of an atom which possesses a permanent magnetic dipole moment in the background of electric fields on a noncommutative plane.The interaction between a magnetic dipole moment and an electric field is similar with the minimal coupling between a charged particle and a magnetic field.Thus, it is convenient to introduce the effective magnetic vector potential and the corresponding effective magnetic field.Compared with previous work which realizes the FAM by charged particles, we realize it by an atom which possesses a permanent magnetic dipole moment.The present work can be regarded as a noncommutative generalization of the study in Ref.[51].

    We show that there are two different ways to realize the FAM on the noncommutative plane.One is to cool down the atom to the negligible kinetic energy, the other is to modulate the intensity of the effective magnetic field to the critical value.The effective magnetic field relates the density of the electric charge byBeff=ρe/?0,it means that the later way of getting the FAM is in fact, by modulating the density of the electric charges to the critical valueρe=c2?0/θμ.

    These two ways belong to different mechanisms.In the former mechanism,two additional constraintsχi=pi ≈0 arise during the process of cooling down the atom.These two additional constraints originate differently from the ones?i ≈0 andψi ≈0 which originate from the singularities of the first-order Lagrangian (18).This procedure of getting the FAM is analogous to the commutative counterpart of the model (18).The latter mechanism is related to the spatial noncommutativity of the plane where the atom moves.When the intensity of the effective magnetic field approaches the critical value, the consistency condition of primary constraints will lead to two secondary constraints.These two secondary constraints play crucial roles in producing the FAM.

    猜你喜歡
    王青正文
    《熬波圖》煮鹽盤鐵的考古學(xué)探索
    更正聲明
    傳媒論壇(2022年9期)2022-02-17 19:47:54
    更正啟事
    Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces*
    城隍廟
    城隍廟
    Solution of the Dipoles in Noncommutative Space with Minimal Length?
    Wave Functions for Time-Dependent Dirac Equation under GUP?
    大鼠腦缺血/再灌注后bFGF和GAP-43的表達(dá)與神經(jīng)再生
    王青柴窯青花
    精品午夜福利视频在线观看一区| x7x7x7水蜜桃| 中文字幕高清在线视频| 每晚都被弄得嗷嗷叫到高潮| 在线免费观看的www视频| av视频在线观看入口| 国产成人一区二区三区免费视频网站| 色综合婷婷激情| 国产午夜福利久久久久久| 欧美黑人精品巨大| 视频在线观看一区二区三区| 午夜久久久在线观看| 午夜福利影视在线免费观看| 97碰自拍视频| 天天添夜夜摸| 欧美丝袜亚洲另类 | 午夜a级毛片| 制服丝袜大香蕉在线| 很黄的视频免费| 日日摸夜夜添夜夜添小说| 国产午夜福利久久久久久| 欧美老熟妇乱子伦牲交| 亚洲成av人片免费观看| 免费一级毛片在线播放高清视频 | 日本撒尿小便嘘嘘汇集6| 免费一级毛片在线播放高清视频 | 99久久综合精品五月天人人| 午夜激情av网站| ponron亚洲| 丁香欧美五月| 中文字幕另类日韩欧美亚洲嫩草| 婷婷丁香在线五月| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人澡欧美一区二区 | 成人国产综合亚洲| 少妇被粗大的猛进出69影院| 大香蕉久久成人网| 日日夜夜操网爽| 女人被躁到高潮嗷嗷叫费观| 国产精品二区激情视频| 国产国语露脸激情在线看| 国产激情欧美一区二区| 乱人伦中国视频| 久久精品人人爽人人爽视色| 三级毛片av免费| 一区二区三区国产精品乱码| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一码二码三码区别大吗| www.熟女人妻精品国产| 侵犯人妻中文字幕一二三四区| 亚洲国产看品久久| 国产成人精品久久二区二区91| 精品日产1卡2卡| 不卡av一区二区三区| 最好的美女福利视频网| 69av精品久久久久久| 老司机福利观看| 在线十欧美十亚洲十日本专区| 亚洲欧美日韩无卡精品| 一个人观看的视频www高清免费观看 | 亚洲第一电影网av| 国产一区二区三区视频了| 人人妻人人爽人人添夜夜欢视频| 18禁黄网站禁片午夜丰满| 国产激情欧美一区二区| 男女午夜视频在线观看| 亚洲国产精品成人综合色| 色av中文字幕| 亚洲电影在线观看av| 午夜免费观看网址| 午夜精品久久久久久毛片777| 午夜免费鲁丝| 国产av在哪里看| 丝袜美腿诱惑在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品合色在线| 1024香蕉在线观看| 在线观看免费日韩欧美大片| 看片在线看免费视频| 亚洲 国产 在线| 久久久国产精品麻豆| aaaaa片日本免费| 久久精品国产综合久久久| 国产av在哪里看| 俄罗斯特黄特色一大片| 多毛熟女@视频| 国产精品亚洲一级av第二区| 51午夜福利影视在线观看| 人成视频在线观看免费观看| 97超级碰碰碰精品色视频在线观看| 中文字幕最新亚洲高清| 精品国产国语对白av| 中文亚洲av片在线观看爽| 亚洲国产精品sss在线观看| 一进一出好大好爽视频| 久久久久久久午夜电影| 久久久久久久精品吃奶| 女警被强在线播放| 亚洲国产精品久久男人天堂| 一级毛片精品| 国产精品一区二区精品视频观看| 自线自在国产av| 久久狼人影院| 91成年电影在线观看| 国产精品久久视频播放| 欧美色欧美亚洲另类二区 | 在线永久观看黄色视频| 大陆偷拍与自拍| 亚洲色图 男人天堂 中文字幕| 高清在线国产一区| 不卡av一区二区三区| 乱人伦中国视频| 欧美绝顶高潮抽搐喷水| 亚洲成a人片在线一区二区| 中文字幕av电影在线播放| 欧美亚洲日本最大视频资源| 亚洲视频免费观看视频| a级毛片在线看网站| 成人三级做爰电影| 日日夜夜操网爽| 少妇粗大呻吟视频| 美女高潮到喷水免费观看| 久99久视频精品免费| 国内精品久久久久精免费| 少妇 在线观看| 男人舔女人下体高潮全视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美黄色淫秽网站| netflix在线观看网站| 最好的美女福利视频网| 亚洲狠狠婷婷综合久久图片| 热99re8久久精品国产| 国产精品野战在线观看| 国产一级毛片七仙女欲春2 | 久久婷婷人人爽人人干人人爱 | 岛国在线观看网站| 国产真人三级小视频在线观看| 视频区欧美日本亚洲| 欧美乱妇无乱码| 精品国产一区二区久久| www.精华液| 又黄又爽又免费观看的视频| 国产精品久久久av美女十八| 国产伦人伦偷精品视频| 三级毛片av免费| 午夜日韩欧美国产| 国产精品综合久久久久久久免费 | bbb黄色大片| 看黄色毛片网站| 人人妻,人人澡人人爽秒播| 国产精品爽爽va在线观看网站 | 久久久久国内视频| 黄片播放在线免费| 亚洲一区二区三区色噜噜| 亚洲成人国产一区在线观看| 一边摸一边抽搐一进一小说| 人妻久久中文字幕网| 又黄又粗又硬又大视频| 成人国产一区最新在线观看| 91麻豆精品激情在线观看国产| 高清黄色对白视频在线免费看| 午夜福利成人在线免费观看| 久久久久国产精品人妻aⅴ院| 人人妻,人人澡人人爽秒播| 亚洲中文av在线| 一级作爱视频免费观看| 国产精品一区二区在线不卡| 中文亚洲av片在线观看爽| 亚洲久久久国产精品| 一级,二级,三级黄色视频| 亚洲免费av在线视频| 精品高清国产在线一区| 亚洲成人久久性| 国产精品日韩av在线免费观看 | 一边摸一边抽搐一进一出视频| 亚洲国产毛片av蜜桃av| 99精品久久久久人妻精品| 久久精品亚洲熟妇少妇任你| 国产一区二区在线av高清观看| 国产成人欧美在线观看| 一区二区三区高清视频在线| 精品免费久久久久久久清纯| 窝窝影院91人妻| 国产一区在线观看成人免费| 午夜精品在线福利| 老司机在亚洲福利影院| 久久久精品欧美日韩精品| 日韩欧美在线二视频| 欧美亚洲日本最大视频资源| 电影成人av| 国产精品电影一区二区三区| 国产欧美日韩一区二区三| 国产麻豆69| 757午夜福利合集在线观看| 亚洲av美国av| 美女扒开内裤让男人捅视频| 女人被躁到高潮嗷嗷叫费观| 这个男人来自地球电影免费观看| 亚洲自偷自拍图片 自拍| 黄片小视频在线播放| e午夜精品久久久久久久| 精品不卡国产一区二区三区| 精品免费久久久久久久清纯| 久久久久久久久中文| 亚洲片人在线观看| 国产97色在线日韩免费| 女人被躁到高潮嗷嗷叫费观| 99riav亚洲国产免费| 国产亚洲精品av在线| 国产欧美日韩一区二区三| 亚洲欧美激情综合另类| 欧美日韩黄片免| 51午夜福利影视在线观看| 亚洲欧美日韩高清在线视频| 在线永久观看黄色视频| 精品午夜福利视频在线观看一区| 黑丝袜美女国产一区| 欧美一级毛片孕妇| 午夜免费成人在线视频| 69精品国产乱码久久久| 变态另类成人亚洲欧美熟女 | 九色亚洲精品在线播放| 黄频高清免费视频| 亚洲国产欧美网| 国产私拍福利视频在线观看| 国产欧美日韩综合在线一区二区| 亚洲欧美日韩另类电影网站| 日本免费a在线| 91老司机精品| 少妇被粗大的猛进出69影院| 首页视频小说图片口味搜索| 久久欧美精品欧美久久欧美| 99在线视频只有这里精品首页| 日韩国内少妇激情av| 一二三四社区在线视频社区8| 成熟少妇高潮喷水视频| 免费看a级黄色片| 国产亚洲av嫩草精品影院| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品美女久久久久99蜜臀| 欧美日韩亚洲国产一区二区在线观看| av中文乱码字幕在线| 大香蕉久久成人网| 国产精品1区2区在线观看.| 亚洲人成77777在线视频| 最新美女视频免费是黄的| 男女午夜视频在线观看| 18禁黄网站禁片午夜丰满| 在线观看免费视频日本深夜| 大型av网站在线播放| 久久久久久久久中文| 欧美黄色片欧美黄色片| 亚洲精品国产色婷婷电影| 欧美日本亚洲视频在线播放| 人人妻人人澡人人看| 国产亚洲精品久久久久久毛片| 午夜亚洲福利在线播放| 色播在线永久视频| 国产一区二区在线av高清观看| 国产片内射在线| 精品久久久久久,| 一级作爱视频免费观看| 不卡一级毛片| 视频在线观看一区二区三区| 欧美日韩精品网址| 久久人妻熟女aⅴ| 真人做人爱边吃奶动态| 变态另类丝袜制服| 久久人人爽av亚洲精品天堂| 18禁国产床啪视频网站| 久久久久精品国产欧美久久久| 村上凉子中文字幕在线| 久久九九热精品免费| 岛国在线观看网站| 大陆偷拍与自拍| 脱女人内裤的视频| 99国产精品免费福利视频| 午夜久久久在线观看| 亚洲成人精品中文字幕电影| 性少妇av在线| 人人妻,人人澡人人爽秒播| 亚洲色图 男人天堂 中文字幕| 欧美精品亚洲一区二区| av有码第一页| 欧美成人免费av一区二区三区| 欧美不卡视频在线免费观看 | 老司机福利观看| 美女国产高潮福利片在线看| 亚洲,欧美精品.| 欧美日韩福利视频一区二区| 国产亚洲精品av在线| 国产真人三级小视频在线观看| 亚洲五月天丁香| 黑人欧美特级aaaaaa片| 国产欧美日韩一区二区三区在线| 亚洲无线在线观看| 精品久久久久久成人av| 激情视频va一区二区三区| 视频区欧美日本亚洲| 午夜成年电影在线免费观看| 午夜精品国产一区二区电影| а√天堂www在线а√下载| 国产精品一区二区免费欧美| 亚洲国产毛片av蜜桃av| 欧美成人一区二区免费高清观看 | 欧美日韩瑟瑟在线播放| 亚洲美女黄片视频| 中国美女看黄片| 韩国av一区二区三区四区| 日本 av在线| 久久久国产成人免费| 亚洲午夜理论影院| 免费av毛片视频| 亚洲人成伊人成综合网2020| 欧美国产精品va在线观看不卡| 久久精品国产亚洲av香蕉五月| 欧美日韩福利视频一区二区| 麻豆一二三区av精品| 村上凉子中文字幕在线| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 老汉色∧v一级毛片| 国产一区二区三区在线臀色熟女| 一卡2卡三卡四卡精品乱码亚洲| 老汉色∧v一级毛片| 香蕉丝袜av| 国产日韩一区二区三区精品不卡| 男人舔女人的私密视频| 人成视频在线观看免费观看| 人妻丰满熟妇av一区二区三区| 亚洲国产精品sss在线观看| 久久久久九九精品影院| 热re99久久国产66热| 一区福利在线观看| 99香蕉大伊视频| 亚洲国产精品合色在线| 国产一区二区三区综合在线观看| 中文字幕色久视频| 999久久久精品免费观看国产| 两个人视频免费观看高清| 香蕉久久夜色| 国内毛片毛片毛片毛片毛片| 美国免费a级毛片| 亚洲人成77777在线视频| 成人精品一区二区免费| 精品久久久久久久毛片微露脸| 真人做人爱边吃奶动态| 亚洲狠狠婷婷综合久久图片| 国产成+人综合+亚洲专区| 久久久精品欧美日韩精品| 看黄色毛片网站| 久久精品人人爽人人爽视色| 91九色精品人成在线观看| 嫩草影院精品99| 亚洲av成人一区二区三| 香蕉丝袜av| 成人永久免费在线观看视频| 亚洲精品中文字幕一二三四区| 亚洲自偷自拍图片 自拍| 国产三级黄色录像| 亚洲av电影不卡..在线观看| 自线自在国产av| 一个人观看的视频www高清免费观看 | 亚洲精品国产区一区二| 欧美成狂野欧美在线观看| 激情视频va一区二区三区| 禁无遮挡网站| 久久久久久人人人人人| 精品无人区乱码1区二区| 久久欧美精品欧美久久欧美| 首页视频小说图片口味搜索| 午夜福利欧美成人| 日本三级黄在线观看| av视频免费观看在线观看| 亚洲国产精品久久男人天堂| 欧美老熟妇乱子伦牲交| 91在线观看av| 天天添夜夜摸| 一本大道久久a久久精品| 欧美激情高清一区二区三区| 亚洲一区中文字幕在线| 久久久久国内视频| 身体一侧抽搐| bbb黄色大片| 日韩欧美国产一区二区入口| 少妇的丰满在线观看| 国产精品久久久av美女十八| √禁漫天堂资源中文www| 在线永久观看黄色视频| 亚洲在线自拍视频| 亚洲精品粉嫩美女一区| 91九色精品人成在线观看| 中文字幕另类日韩欧美亚洲嫩草| 曰老女人黄片| 一区二区三区精品91| 亚洲中文字幕一区二区三区有码在线看 | 韩国av一区二区三区四区| 久久中文字幕一级| 激情在线观看视频在线高清| 国产成人影院久久av| 亚洲国产高清在线一区二区三 | 久久久国产成人精品二区| 丁香欧美五月| 高清在线国产一区| 国产欧美日韩精品亚洲av| 丁香六月欧美| 丝袜美腿诱惑在线| 老熟妇乱子伦视频在线观看| 黄片大片在线免费观看| 少妇粗大呻吟视频| 两人在一起打扑克的视频| 午夜免费成人在线视频| 成熟少妇高潮喷水视频| 国产欧美日韩一区二区三| 精品久久久久久久久久免费视频| 免费高清视频大片| 国产亚洲精品av在线| 免费女性裸体啪啪无遮挡网站| 欧美激情久久久久久爽电影 | 好男人电影高清在线观看| 日韩一卡2卡3卡4卡2021年| 日韩成人在线观看一区二区三区| 国产激情久久老熟女| 免费av毛片视频| 黄色a级毛片大全视频| 女生性感内裤真人,穿戴方法视频| 在线国产一区二区在线| 51午夜福利影视在线观看| 欧美精品亚洲一区二区| 亚洲色图 男人天堂 中文字幕| 亚洲专区中文字幕在线| 成年女人毛片免费观看观看9| 一区福利在线观看| 精品久久久久久久久久免费视频| 露出奶头的视频| 不卡av一区二区三区| 一级片免费观看大全| 激情视频va一区二区三区| 操出白浆在线播放| 亚洲自拍偷在线| 国产精品久久电影中文字幕| 男女床上黄色一级片免费看| 在线国产一区二区在线| 99国产精品一区二区蜜桃av| 亚洲 国产 在线| 国产成人精品无人区| 精品高清国产在线一区| 99精品欧美一区二区三区四区| 99久久综合精品五月天人人| 色哟哟哟哟哟哟| 亚洲中文av在线| 大码成人一级视频| 久久欧美精品欧美久久欧美| 国产精品爽爽va在线观看网站 | 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利高清视频| 一本久久中文字幕| 激情在线观看视频在线高清| 国产精品精品国产色婷婷| 免费在线观看日本一区| 国产精品香港三级国产av潘金莲| 精品一区二区三区四区五区乱码| 亚洲一区二区三区色噜噜| 亚洲五月天丁香| 欧美国产精品va在线观看不卡| 亚洲av第一区精品v没综合| 一级黄色大片毛片| 国产国语露脸激情在线看| 美女大奶头视频| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩精品亚洲av| 国产熟女xx| 母亲3免费完整高清在线观看| 亚洲一区二区三区色噜噜| 欧美色欧美亚洲另类二区 | 精品国内亚洲2022精品成人| 日本免费a在线| 精品少妇一区二区三区视频日本电影| 99香蕉大伊视频| 天天躁狠狠躁夜夜躁狠狠躁| 成人18禁高潮啪啪吃奶动态图| videosex国产| 精品福利观看| 在线观看免费午夜福利视频| 日韩 欧美 亚洲 中文字幕| 两个人看的免费小视频| 亚洲av电影在线进入| 亚洲国产精品合色在线| 亚洲色图 男人天堂 中文字幕| 人人妻人人澡欧美一区二区 | 国产亚洲欧美在线一区二区| 欧美性长视频在线观看| 欧美乱妇无乱码| 涩涩av久久男人的天堂| 国产人伦9x9x在线观看| 成人亚洲精品一区在线观看| 手机成人av网站| 欧美人与性动交α欧美精品济南到| 91成人精品电影| 天堂影院成人在线观看| 美女高潮到喷水免费观看| 色婷婷久久久亚洲欧美| 麻豆国产av国片精品| 在线视频色国产色| 久久人妻av系列| 成在线人永久免费视频| 一边摸一边做爽爽视频免费| 日韩一卡2卡3卡4卡2021年| 久久精品国产亚洲av香蕉五月| 一级毛片精品| 啪啪无遮挡十八禁网站| 纯流量卡能插随身wifi吗| 大码成人一级视频| 免费高清视频大片| www日本在线高清视频| 午夜福利在线观看吧| 大型黄色视频在线免费观看| 亚洲国产中文字幕在线视频| 亚洲精品国产精品久久久不卡| 国产成人精品久久二区二区免费| 一级,二级,三级黄色视频| 亚洲 国产 在线| 欧洲精品卡2卡3卡4卡5卡区| 久久精品人人爽人人爽视色| 一级a爱视频在线免费观看| 黄色片一级片一级黄色片| 精品久久久久久,| 中文字幕最新亚洲高清| 露出奶头的视频| 变态另类成人亚洲欧美熟女 | 久热这里只有精品99| 精品国内亚洲2022精品成人| 国产成人精品久久二区二区91| 12—13女人毛片做爰片一| 成熟少妇高潮喷水视频| 国产一区二区激情短视频| 手机成人av网站| 国产国语露脸激情在线看| 男女做爰动态图高潮gif福利片 | 国产一区二区三区综合在线观看| 又黄又爽又免费观看的视频| 一本久久中文字幕| 免费看a级黄色片| xxx96com| 久久精品国产亚洲av高清一级| 黄色 视频免费看| 自拍欧美九色日韩亚洲蝌蚪91| 老汉色av国产亚洲站长工具| 曰老女人黄片| 美女 人体艺术 gogo| 一进一出好大好爽视频| av电影中文网址| 欧美成狂野欧美在线观看| 国产又爽黄色视频| 中文字幕av电影在线播放| 国产精品久久久久久人妻精品电影| 91字幕亚洲| 日本在线视频免费播放| 极品教师在线免费播放| 亚洲中文字幕日韩| 中文字幕色久视频| 啦啦啦 在线观看视频| 777久久人妻少妇嫩草av网站| 久久这里只有精品19| 国产一卡二卡三卡精品| 一本大道久久a久久精品| 真人一进一出gif抽搐免费| 男人舔女人下体高潮全视频| 丝袜美足系列| 91国产中文字幕| 国产真人三级小视频在线观看| 久久 成人 亚洲| 久久精品91无色码中文字幕| 午夜影院日韩av| 我的亚洲天堂| 色播亚洲综合网| 久久久久亚洲av毛片大全| 久久国产精品人妻蜜桃| 亚洲精品中文字幕一二三四区| 午夜福利高清视频| 国产人伦9x9x在线观看| 国产伦人伦偷精品视频| 午夜精品国产一区二区电影| 中文字幕久久专区| av视频在线观看入口| 嫩草影视91久久| 九色国产91popny在线| 国产高清有码在线观看视频 | 欧美乱码精品一区二区三区| 久久午夜亚洲精品久久| 日本 av在线| 国产熟女xx| 国产欧美日韩一区二区精品| 婷婷六月久久综合丁香| 欧美日本视频| 两性夫妻黄色片| 亚洲片人在线观看| 欧美乱码精品一区二区三区| 男人操女人黄网站| 久久精品国产亚洲av香蕉五月| 亚洲一区二区三区不卡视频| 男人操女人黄网站| 久久精品国产亚洲av香蕉五月| 一本综合久久免费| 久久久国产成人免费| 丰满的人妻完整版| 久久精品亚洲熟妇少妇任你| 99精品久久久久人妻精品| 国产欧美日韩一区二区三| 欧美国产精品va在线观看不卡| 国产成人一区二区三区免费视频网站| 国产主播在线观看一区二区| 脱女人内裤的视频| 18禁美女被吸乳视频| 黄网站色视频无遮挡免费观看|