• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structure, Electronic, and Mechanical Properties of Three Fully Hydrogenation h-BN:Theoretical Investigations?

    2019-11-07 02:59:04ChunYingPu濮春英LinXiaLv呂林霞DaWeiZhou周大偉JiaHuiYu于家輝andXinTang唐鑫
    Communications in Theoretical Physics 2019年11期
    關(guān)鍵詞:大偉

    Chun-Ying Pu (濮春英), Lin-Xia Lv (呂林霞), Da-Wei Zhou (周大偉), Jia-Hui Yu (于家輝), and Xin Tang (唐鑫)

    1College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China

    2School of Electronics and Electronical Engineering, Nanyang Institute of Technology, Nanyang 473061, China

    3College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China

    Abstract The structural, electronic, elastic, mechanical properties and stress-strain relationship of chair, boat, and stirrup conformers of fully hydrogenated h-BN (fh-BN) are investigated in this work using the Perdew-Burke-Ernzerhof(PBE) function in the frame of density functional theory.The achieved results for the lattice parameters and band gaps of three conformers in this research are in good accordance with other theoretical results.The band structures of three conformers show that the chair, boat, and stirrup are direct band gap with a band gaps of (3.12, 4.95, and 4.95 eV), respectively.To regulate the band structures of fh-BN, we employ a hybrid functional of Heyd-Scuseria-Ernzerhof (HSE06) calculations and the band gaps are 3.84 (chair), 6.12 (boat), and 6.18 eV (stirrup), respectively.The boat and stirrup fh-BN exhibits varying degrees of mechanical anisotropic properties with respect to the Young’s modulus and Poisson’s ratio, while the chair fh-BN exhibits the mechanical isotropic properties.Furthermore, tensile strains are applied in the armchair and zigzag directions related to tensile deformation of zigzag and armchair nanotubes,respectively.We find that the ultimate strains in zigzag and armchair deformations in stirrup conformer are 0.34 and 0.25, respectively, larger than the strains of zigzag (0.29) and armchair (0.18) deformations in h-BN although h-BN can surstain a surface tension up to the maximum stresses higher than those of three conformers of fh-BN.Furthermore, the band gap energies in three conformers can be modulated effectively with the biaxial tensile strain.

    Key words:first-principles calculations, mechanical properties, strain-stress

    1 Introduction

    Two-dimensional hexagonal boron nitride (2D h-BN)has an sp2-hybridized honeycomb structure similar with graphene.However, it is optical transparent and thus called as white graphene.2D h-BN has aroused extensive research interest due to its many intriguing properties such as high chemical stabilities, high thermal conductivity, and excellent mechanical properties.[1?2]Different from graphene with zero-gap,[3]2D h-BN opens a large gap due to the strongn ionicity of B-N bonds.To overcome limitation of the wide band gap and further modify the electronic properties of h-BN layers, a lot of works have been carried out.For example, the variation in band gaps of h-BN nanoribbons with their widths,[4]Stark effect and Hydrogen Passivations[5]have been reported.The functionalization of 2D h-BN using different materials including H,[6]C,[7]metals,[8?9]functional groups[10?12]and organic molecules[13?17]also have been investigated theoretically.Among those methods, hydrogenation is a simple and important approach to modify the physical and chemical properties of 2D materials.For example, hydrogenation leads to widening of the band gap of graphene,[18]while results in a reduction in the band gap of 2D BN sheet.[19]Furthermore,Hydrogenation can lead to hydrogen-induced ferromagnetism and even a phase transition of 2D materials.Hydrogenation also affects the mechanical properties of 2D materials,For example, the Young’s modulus of graphene is found to reduce from 354 N·m?1in graphene to 248 N·m?1in fully hydrogenated graphene.[20]In fact,the mechanical properties of a material is an important parameter for the application of the material, which also is an important way to tune the physical and chemistry properties of materials.[21?28]

    In this paper, we focus on the strain-dependent mechanical properties of fully hydrogenation h-BN (fh-BN).As we know, h-BN has excellent mechanical properties,which are stable under high temperature up to 1000 K.Full hydrogenation also may affect greatly the mechanical properties of 2D h-BN.Up to now,the fh-BN has been reported to have three possible conformers,which are chair,boat, and stirrup.The effect of full hydrogenation on the mechanical properties of h-BN remains unclear.In this paper, we calculate elastic constant, Young’s modulus, Poisson ratio, stress-strain curves, and the band gaps under biaxial tensile strain of three fh-BN, and further compared those properties with h-BN.

    2 Computational Methods

    Our first-principle calculations were carried out using Density Functional Theory (DFT) with a plane wave basis set as implemented in the CASTEP code.[29]The core electrons are treated with Vanderbilt ultrasoft pseudopotentials.[30]Exchange and correlation are treated within the generalized gradient approximation of Perdew,Burke, and Ernzerhof.[31]All calculations are done with a cutoff energy of 520 eV and the first Brillouin zone sampling grid with a resolution of 2π×0.03 is adopted.The optimization of atomic positionsand unit cell are stopped when the change in energy is less than 1×10?5eV/atom,the force on each atom is less than 0.01 eV/?A, the displacements are less than 1×10?3, and the tress on the cell is less than 0.02 GPa.To reduce the inter-layer interaction to model the single layer system, there was a 30thick vacuum region.

    3 Results and Discussion

    Figure 1 presents the top and perspective views of three configurations of fully hydrogenation h-BN.For chair structure, it has the hexagonal lattice with space groupP3m1(156) and optimized lattice parameters beinga=b=2.5910.Four inequivalent atomic positions are (2/3, 1/3, 0.53392), (1/3, 2/3, 0.44207), (1/3,2/3, 0.48201) and (2/3, 1/3, 0.49916) for H1, H2, B, and N, respectively.The boat and stirrup structures possess to the same orthorhombic lattice with space group ofPmn21(31),which have the optimized lattice constants ofa=2.5769,c=4.3424for boat and the lattice constants ofa=2.5932,c=3.8328for stirrup.Both structures also contain four inequivalent atomic positions that are H1(0.500 00,0.457 69,0.243 28),H2(0.500 00, 0.447 62,0.765 57), B (0.5000, 0.486 77, 0.690 71),N (0.500 00,0.490 12, 0.324 51) in boat conformer and H1 (0.500 00, 0.556 84, 0.142 85), H2 (1.000 00, 0.547 42, 0.679 96), B (0.500 00, 0.521 24, 0.297 92), N (1.000 00, 0.518 50, 0.532 19) in stirrup conformer, respectively.Three structure conformers of fh-BN have two different types of H bonds:the connecting boron bonded to hydrogen atoms (B-H) and the connecting nitrogen atoms bonded to hydrogen atoms (N-H).The bond lengths of N-H are 1.043, 1.035, and 1.036and that of B-H are 1.200, 1.220, and 1.224for chair, boat, and stirrup, respectively, which are close to the previous work of hydrogenated h-BN sheet (B-H bond 1.20and N-H bond length 1.03).[19]The B-N (1.568) bond length in the stirrup conformer is the shortest corresponding the B-N bond lengths in chair (1.582) and boat (1.575),respectively.The hydrogenated h-BN leads to strentching of the B-N bond compared with the bond of h-BN(1.44).[19]

    To evaluate the thermal stability of three conformers of fh-BN, we calculate their cohesive energy, which is defined asEcoh=(xEB+xEN+2xEH?xEBNHH)/4x,whereEB,EN, andEHare the total energies of a single B atom,a single N atom, a single H atom, and one unit cell of the fh-BN, respectively.In our calculations, the cohesive energy values of chair, boat, and stirrup are estimated to be about 5.79 eV/atom, 5.81 eV/atom, and 5.83 eV/atom,respectively.The high cohesive energies in three conformers of fh-BN implied strongly bonded network with high stability.By comparison, the stirrup conformer is found to have the highest stability as seen in Fig.1(c).

    Fig.1 (Color online)Schematic illustration of the top and perspective(bottom panels)views of two-dimensional fh-BN for (a)chair, (b) boat, and (c)stirrup.B, N, and H atoms are represented by pink, blue, and white spheres, respectively.Black dashed line indicates the unit cell of fh-BN and the red solid line represents its first brilloun zone.

    Fig.2 The energy band structures for the conformers of (a) h-BN, (b) chair, (c) boat, (d) stirrup fh-BN.

    Fig.3 The projected density of states (DOS) for (a) h-BN, (b) chair, (c) boat, (d) stirrup.

    The band structure and projected density of states of h-BN and fh-BN are shown in Figs.2 and 3.Our calculations on h-BN sheet show that it has an indirect band gap of 4.67 eV,which is in agreement with the LDA(4.5 eV)[32]and GGA (4.6 eV)[19,33]results reported.It is intersting to note that the boat and stirrup conformers have direct band gaps with the same values of 4.95 eV, larger than the value of h-BN.The character of band gap widen is in consistent with graphane.[18]However, chair fh-BN is estimated to have direct band gap of 3.12 eV, which is in consistent with the previous result (3.1 eV) calculated by Bhattacharyaet al.[19]Due to the density functional theory calculation always underestimates the energy gap,we employed a hybrid functional of Heyd-Scuseria-Ernzerhof (HSE06) calculations[34]to calculate the structural electronic structure more accurately.The calculated band gaps of h-BN and fh-BN are 5.69 (h-BN), 3.84(chair), 6.12 (boat), and 6.18 eV (stirrup), respectively.From the projected density of states, we can see that the mixed existence of the states of N_p, B_p, and H_s around the valence band maximum (VBM) in boat and stirrup conformers but only small contributions of H_s on VBM in chair structure.The formants of partial density of states in three atoms near the Fermi-level implies strong interactions between B-H, N-H, and B-N bond for boat and stirrup conformers of fh-BN, which lead to the results of the band gap widen.

    The mechanical properties are investigated by calculating its linear elastic constants.The calculated elastic constants of chair,boat,stirrup fh-BN together with h-BN are listed in Table 1.Due to the symmetry,the hexagonal structures haveC11=C22and have the additional relation thatC66=(1/2)(C11?C12).The four independent elastic constants (C11,C22,C12,C66) of h-BN monolayer are calculated to beC11=C22=289.4 Nm?1,C12=65.2 Nm?1, andC66=112.1 Nm?1, respectively, in consistent with previous calculated results.[35?36]The elastic constants in hexagonal chair fh-BN areC11=C22=185.7 Nm?1,C12=25.1 Nm?1, andC66=80.2 Nm?1, respectively.For orthogonal phase, there are also four independent elastic constantsC11,C22,C12, andC44.The elastic constants in stirrup fh-BN are calculated to beC11=217.2 Nm?1,C22=91.2 Nm?1,C12=15.3 Nm?1, andC44=58.3 Nm?1, respectively.For boat fh-BN,the elastic constants areC11=198.3 Nm?1,C22=169.2 Nm?1,C12=7.8 Nm?1,andC44=66.5 Nm?1,respectively.All the calculated elastic constants meet the necessary mechanical equilibrium conditions[37]for mechanical stability:C11C22?C212>0 andC11,C22,C44(C66)>0.

    Table 1 Calculated elastic constants Cij(Nm?1) of 2D h-BN and fh-BN (chair, boat, and stirrup).

    The in-plane Young’s modulus and Poisson ratio along an arbitrary directionθ(θis the angle relative to the positivexdirection in the sheet) can be expressed as[38]

    wherec=cosθands=sinθ.C44is changed to beC66for hexagonal structure above equations.The calculatedE(θ) andv(θ) of fh-BN are depicted in the polar diagrams in Fig.4, and that of h-BN is also calculated to be compared.The digrams show that h-BN and chair fh-BN display isotropic mechanical properties,since the shape of orientation-dependent of Young’s modulus and Possion’s ratio in-plane are all a standard circle.As for boat and stirrup fh-BN,Young’s modulus and Poisson ratio exhibit anisotropic due to theC11is not equal toC22, which affects its mechanical properties and electronic properties.The anisotropic characteristic originated from the arrangement of the boron, nitrogen, and hydrogen atoms.In addition, we noticed that the values of Young’s modulus and Poisson ratio along arbitrary direction are smaller than those for h-BN.The minimum Young’s modulus is 90.1 Nm?1for stirrup, which is larger than the value of silicene (62 Nm?1).[39]For boat fh-BN, the minumum Young’s modulus is 156.6 Nm?1, which can comparable with the value of MoS2(129 Nm?1).[40]

    To estimate the elastic limit of h-BN and fh-BN, we calculated the surface tension (force perunit length)[41]of h-BN and fh-BN using the method described in the references.[42?43]This method of calculating stress-strain relation was originally introduced for three-dimensional crystals.In a 2D layer compounds, the stress calculated from the Hellmann-Feynman theorem was modified to be the surface tension.[41]

    Firstly, the tensile strain is loaded in either the zigzag or armchair direction forh-BN and three conformers of fh-BN.As shown in Fig.5,the maximum stress for uniaxial tension in armchair direction is 84.7 GPa atε=0.18.h-BN is stronger in zigzag direction with maximum stress of 102.2 GPa atε=0.29.The calculated peak strength is consistent with the earlier DFT estimation,[35]validating our calculation reliable.For the tension-strain relations of three fh-BN conformers,it shows that fh-BN can sustain a surface tension up to (39.1, 34.6, and 65.8 GPa) for chair,boat, and stirrup conformers in the armchair directions,respectively.The corresponding tensile strain limits are 0.12, 0.13, and 0.25 along the armchair directions, respectively.The maximum stress in zigzag directions are(54.0,54.7, and 54.5 GPa) for chair, boat, and stirrup, respectively, corresponding the tensile strain at 0.24, 0.17, and 0.34.The predicted elastic strain limit suggests that the chair and boat fh-BN are highly flexible while the stirrup fh-BN can surstain tensile strain stronger than h-BN.One also notices that strain is more easily applied along the armchair direction than the zigzag direction for h-BN and fh-BN.

    Strain modulation has been commonly used in low-dimensional systems to tune the electronic structures.Then we analyze the biaxial strain effects on the electronic band structures of fh-BN.As shown in Fig.6,the direct band gap of three conformers was maintained.As seen in Fig.7, the band gap energiesEgin chair and boat conformers increase in the form of parobolic but increase linearly in stirrup by increasing the biaxial tensile strain from 0% to 12%.By fitting to the band gap energies using quadratic and linear functions, we obtainedy=0.111x2?0.003x+3.120,y=0.063x2?0.003x+4.955,andy=0.043x+4.951 for chair, boat, and stirrup conformers, respectively.

    Fig.4 (Color online) Polar diagram for (a) Young’s modulus E (N/m) and (b) Poisson’s ratio v of h-BN (red solid line), chair fh-BN (green solid line), boat fh-BN (bluesolid line), and stirrup fh-BN (pink solid line).

    Fig.5 (Color online)Induced tensile stress as a function of applied strain deformation along the zigzag (diamond shape)and armchair(triangle shape)directions for h-BN and fh-BN.

    4 Conclusion

    In summary, based on first-principles calculations, we investigated the electronic, mechanical properties,stressstrain relations, and biaxial strain effects on the energy band structures for three fully hydrogenated h-BN.The boat and stirrup conformers of fh-BN are electronically different from h-BN sheet, not only showing the band gap is widen to be about 4.95 eV, but also showing an anisotropic elastic mechanical behavior by the Polar diagram of Young’s modulus and Poisson’s ratio thus exhibiting great potential application in direction-dependent devices.Importantly, the predicted elastic strain limit suggests that the stirrup fh-BN can surstain tensile strain stronger than h-BN and the band gaps in three conformers can be modulated in the condition of biaxial tensile strain.Furthermore, the band gap energiesEgin chair and boat conformers increase in the form of parobolic but increase linearly in stirrup conformer.

    Fig.6 (Color online)Band structures of fh-BN with biaxial strains for(a)chair,(b)boat,and(c)stirrup.

    Fig.7 (Color online) Band gap energies as a function of biaxial-tensile strain of three conformers of fh-BN.

    猜你喜歡
    大偉
    張大偉作品
    Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
    Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform?
    Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide?
    為你守候
    歌海(2021年2期)2021-06-22 01:58:38
    神奇的邊界線:一不留神就出國
    智慧少年(2017年8期)2018-01-10 21:39:12
    Ultrafast interlayer photocarrier transfer in graphene–MoSe2 van der Waals heterostructure?
    第三十一個蛋
    貨比三家VS 嘗遍五味
    愛你(2015年8期)2015-11-15 03:31:13
    不會說話
    故事會(2015年2期)2015-02-26 01:10:34
    中文欧美无线码| a级毛色黄片| 国产综合懂色| 三级经典国产精品| 国产真实伦视频高清在线观看| 免费av毛片视频| 女人十人毛片免费观看3o分钟| 国产精品久久久久久精品电影小说 | 日韩一区二区视频免费看| 白带黄色成豆腐渣| 久久欧美精品欧美久久欧美| 国产国拍精品亚洲av在线观看| 97热精品久久久久久| 午夜福利成人在线免费观看| 国产午夜精品论理片| 波野结衣二区三区在线| 日韩精品有码人妻一区| 偷拍熟女少妇极品色| 1024手机看黄色片| 国产日韩欧美在线精品| 高清午夜精品一区二区三区| 国产成人91sexporn| 亚洲av熟女| 国产69精品久久久久777片| 国产在线男女| 日韩人妻高清精品专区| 国产黄a三级三级三级人| 国产在视频线精品| 国产大屁股一区二区在线视频| 国产精品一区二区三区四区免费观看| 亚洲国产精品sss在线观看| 亚洲最大成人av| 国产黄色视频一区二区在线观看 | 青春草亚洲视频在线观看| 国产精品久久久久久精品电影小说 | 日产精品乱码卡一卡2卡三| 亚洲欧洲日产国产| 乱系列少妇在线播放| 国产免费又黄又爽又色| 大话2 男鬼变身卡| 国产成人免费观看mmmm| 亚洲婷婷狠狠爱综合网| 别揉我奶头 嗯啊视频| 午夜福利视频1000在线观看| 久久久a久久爽久久v久久| 国产高清不卡午夜福利| www.色视频.com| 久久韩国三级中文字幕| 国产精品久久电影中文字幕| 看十八女毛片水多多多| 搡女人真爽免费视频火全软件| 岛国在线免费视频观看| 国产91av在线免费观看| 伦理电影大哥的女人| www日本黄色视频网| 一个人免费在线观看电影| 国产69精品久久久久777片| 91狼人影院| av在线观看视频网站免费| 九九热线精品视视频播放| 国产黄色视频一区二区在线观看 | av视频在线观看入口| 女的被弄到高潮叫床怎么办| 亚洲丝袜综合中文字幕| 日韩一本色道免费dvd| 床上黄色一级片| 成人性生交大片免费视频hd| 看片在线看免费视频| 欧美精品一区二区大全| 91久久精品国产一区二区三区| 亚洲欧美一区二区三区国产| 日韩欧美在线乱码| 亚洲欧美精品专区久久| 视频中文字幕在线观看| 晚上一个人看的免费电影| 伊人久久精品亚洲午夜| 男人舔女人下体高潮全视频| 国产精品久久视频播放| 观看免费一级毛片| 欧美三级亚洲精品| 久久精品久久久久久噜噜老黄 | 国产伦精品一区二区三区四那| 亚洲欧美日韩东京热| 男人舔奶头视频| 精华霜和精华液先用哪个| 久久久久精品久久久久真实原创| 久久人人爽人人爽人人片va| 精品免费久久久久久久清纯| 亚洲精品国产av成人精品| 麻豆乱淫一区二区| av线在线观看网站| 18+在线观看网站| 夫妻性生交免费视频一级片| 日韩欧美 国产精品| 日本色播在线视频| 国产精品一及| 日韩强制内射视频| 性色avwww在线观看| 韩国高清视频一区二区三区| 日韩欧美国产在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一区二区在线观看99 | 国产高清三级在线| 少妇的逼水好多| 少妇熟女aⅴ在线视频| 国产黄片美女视频| 日本黄大片高清| 亚洲国产精品sss在线观看| 亚洲伊人久久精品综合 | 国产精品久久久久久精品电影小说 | 国产精品一二三区在线看| 老女人水多毛片| 看免费成人av毛片| 91久久精品电影网| 国产精品国产三级专区第一集| 午夜a级毛片| 亚洲欧洲日产国产| 丝袜美腿在线中文| 麻豆成人午夜福利视频| 欧美高清性xxxxhd video| 国产探花在线观看一区二区| 亚洲最大成人中文| 日本免费在线观看一区| 在线观看一区二区三区| 欧美性猛交黑人性爽| 18禁裸乳无遮挡免费网站照片| 三级国产精品片| 国产综合懂色| 国产精品一区二区三区四区免费观看| 三级国产精品欧美在线观看| 国产 一区精品| 色吧在线观看| 久久久久久国产a免费观看| 91久久精品国产一区二区三区| 午夜福利视频1000在线观看| 国产v大片淫在线免费观看| 成人欧美大片| 小说图片视频综合网站| 波多野结衣高清无吗| 丰满人妻一区二区三区视频av| 搡老妇女老女人老熟妇| 免费黄色在线免费观看| 在线播放国产精品三级| 国产精品乱码一区二三区的特点| 国产av在哪里看| 麻豆国产97在线/欧美| 久久久久九九精品影院| 嘟嘟电影网在线观看| 欧美一级a爱片免费观看看| 欧美激情国产日韩精品一区| 国产精品一区二区性色av| 日韩精品有码人妻一区| 一级毛片久久久久久久久女| 国产精品久久久久久精品电影小说 | 三级毛片av免费| 久久久久久久亚洲中文字幕| 精品久久久久久久久久久久久| 看十八女毛片水多多多| 国产精品久久久久久精品电影| 性色avwww在线观看| 一卡2卡三卡四卡精品乱码亚洲| 联通29元200g的流量卡| 日韩国内少妇激情av| 国产伦一二天堂av在线观看| 人妻夜夜爽99麻豆av| 亚洲美女视频黄频| 精品免费久久久久久久清纯| 国产中年淑女户外野战色| 午夜精品一区二区三区免费看| 国产白丝娇喘喷水9色精品| 2021天堂中文幕一二区在线观| 国产一区亚洲一区在线观看| 国产成人a∨麻豆精品| 日本黄色片子视频| 中文字幕av在线有码专区| 日本黄色视频三级网站网址| 久久99热这里只有精品18| 国产黄色小视频在线观看| 精品无人区乱码1区二区| 99热精品在线国产| 国产黄片美女视频| 日韩精品青青久久久久久| 欧美精品国产亚洲| 午夜老司机福利剧场| 中文字幕亚洲精品专区| 18+在线观看网站| 国产高潮美女av| 国产精品一及| 一区二区三区乱码不卡18| 一卡2卡三卡四卡精品乱码亚洲| 国产精品人妻久久久久久| 国产精品一区二区性色av| 亚洲精品乱久久久久久| 一边摸一边抽搐一进一小说| 内地一区二区视频在线| 国产探花极品一区二区| 中文欧美无线码| 激情 狠狠 欧美| 午夜激情欧美在线| 精品久久久噜噜| 欧美最新免费一区二区三区| 亚洲欧美日韩无卡精品| 亚洲最大成人av| 国产精品美女特级片免费视频播放器| 日本一本二区三区精品| 在线a可以看的网站| 免费播放大片免费观看视频在线观看 | 亚洲av电影在线观看一区二区三区 | 欧美日韩国产亚洲二区| 亚洲精品日韩在线中文字幕| 丰满乱子伦码专区| 能在线免费观看的黄片| 亚洲在线自拍视频| 色5月婷婷丁香| 欧美日韩一区二区视频在线观看视频在线 | 婷婷色综合大香蕉| 一级毛片久久久久久久久女| 韩国av在线不卡| 欧美变态另类bdsm刘玥| 欧美精品一区二区大全| 长腿黑丝高跟| 午夜精品在线福利| 国产色爽女视频免费观看| 精品不卡国产一区二区三区| 九九久久精品国产亚洲av麻豆| 91在线精品国自产拍蜜月| 91精品国产九色| 亚洲国产精品合色在线| 国产 一区精品| 久久6这里有精品| 久久99热6这里只有精品| 可以在线观看毛片的网站| 全区人妻精品视频| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品久久电影中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 村上凉子中文字幕在线| 综合色av麻豆| 精品无人区乱码1区二区| 欧美高清成人免费视频www| 2022亚洲国产成人精品| 我要看日韩黄色一级片| 久久精品久久久久久久性| 久久久久免费精品人妻一区二区| 午夜日本视频在线| 舔av片在线| 99热这里只有是精品在线观看| 国产成人午夜福利电影在线观看| 色网站视频免费| 日本午夜av视频| 亚洲婷婷狠狠爱综合网| 久久精品国产99精品国产亚洲性色| 看黄色毛片网站| av在线蜜桃| 五月玫瑰六月丁香| 亚洲国产色片| 国产探花在线观看一区二区| 国产亚洲5aaaaa淫片| 日韩成人av中文字幕在线观看| 精品人妻一区二区三区麻豆| 精品酒店卫生间| 九九久久精品国产亚洲av麻豆| 国产在视频线精品| 欧美一级a爱片免费观看看| 永久免费av网站大全| 国产成年人精品一区二区| 国产精品熟女久久久久浪| 黄色欧美视频在线观看| 国内少妇人妻偷人精品xxx网站| 国产成人福利小说| 99热6这里只有精品| 久久久久久久久久成人| 欧美日韩精品成人综合77777| 色播亚洲综合网| 久久久久久久久久久丰满| 1000部很黄的大片| 中国国产av一级| 欧美丝袜亚洲另类| 直男gayav资源| 午夜精品国产一区二区电影 | 欧美精品国产亚洲| 麻豆精品久久久久久蜜桃| 最近中文字幕2019免费版| 精品久久久久久久久av| 麻豆av噜噜一区二区三区| 人体艺术视频欧美日本| 日韩强制内射视频| 蜜桃久久精品国产亚洲av| 精品一区二区三区人妻视频| 久久精品久久精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 国产三级中文精品| 91精品伊人久久大香线蕉| 亚洲丝袜综合中文字幕| 男人舔女人下体高潮全视频| 精品欧美国产一区二区三| 国产成人一区二区在线| 色综合亚洲欧美另类图片| 韩国av在线不卡| 九九在线视频观看精品| 国产亚洲午夜精品一区二区久久 | 午夜福利高清视频| 久久久精品94久久精品| 毛片一级片免费看久久久久| 18禁动态无遮挡网站| 亚洲电影在线观看av| 免费大片18禁| 久久久a久久爽久久v久久| 亚洲成人精品中文字幕电影| 一级毛片我不卡| 国产精品电影一区二区三区| 国产亚洲5aaaaa淫片| 国产成人福利小说| 在线免费十八禁| kizo精华| 日本午夜av视频| 一个人观看的视频www高清免费观看| 免费观看精品视频网站| 欧美日韩精品成人综合77777| 国语对白做爰xxxⅹ性视频网站| 国产淫语在线视频| 久久99蜜桃精品久久| 一个人观看的视频www高清免费观看| 国产 一区 欧美 日韩| 精品人妻偷拍中文字幕| av在线播放精品| 午夜久久久久精精品| 久久精品91蜜桃| 亚洲欧洲日产国产| 如何舔出高潮| 亚洲精品,欧美精品| 亚洲成人久久爱视频| av在线蜜桃| 禁无遮挡网站| 高清午夜精品一区二区三区| 亚洲欧美清纯卡通| 在线观看66精品国产| 日日摸夜夜添夜夜爱| 国产免费男女视频| 久久99热这里只频精品6学生 | 亚洲精品色激情综合| 午夜久久久久精精品| 99久久精品热视频| 99久久人妻综合| 看非洲黑人一级黄片| 99久国产av精品| 日日啪夜夜撸| 桃色一区二区三区在线观看| 国产午夜精品久久久久久一区二区三区| 少妇人妻精品综合一区二区| 亚洲精品久久久久久婷婷小说 | 亚洲中文字幕日韩| 男插女下体视频免费在线播放| .国产精品久久| 国产精品久久久久久av不卡| 大香蕉久久网| 亚洲五月天丁香| 伦理电影大哥的女人| 日日摸夜夜添夜夜爱| 黄色配什么色好看| 卡戴珊不雅视频在线播放| www.av在线官网国产| 搡老妇女老女人老熟妇| 岛国毛片在线播放| 国产成人a∨麻豆精品| 国产精品.久久久| 亚洲aⅴ乱码一区二区在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 成人午夜高清在线视频| 国产精品.久久久| 日韩av在线大香蕉| 亚洲成人av在线免费| videossex国产| 国产精品一区二区在线观看99 | 亚洲综合精品二区| 日本-黄色视频高清免费观看| 午夜福利视频1000在线观看| 纵有疾风起免费观看全集完整版 | 免费看av在线观看网站| 亚洲成人中文字幕在线播放| 高清毛片免费看| 草草在线视频免费看| 女的被弄到高潮叫床怎么办| 久久精品夜夜夜夜夜久久蜜豆| 成年av动漫网址| 最新中文字幕久久久久| 日韩欧美国产在线观看| 国产亚洲91精品色在线| 波多野结衣巨乳人妻| 亚洲最大成人av| 尾随美女入室| 91在线精品国自产拍蜜月| 岛国毛片在线播放| 日韩高清综合在线| 三级国产精品欧美在线观看| 51国产日韩欧美| 亚洲精品亚洲一区二区| 婷婷色av中文字幕| 热99在线观看视频| 国产 一区 欧美 日韩| 日韩欧美三级三区| 成人综合一区亚洲| 久久久久久大精品| 日本熟妇午夜| 18禁在线无遮挡免费观看视频| 看十八女毛片水多多多| 春色校园在线视频观看| 国产爱豆传媒在线观看| 久久精品久久久久久久性| 国产 一区精品| 欧美成人免费av一区二区三区| 亚洲精品日韩av片在线观看| 欧美成人午夜免费资源| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 噜噜噜噜噜久久久久久91| 亚洲丝袜综合中文字幕| 精品久久久久久电影网 | 麻豆av噜噜一区二区三区| 美女脱内裤让男人舔精品视频| 最近最新中文字幕免费大全7| 如何舔出高潮| 精品国产露脸久久av麻豆 | 男女国产视频网站| 男女那种视频在线观看| 色噜噜av男人的天堂激情| a级毛色黄片| 永久免费av网站大全| 一区二区三区免费毛片| 国产成人一区二区在线| 亚洲精品色激情综合| 99久国产av精品| 日韩人妻高清精品专区| 一区二区三区乱码不卡18| 少妇的逼水好多| 97超视频在线观看视频| 久久精品国产鲁丝片午夜精品| 2021天堂中文幕一二区在线观| 日韩国内少妇激情av| 国国产精品蜜臀av免费| 亚洲国产日韩欧美精品在线观看| 欧美zozozo另类| 亚洲成人av在线免费| 国产精品熟女久久久久浪| 日韩人妻高清精品专区| 久热久热在线精品观看| 99热网站在线观看| 日韩一区二区视频免费看| 舔av片在线| 国内精品一区二区在线观看| 18禁裸乳无遮挡免费网站照片| 日本黄大片高清| 热99re8久久精品国产| 国产真实伦视频高清在线观看| 欧美成人免费av一区二区三区| 国产成人91sexporn| 国产免费又黄又爽又色| 99九九线精品视频在线观看视频| 伦理电影大哥的女人| 春色校园在线视频观看| 亚洲精品日韩在线中文字幕| 午夜福利成人在线免费观看| 亚洲精品色激情综合| 国产午夜精品一二区理论片| 91在线精品国自产拍蜜月| 色网站视频免费| 麻豆成人午夜福利视频| 国产真实伦视频高清在线观看| 亚洲国产精品久久男人天堂| 99在线人妻在线中文字幕| 久久久久久久久中文| 国产高清有码在线观看视频| 夜夜看夜夜爽夜夜摸| 国产精品美女特级片免费视频播放器| 亚洲成人中文字幕在线播放| 亚洲天堂国产精品一区在线| 男女国产视频网站| 白带黄色成豆腐渣| 国产淫片久久久久久久久| 久久99蜜桃精品久久| 国产久久久一区二区三区| 五月玫瑰六月丁香| 国产成人一区二区在线| 一边摸一边抽搐一进一小说| 日韩av不卡免费在线播放| 国产v大片淫在线免费观看| 国产精品一及| 免费av观看视频| 日韩av在线大香蕉| 永久免费av网站大全| 欧美3d第一页| 99热网站在线观看| 人人妻人人看人人澡| 欧美激情在线99| 免费观看在线日韩| 成年免费大片在线观看| 久久久久久久久大av| 成人欧美大片| 成人午夜高清在线视频| 精品一区二区三区人妻视频| 婷婷色av中文字幕| 97超视频在线观看视频| 尾随美女入室| 18禁裸乳无遮挡免费网站照片| 久久久亚洲精品成人影院| 特大巨黑吊av在线直播| 亚洲av成人av| 少妇熟女aⅴ在线视频| 久久久久九九精品影院| 只有这里有精品99| 国产在视频线在精品| 九九热线精品视视频播放| 欧美不卡视频在线免费观看| 国产精品久久久久久精品电影小说 | 免费观看性生交大片5| 欧美日韩一区二区视频在线观看视频在线 | 国产午夜精品久久久久久一区二区三区| 亚洲图色成人| 久久久久久大精品| av福利片在线观看| 99热6这里只有精品| 草草在线视频免费看| 成人午夜精彩视频在线观看| 男女视频在线观看网站免费| 天天躁夜夜躁狠狠久久av| 特大巨黑吊av在线直播| 国产av不卡久久| 成人高潮视频无遮挡免费网站| 国产精品嫩草影院av在线观看| 国产精品无大码| av在线老鸭窝| 天美传媒精品一区二区| 国内精品美女久久久久久| 成人二区视频| 欧美精品国产亚洲| 欧美激情久久久久久爽电影| av女优亚洲男人天堂| 3wmmmm亚洲av在线观看| 可以在线观看毛片的网站| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品aⅴ在线观看| 特大巨黑吊av在线直播| 亚洲内射少妇av| 欧美不卡视频在线免费观看| 国产美女午夜福利| 日韩制服骚丝袜av| 18+在线观看网站| 丰满少妇做爰视频| 日本与韩国留学比较| 观看免费一级毛片| 一个人免费在线观看电影| 寂寞人妻少妇视频99o| 国产精品久久久久久久久免| 国产成人精品婷婷| 色综合色国产| 久久精品夜色国产| 亚洲国产精品专区欧美| 成人综合一区亚洲| 日韩av在线大香蕉| 亚洲精品乱码久久久久久按摩| 99久久人妻综合| 久久久精品94久久精品| 一级黄色大片毛片| 麻豆av噜噜一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 一级毛片aaaaaa免费看小| 女人十人毛片免费观看3o分钟| 久久久久久九九精品二区国产| 欧美成人午夜免费资源| 国产高清国产精品国产三级 | 国产淫片久久久久久久久| av国产免费在线观看| 日本一本二区三区精品| 精品免费久久久久久久清纯| 成人毛片a级毛片在线播放| 亚洲久久久久久中文字幕| 国产视频首页在线观看| 亚洲国产高清在线一区二区三| 嘟嘟电影网在线观看| 有码 亚洲区| 一级黄色大片毛片| 超碰97精品在线观看| 欧美精品国产亚洲| 网址你懂的国产日韩在线| 麻豆乱淫一区二区| av又黄又爽大尺度在线免费看 | 99九九线精品视频在线观看视频| 网址你懂的国产日韩在线| 日韩一区二区三区影片| 免费不卡的大黄色大毛片视频在线观看 | 91精品一卡2卡3卡4卡| 免费观看的影片在线观看| 亚洲成人中文字幕在线播放| 亚洲av中文字字幕乱码综合| 一级毛片我不卡| 91av网一区二区| 精品久久久噜噜| 毛片一级片免费看久久久久| 汤姆久久久久久久影院中文字幕 | 久久久欧美国产精品| 日韩高清综合在线| 日产精品乱码卡一卡2卡三| 亚洲人成网站高清观看| 色播亚洲综合网| 亚洲真实伦在线观看| 久久久精品大字幕| 欧美成人a在线观看| 亚洲自拍偷在线| 秋霞伦理黄片| 久久久久九九精品影院| 国产一区二区在线观看日韩| 欧美变态另类bdsm刘玥| 国产亚洲av嫩草精品影院| 亚洲成人中文字幕在线播放| 国产午夜精品一二区理论片| 国产亚洲精品久久久com|