• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Absorption Enhancement of Ultrathin Crystalline Silicon Solar Cells with Dielectric Si3N4 Nanostructures?

    2019-11-07 02:58:56XinYuTan譚新玉LeiSun孫磊GuoRongZhang張國容CanDeng鄧燦YiTengTu涂伊騰andLiGuan關麗
    Communications in Theoretical Physics 2019年11期
    關鍵詞:孫磊

    Xin-Yu Tan (譚新玉), Lei Sun (孫磊), Guo-Rong Zhang (張國容), Can Deng (鄧燦), Yi-Teng Tu (涂伊騰), and Li Guan (關麗)

    1China Three Gorges University,College of Materials and Chemical Engineering,Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Yichang 443002, China

    2Department of Physics Science and Technology, Hebei University, Baoding 071000, China

    3College of Electrical Engineering & New Energy, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Yichang 443002, China

    Abstract A design of ultrathin crystalline silicon solar cell with Si3N4 circular truncated cone holes(CTCs)arrays on the top is proposed.In this article, we perform an optical simulation of the structure.The finite-difference time-domain method is used to calculate the optical absorption of different periods, radius of top and bottom circles and depth of Si3N4 CTCs.The short-circuit current density generated by the optimized cells (30.17 mA/cm2) is 32.44% more than the value gained by control group (with flat Si3N4).Then adding a layer of back silver to allow us to better analyze optical absorption.Later, we simulate the optimization of the same configuration of different silicon thicknesses and find that our structure does enhance the light absorption.This work uses a combined path towards achieving higher photocurrent ultrathin crystalline silicon solar cells by constructing the texture of anti-reflection coating.

    Key words:photovoltaic, silicon, diffraction gratings, antireflection coatings

    1 Introduction

    Since the beginning of the 21st century, people are increasingly looking forward to the era of solar power generation under the serious impact of the two major crises of bottoming out of oil exploitation and deteriorating since ecological environment.[1]Solar energy is an inexhaustible source of renewable energy for mankind, which does not generate any environmental pollution.Photovoltaic is one of the fastest growing fields of research in recent years.[2]To this end, people developed solar cells.There are many types of solar cells, such as crystalline silicon solar cell, amorphous silicon solar cell, GaAs Solar Cells and Perovskite solar cells, etc.Silicon solar cells play a very important role in the photovoltaic industry.[3]Crystalline silicon solar cells occupy the dominant position in the solar cell market.Its preparation technology represents the preparation technology of the entire photovoltaic cell industry.Traditional crystalline silicon solar cells consist of silicon, the main part of the solar cell is fragile and easy to produce invisible cracks.Most of them have a layer of toughened glass as protection,resulting in heavy weight, inconvenient portability, poor seismic capacity, high cost.Thin film solar cells overcome the above shortcomings but with lower efficiency.Thin film silicon solar cells become increasingly important because high efficiency and low manufacturing costs of photovoltaic cells both need to be taken into account at the same time.Light trapping is a vital factor in the development of thin-film photovoltaic devices.Cell performances reduce with the active layers becoming thinner.One approach to enhancing their light utilization efficiency is to reduce the reflection of the incident light by front surface modifications.Until now, a number of proposals have been taken to achieve the goal, including anti-reflective coating and surface texturing.First method is to reduce the reflection on front surface.Second method increases the optical path length of light within the cell.For the former sort, reducing reflection on the surface via introducing the quarter wavelength antireflection layer has been proposed.Certain intermediate materials are usually used, such as silicon dioxide (SiO2),[4]silicon nitride(Si3N4),[5?6]and other transparent conductive oxides.[7]The second category is to construct surface texture ranging from random arrays to regularly arrays for more lights scattering or gain light scattering from noble metal nanoparticles that are excited at their surface plasmon resonance.The scattering may availably enhance the light absorption in thin film solar cells.For the first method, different materials have been studied for simulated results show that, an individual antireflection film in solar cells at the beginning.Then multiple antireflection films also have been investigated.As for the second method, a great number of nanostructures or metal nanoparticles[8?11]were proposed to increase light absorption, such as constructing photosensitive materials into arrays like nanoparticles,[11]nanowires,[12?15]nanoholes(NHs),[16?22]nanocones (NCs)[23]or introducing surface plasmons.Later combination methods show better results have been proposed,[24?26]In most of the articles,the researchers used the experience of predecessors to construct the surface morphology(make more light reflection happen) directly on solar cell material or to add multiple anti-reflection layers (make more light enter the cell) on the material.In this article, we combine two approaches to adding a textured anti-reflection layer on the surface of a solar cell to make both light reflection and anti-reflection happen at the same time and further produce optical coupling.The structure can be easily achieved by using nanoimprint lithography.[27]We systematically studied how the depth of circular truncated cone holes (CTCs), antireflection layer’s thickness, duty circle, thickness of silver and period affects solar cell’s short-current current density (Jsc) character.Simulated results show that aJscof 30.17 mA/cm2was produced in optimum parameters at an equivalent thickness of 2330 nm,produces an short-circuit current enhancement of 32.44% with respect to the planar reference system in the range of 300 nm to 1100 nm.And with a silver rear reflection equipped, theJscand short-circuit current enhancement mentioned above can be achieved to 32.26 mA/cm2.

    2 Methods

    3D diagram of the control group shows in Fig.1(a).It is a solar cell with 67 nm flat Si3N4anti-reflection layer.[33]We choose this thickness of Si3N4as control group because it has already been optimized and confirmed in Ref.[33].Figure 1(b) displays the diagram of designed cells with Si3N4CTCs etched by air.Model in Fig.1(c) adds a rear reflection layer compared with the model in Fig.1(b).The geometric parameters were introduced in Fig.1(d).The period of the model is shown asP.The thickness of Si3N4layer is set asH1, and the depth of CTCs is set asH2.The thickness between hole and silicon isH3.The relationship betweenH1,H2, andH3is defined asH1=H2+H3.The diameter on the top of CTCs isD.The diameter on the bottom of CTCs isd.The top duty circle (tdc) and bottom duty circle (bdc) of nanostructures is defined astdc=D/Pandbdc=d/P,[28]respectively.In our work, the thickness of active layer is fixed as 2.33 um for Refs.[19, 21?22].All outcomes gained by data simulation were calculated via finite difference time domain(FDTD)method.Many different numerical methods have been used to calculate absorptivity of solar cells such as transfer matrix method (TMM),[12]finite-difference time-domain method (FDTD),[10,17]rigorous coupled-wave analysis (RCWA)[22]and finite element method (FEM).[11]Compared with other numerical methods, the FDTD can be easy to calculate the distribution of electromagnetic field of arbitrary material and structure.So FDTD method is employed to simulate the optical behaviors of nanostructures in this paper.In our paper, we simulated a plane wave in the range of (300–1100)nm as incident light.The boundary conditions inxdirection andy-direction are set to periodic.The boundary condition inz-direction is set to PML (Perfect Match Layer).The optical constants for all the media studied in this work were provided in Palik’s experimental data.[29]The p-type and n-type regions are deemed to be slightly doped so they can be modelled by identical optical constants as intrinsic crystalline silicon.In our simulations,front reflectanceR(λ) on the surface and the transmittanceT(λ) at the back surface were measured, and the absorptance was defined byA(λ)=1?R(λ)?T(λ).Supposing every electron-hole pair benefits photocurrent, the short-circuit current density (Jsc) is gained by:[30]

    where,emeans the charge of an electron,cmeans the speed of light in the free space,hmeans Plank’s constant,λgmeans the free space wavelength corresponding to the band gap of c-Si(gE=1.12 eV),i.e.1127 nm, andIAM1.5(λ) is the solar irradiance under the global 37?tilt Air Mass 1.5 spectrum.[31]

    Fig.1 (Color online) (a) 3D diagram of structure with 67 nm flat Si3N4 used as a control group for optimization of texture parameter using simulation.(b) 3D diagram of structure with Si3N4 CTCs arrays used for optimization of texture parameter using simulation.(c)3D diagram of structure with Si3N4 CTCs arrays and back silver reflector used for optimization of texture parameter using simulation.(d)Schematic of the FDTD simulation model in Fig.1(b).PML perfectly matched layer, PBC periodic boundary condition.

    3 Results and Discussion

    In order to compare and explain the validity of the approach, we first studied theJscof 2330 nm bare c-Si film and the optimized structure only equipped with a 67 nm flat Si3N4antireflection as control group.TheJscof 2330 nm bare c-Si film is 15.89 mA/cm2calculated via the formula.And theJscof control group isJsc=22.78 mA/cm2.Figure 2 shows the relationship betweentdcandbdcin different period.Thetdcandbdcare studied for different array period valuesPthat ranging from 500 nm to 800 nm in steps of 100 nm whiletdcandbdcare both set varying from 0.2 to 1.0 in steps of 0.2.H1is first set as 500 nm andH2is first set as 450 nm.We use two-dimensional sweeping to find the best value ofJscin order to find the besttdcandbdc.Based on this we can find the best period from the trend ofJscas the period raising.

    We can learn from Figs.2(a)–2(d)that at the same period,there is a region of highJscwhere thebdcranges from 0.2 to 1.0,tdcvalues 1.0.This shows thatJscrises with increasing size of the circular truncated cone top hole.We can see that the results ofJscreach to the peak whentdcandbdcare set as 1.0 and 0.8, respectively.TheJscincreases from 500 nm to 700 nm in period but decreases in 800 nm.The drop at 800 nm indicates that the textured Si3N4has the best matching light absorption coupling effect when adjusting the duty circle of the circular truncated cone holes at a period of 700 nm.So the period is fixed in 700 nm.The peak value ofJscis 29.20 mA/cm2,produces a short-circuit enhancement of 28.18% with respect to the reference planar system.

    Fig.2 (Color online)Relationship of Jsc under different combinations of tdc and bdc in different period.(a)P=500 nm,(b) P=600 nm, (c) P=700 nm, (d) P=800 nm.

    Next,we try to find the influence ofH1andH3onJsc.In Fig.3(a),heretdcandbdcare fixed as 1.0 and 0.8.And period is fixed in 700 nm based on above results.From Fig.3(a) we can see thatJscincreased initially, followed by a decrease and the best result shows whenH3is 50 nm at the same timeH1ranges from 400 nm to 500 nm.WhenH1reaches 600 nm, the peak ofJscapproaches whenH3is 60 nm because of a combination effect caused by our designed structure.AndJscdecreases absorption occurs obviously whenH1ranges from 700 nm to 800 nm.And the best choice ofH1andH3is 600 nm and 60 nm,respectively.The best value ofJscis 30.17 mA/cm2, generates a short-circuit enhancement of 32.44%.We can roughly see the relationship betweenH3and absorption of silicon in Fig.3(b).With the increasing ofH3, the absorption increases asH3raises in the range of 450 nm to 590 nm,which is in accord with the theory of quarter wavelength layers.The Si3N4thin film between hole and silicon acts as a single quarter wavelength layer, which enhances the absorption in this area.But the absorption decreases asH3raises before 450 nm, The absorption before 450 nm decreases significantly whenH3increases to 70 nm,which makes the best total absorption occur ifH3is set as 60 nm.

    Fig.3 (Color online) (a) Relationship between Jsc and H3 at different H1.(b).Absorption spectrum for Si with different H3.(40 nm, 50 nm not shown here because the lines are too dense).

    The front system plays an important role in weakening the front reflection.After determining the best parameters on the front system of silicon, a rear reflector to enhance the back reflection is designed and studied to understand the behavior of the CTCs arrays.In order to enhance back reabsorption, a thin silver layer is designed to the back.The thickness of a flat silver back reflection(H)is been swept and shown in Fig.4(a).From Fig.4(a) we can see that, when thickness of silver ranges from 50 nm to 110 nm, theJscincreases slowly.WhenHis above 110 nm, theJscshows no increasing.So the optimizedHwe chose as 110 nm.Comparison of absorption spectra for different configurations lists in Fig.4(b).From Fig.4(b)we can see that,the absorption curve with the front system has greatly improved below the 450 nm compared with the flat system absorption curve.This is because that this wavelength band cannot enter the deep silicon.And the optical path is increased due to the combined effects of diffraction, reflection and refraction when the light enters the front system.In the wavelength range of 500 nm–590 nm,the comparison of the light absorption curves shows that the silicon absorption with the front system is slightly inferior to that of the quarter-wavelength layer specially constructed to enhance absorption in this band.The flat system absorption curve at a wavelength greater than 590 nm exhibits a well-shaped Fabry-Perot resonance.In the wavelength below 500 nm areas, light does not reach to the silver layer so the absorption curve with or without silver is the same.

    Fig.4 (Color online) (a) Relationship between Jsc and thickness of back silver.(b) Comparison of absorption spectra for different configurations.Blue line means the absorption spectrum equipped with 67 nm flat Si3N4.Red line means the absorption spectrum only with front system.Black line means the absorption spectrum with front system and back flat silver reflector.Green line means the absorption spectrum of bare silicon.

    In the wavelength above 500 nm areas, light reaches the bottom of the silver layer and being reabsorbed.It leads to a peak Jsc reaches 32.26 mA/cm2.The reference cell is an anti-reflection layer constructed in accordance with a quarter-wavelength layer that enhances transmission in the corresponding wavelength region to enhance absorption.After the morphology is formed,light absorption is a combined effect of anti-reflection and grating.An unusual light absorption decreasing occurred because of partly destructive interference (such as in the wavelength region of(500–600) nm).So light absorption in this area is weakened.But it should be noted that in the entire wavelength range except for(500–600)nm,our structure undoubtedly enhances light absorption.

    To comprehend the optical behaviors in silicon layer,we compared the outcome of the control group, structure with Si3N4CTCs arrays and structure with Si3N4CTCs arrays and back silver reflector.The absorption per unit volume, normalized to source power, can be calculated.Figure 5 shows the profile of the optical absorption per unit volume.[21]The unit is watt/um3.The absorption density maps of x-z cross-section are shown in Figs.5(a)–5(c) at the wavelengths of 600 nm.Figures 5(a)?5(c)display the absorption density maps of silicon in the structures configured as showed in Figs.1(a)–1(c),respectively.It can be seen from the wave pattern of the light absorption field that the light resonates strongly in the structure.Compared to the control group,structure with Si3N4CTCs arrays make more incident light enter deeper silicon.Thus, the absorption has been greatly improved.And structure with Si3N4CTCs arrays and back silver reflector further enhance the bottom absorption (Fig.5(c)).It can be known from Fig.5(d) that the front Si3N4CTCs arrays provide a great positive impact on light absorption.With a back reflector equipped, the absorption can be further improved.

    Fig.5 (Color online) Two-dimensional light absorption density distribution profiles of the silicon part in our solar cell at a wavelength of 600 nm of x-z cross-section.(a) The structure of control group corresponds to Fig.1(a).(b) The structure with Si3N4 CTCs arrays corresponds to Fig.1(b).(c) The structure with Si3N4 CTCs arrays and back silver reflector corresponds to Fig.1(c).(d) Comparison of the short-circuit currents generated by the three structures (red bars) corresponding to Figs.1(a)–1(c), the bare silicon (black dashed line).

    Later theJscenhancements of different thickness of silicon solar cells with and without optimized structure were calculated.The results are shown in Fig.6.The results show that with the increase of silicon thickness,the solar cellJscequipped with our optimized structure is still strengthening, but this enhancement is slowly decreasing due to the increase of silicon thickness.This is because the sunlight cannot enter the deep silicon with the increasing of silicon thickness.At the same time, this also shows that our structure does have the effect of enhancing light absorption.Nevertheless, in reality, effects such as drift-diffusion and uncertainties will continue to appear in real solar cells.Therefore, theJscobtained in reality will not reach the theoretical consequences.So far, thickness of 2330 nm silicon has become a research hot spot for many researchers.Compared to structures with absorbent layers of the same thickness, the short circuit photocurrent density approached by our structure is greater than the majority of the reported outcome.[19,21]In order to better compare the final results, we change the thickness of silicon to 2 um.A 30.37 mA/cm2Jsccould be generated and the outcome is also better than the result achieved by the structure with front-grating in Ref.[32].The Yablonovitch limit of 2 um silicon can generate a short circuit current of 35.5 mA/cm2.Compared to structure in Ref.[23],ourJscis lower.But our structure is not modified in the structure of silicon.

    Fig.6 (Color online)Jsc enhancement of different thickness (2330 nm, 2500 nm, 5000 nm, 10000 nm) of silicon solar cell with and without optimized structure.

    It is a modification of the structure of silicon nitride, and technically our structure forming technology is well developed.From this point of view, our structure is still innovative.We studied the enhancement of light absorption by front textured anti-reflection film combined with simple back single-layer reflective layer.From the perspective of optical research, a stronger enhancement was obtained by adding a front strong light trapping structure and a back strong reflection structure.This is a trend in the field of lighting trapping structures, which we will further design in our future research.

    4 Conclusion

    In general, the investigations on ultrathin-film silicon solar cells are necessary due to a variety of motivations.The effect of setting up a texture of antireflection layer on ability of light trapping was methodically studied and it can help to achieve higher photocurrent density for the improved PCE.We proposed and investigated ultrathin silicon solar cell architecture with CTCs anti-reflection layer.In CTCs,the available light bounces repeatedly in the hole and couples into silicon.And the thin-film Si3N4under the hole also has a positive influence on the enhancement of the couple.The combined effect of these two aspects produces a betterJsc.The results indicate that cells with Si3N4CTCs arrays get a stronger ability to absorb the light.TheJscgenerated by the cells with Si3N4CTCs arrays reaches 30.17 mA/cm2, which is 32.44% higher than the value gained by control group.And by simply adding a layer of silver rear reflection to the optimized configuration above, brings a photocurrent of 32.26 mA/cm2, produces a best short-circuit current enhancement of 41.62%higher than the control group.Although Si3N4is an insulator, the CTCs of our structure owns a great space.Thickness between Si3N4 and silicon is only 60 nm.The planar silicon solar cell on the market can be achieved in a thickness of 75 nm Si3N4.So this will not be a problem for preparation.In summary, the calculations presented in this paper demonstrate that it is potential to enhance absorption by building textures on antireflection layers.

    猜你喜歡
    孫磊
    孫磊
    揚子江(2022年4期)2022-07-04 22:23:49
    自動售票機拆移的必要性及施工注意事項分析
    20年租房合同緣何不算數(shù)?
    婦女生活(2020年5期)2020-06-12 11:35:08
    出征曲
    大眾文藝(2020年10期)2020-06-05 06:02:14
    孫磊:“妄念者”的詩
    齊魯周刊(2019年24期)2019-06-26 06:26:14
    一種窮途
    不知歸期的故人
    南風(2019年1期)2019-05-05 10:00:46
    情別戰(zhàn)友
    當代音樂(2018年1期)2018-05-14 21:11:39
    孫磊繪畫作品
    山花(2015年16期)2015-02-05 09:13:04
    電腦奇才合成美女,騙慘癡戀的遠方來客
    精品久久久久久久久久久久久| 日本三级黄在线观看| 欧美日韩中文字幕国产精品一区二区三区| 午夜影院日韩av| 天天一区二区日本电影三级| 特大巨黑吊av在线直播| 欧美xxxx黑人xx丫x性爽| 久久久精品欧美日韩精品| 亚洲成人精品中文字幕电影| 国产极品精品免费视频能看的| netflix在线观看网站| 91麻豆av在线| 美女 人体艺术 gogo| 免费看十八禁软件| or卡值多少钱| 久久这里只有精品中国| 久久久久久人人人人人| 中文资源天堂在线| xxx96com| 精品久久蜜臀av无| 亚洲欧美日韩高清专用| 偷拍熟女少妇极品色| 亚洲18禁久久av| 欧美日本亚洲视频在线播放| 999精品在线视频| 91在线观看av| 99精品在免费线老司机午夜| 国产久久久一区二区三区| 99精品久久久久人妻精品| 成人无遮挡网站| 极品教师在线免费播放| 丰满人妻一区二区三区视频av | 欧美成人性av电影在线观看| 国产黄a三级三级三级人| 日韩 欧美 亚洲 中文字幕| 亚洲乱码一区二区免费版| 99国产极品粉嫩在线观看| 成人高潮视频无遮挡免费网站| 国产高清三级在线| 性欧美人与动物交配| 夜夜夜夜夜久久久久| 国产精华一区二区三区| 99久久无色码亚洲精品果冻| 精品久久久久久久毛片微露脸| 色吧在线观看| 国内揄拍国产精品人妻在线| 天天躁狠狠躁夜夜躁狠狠躁| 又粗又爽又猛毛片免费看| 国产精品亚洲一级av第二区| 国产免费男女视频| 成人精品一区二区免费| 欧美大码av| 亚洲人成伊人成综合网2020| bbb黄色大片| 一级作爱视频免费观看| 一本一本综合久久| 熟女人妻精品中文字幕| 好男人在线观看高清免费视频| tocl精华| 国产成人影院久久av| 精品国产乱码久久久久久男人| 欧美一区二区国产精品久久精品| 久久久久久久午夜电影| 久久中文字幕人妻熟女| 亚洲色图 男人天堂 中文字幕| 麻豆av在线久日| 91在线精品国自产拍蜜月 | 久久午夜综合久久蜜桃| 亚洲avbb在线观看| 欧美中文综合在线视频| 亚洲精品乱码久久久v下载方式 | 国产精华一区二区三区| 一本一本综合久久| 好男人在线观看高清免费视频| av女优亚洲男人天堂 | 亚洲色图 男人天堂 中文字幕| 黄频高清免费视频| 午夜亚洲福利在线播放| 男插女下体视频免费在线播放| 色精品久久人妻99蜜桃| 91麻豆精品激情在线观看国产| 久久中文字幕人妻熟女| 欧美日韩中文字幕国产精品一区二区三区| 综合色av麻豆| 精品久久久久久久末码| 国内精品久久久久久久电影| 啦啦啦韩国在线观看视频| 免费无遮挡裸体视频| 美女免费视频网站| 嫩草影院精品99| 欧美色视频一区免费| 国内精品久久久久久久电影| 日韩欧美在线二视频| 最近最新免费中文字幕在线| 五月伊人婷婷丁香| 成人三级黄色视频| 成人特级黄色片久久久久久久| 精品国产亚洲在线| 精品一区二区三区视频在线观看免费| 国产精品98久久久久久宅男小说| 亚洲精品一卡2卡三卡4卡5卡| 两性午夜刺激爽爽歪歪视频在线观看| 熟妇人妻久久中文字幕3abv| 国产午夜精品论理片| 看黄色毛片网站| 成人欧美大片| 国产精品电影一区二区三区| 亚洲午夜理论影院| netflix在线观看网站| 啦啦啦韩国在线观看视频| 亚洲av中文字字幕乱码综合| 制服人妻中文乱码| 国产又黄又爽又无遮挡在线| 国产成人av激情在线播放| 成人一区二区视频在线观看| 成人欧美大片| 一区二区三区国产精品乱码| 亚洲无线观看免费| 99国产精品一区二区三区| 日韩国内少妇激情av| 麻豆成人av在线观看| 久久国产精品影院| 在线观看66精品国产| 日本黄大片高清| 丰满的人妻完整版| 一二三四社区在线视频社区8| 嫩草影院精品99| 亚洲黑人精品在线| 亚洲五月婷婷丁香| 国产淫片久久久久久久久 | 三级毛片av免费| 久久草成人影院| 亚洲av电影不卡..在线观看| 久久久久精品国产欧美久久久| 夜夜躁狠狠躁天天躁| 国产亚洲精品av在线| 久久国产精品影院| 久久精品91蜜桃| 成人国产一区最新在线观看| 97人妻精品一区二区三区麻豆| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕人妻丝袜一区二区| 国产精品自产拍在线观看55亚洲| 成在线人永久免费视频| 最近最新中文字幕大全免费视频| 青草久久国产| 亚洲人成电影免费在线| x7x7x7水蜜桃| 精品99又大又爽又粗少妇毛片 | 18禁黄网站禁片午夜丰满| 成年女人毛片免费观看观看9| 亚洲欧洲精品一区二区精品久久久| 久久热在线av| netflix在线观看网站| 日韩中文字幕欧美一区二区| 午夜视频精品福利| 亚洲 国产 在线| 国产精品香港三级国产av潘金莲| 久久久久久久午夜电影| 亚洲性夜色夜夜综合| 久久久久久大精品| 成人特级av手机在线观看| 午夜福利18| 免费在线观看亚洲国产| 88av欧美| 亚洲av五月六月丁香网| av天堂在线播放| 亚洲熟女毛片儿| 色哟哟哟哟哟哟| 午夜福利欧美成人| АⅤ资源中文在线天堂| 黄频高清免费视频| 最近在线观看免费完整版| 亚洲人与动物交配视频| 少妇的丰满在线观看| 成人三级做爰电影| 久久久精品大字幕| 成人永久免费在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美+亚洲+日韩+国产| 亚洲成人中文字幕在线播放| 精品乱码久久久久久99久播| 亚洲av美国av| 天堂动漫精品| 精品免费久久久久久久清纯| 亚洲国产色片| 女人被狂操c到高潮| 日本在线视频免费播放| 天堂av国产一区二区熟女人妻| 日韩精品中文字幕看吧| 人妻夜夜爽99麻豆av| 国产又色又爽无遮挡免费看| 欧美黄色片欧美黄色片| 欧美性猛交╳xxx乱大交人| 国产高清有码在线观看视频| tocl精华| 亚洲第一电影网av| 久久久久免费精品人妻一区二区| 午夜两性在线视频| 精品人妻1区二区| 草草在线视频免费看| 亚洲国产欧美人成| 免费人成视频x8x8入口观看| 在线观看免费午夜福利视频| 亚洲av电影不卡..在线观看| 在线播放国产精品三级| 国产成人精品久久二区二区免费| 精品国产亚洲在线| av中文乱码字幕在线| 精品国产三级普通话版| 免费高清视频大片| 51午夜福利影视在线观看| 久久久久九九精品影院| 很黄的视频免费| 久久国产精品人妻蜜桃| 好看av亚洲va欧美ⅴa在| 国产午夜福利久久久久久| 欧美又色又爽又黄视频| av国产免费在线观看| 亚洲激情在线av| 亚洲精品美女久久av网站| 偷拍熟女少妇极品色| 久久精品91无色码中文字幕| 在线免费观看不下载黄p国产 | 国产精品精品国产色婷婷| av在线天堂中文字幕| 日日干狠狠操夜夜爽| 亚洲精华国产精华精| 狂野欧美白嫩少妇大欣赏| 99热这里只有精品一区 | 黑人操中国人逼视频| 曰老女人黄片| 国产av在哪里看| 十八禁网站免费在线| 91av网站免费观看| 高清毛片免费观看视频网站| 亚洲第一欧美日韩一区二区三区| 免费观看精品视频网站| www日本在线高清视频| 国产午夜福利久久久久久| 国产真人三级小视频在线观看| 国产欧美日韩一区二区三| 国产精品爽爽va在线观看网站| av女优亚洲男人天堂 | 精华霜和精华液先用哪个| 亚洲精品国产精品久久久不卡| 嫁个100分男人电影在线观看| 亚洲男人的天堂狠狠| 亚洲va日本ⅴa欧美va伊人久久| 黄色 视频免费看| 色综合亚洲欧美另类图片| 极品教师在线免费播放| av女优亚洲男人天堂 | 午夜福利18| 亚洲精品粉嫩美女一区| 久久久久九九精品影院| 亚洲av电影不卡..在线观看| 国产伦一二天堂av在线观看| 99国产极品粉嫩在线观看| 香蕉av资源在线| 母亲3免费完整高清在线观看| 在线看三级毛片| 亚洲精品乱码久久久v下载方式 | 国产 一区 欧美 日韩| 欧美乱色亚洲激情| ponron亚洲| 一a级毛片在线观看| 国产午夜精品久久久久久| 久久久久久久精品吃奶| 成年人黄色毛片网站| 精品久久久久久成人av| 亚洲av中文字字幕乱码综合| 又黄又爽又免费观看的视频| 精品电影一区二区在线| 18禁国产床啪视频网站| 国产精品久久久人人做人人爽| 黄片小视频在线播放| 男女视频在线观看网站免费| 成人三级做爰电影| 91在线观看av| 91字幕亚洲| 中文字幕人妻丝袜一区二区| 亚洲欧美一区二区三区黑人| 在线免费观看不下载黄p国产 | 久久久久性生活片| 精品国产乱子伦一区二区三区| 麻豆成人av在线观看| 色噜噜av男人的天堂激情| 观看美女的网站| 美女高潮的动态| 一本综合久久免费| 久久久国产欧美日韩av| 九色成人免费人妻av| 毛片女人毛片| 九色国产91popny在线| 免费av不卡在线播放| 午夜a级毛片| 九九热线精品视视频播放| 国产欧美日韩一区二区精品| 国产在线精品亚洲第一网站| 成人特级黄色片久久久久久久| 在线观看一区二区三区| 亚洲黑人精品在线| 精品久久久久久成人av| 国产精品一区二区精品视频观看| 国内揄拍国产精品人妻在线| 男女视频在线观看网站免费| 蜜桃久久精品国产亚洲av| 欧美激情久久久久久爽电影| 啦啦啦免费观看视频1| 欧美成人性av电影在线观看| 精品久久久久久成人av| 一二三四在线观看免费中文在| 国产精品av视频在线免费观看| 天天躁日日操中文字幕| 国产精品永久免费网站| 手机成人av网站| 国产蜜桃级精品一区二区三区| 精品久久久久久久末码| 法律面前人人平等表现在哪些方面| 变态另类成人亚洲欧美熟女| 久久99热这里只有精品18| www.www免费av| 成人18禁在线播放| 国产精品一区二区三区四区免费观看 | 一个人看的www免费观看视频| av欧美777| 18美女黄网站色大片免费观看| www.精华液| 三级男女做爰猛烈吃奶摸视频| 国产私拍福利视频在线观看| 给我免费播放毛片高清在线观看| 精品国内亚洲2022精品成人| 好男人电影高清在线观看| 国产精品爽爽va在线观看网站| 国产69精品久久久久777片 | 舔av片在线| 午夜福利成人在线免费观看| 黑人巨大精品欧美一区二区mp4| 免费电影在线观看免费观看| 午夜免费激情av| 午夜精品一区二区三区免费看| 伊人久久大香线蕉亚洲五| 欧美性猛交黑人性爽| 精品一区二区三区四区五区乱码| 看黄色毛片网站| 2021天堂中文幕一二区在线观| 精品免费久久久久久久清纯| 亚洲欧洲精品一区二区精品久久久| 999久久久精品免费观看国产| 亚洲18禁久久av| 精品无人区乱码1区二区| 国产亚洲精品一区二区www| 午夜a级毛片| 日本一二三区视频观看| 国产探花在线观看一区二区| av天堂在线播放| 日韩av在线大香蕉| 伦理电影免费视频| 亚洲国产高清在线一区二区三| 一二三四社区在线视频社区8| 国产成人av教育| 不卡av一区二区三区| 久久亚洲精品不卡| 成年人黄色毛片网站| 人人妻人人看人人澡| 欧美av亚洲av综合av国产av| 99国产精品一区二区蜜桃av| 国产 一区 欧美 日韩| 成人av一区二区三区在线看| 亚洲九九香蕉| 国产精品 欧美亚洲| 亚洲中文字幕一区二区三区有码在线看 | 日韩av在线大香蕉| 亚洲天堂国产精品一区在线| 精品国产亚洲在线| 亚洲精品粉嫩美女一区| 在线看三级毛片| 成人国产综合亚洲| 国产91精品成人一区二区三区| 黄色片一级片一级黄色片| 久久久久免费精品人妻一区二区| ponron亚洲| 亚洲五月天丁香| 国产精品电影一区二区三区| 亚洲美女黄片视频| 18禁美女被吸乳视频| 伦理电影免费视频| 好男人电影高清在线观看| 制服丝袜大香蕉在线| 精品99又大又爽又粗少妇毛片 | 亚洲中文字幕一区二区三区有码在线看 | 一边摸一边抽搐一进一小说| 日本一本二区三区精品| 伊人久久大香线蕉亚洲五| 免费看美女性在线毛片视频| www.熟女人妻精品国产| 999久久久国产精品视频| av视频在线观看入口| 91老司机精品| 91在线精品国自产拍蜜月 | 好男人在线观看高清免费视频| 成人精品一区二区免费| 97人妻精品一区二区三区麻豆| 精品免费久久久久久久清纯| 午夜福利成人在线免费观看| 动漫黄色视频在线观看| 久久香蕉国产精品| 久久久国产成人精品二区| 全区人妻精品视频| 国产一区二区三区在线臀色熟女| 熟女少妇亚洲综合色aaa.| 我的老师免费观看完整版| 国产精品爽爽va在线观看网站| 亚洲国产中文字幕在线视频| 国产高潮美女av| 18禁美女被吸乳视频| 天堂网av新在线| 国产精品影院久久| 亚洲国产欧美一区二区综合| 在线播放国产精品三级| 嫩草影视91久久| 老鸭窝网址在线观看| 天堂网av新在线| 巨乳人妻的诱惑在线观看| 最近在线观看免费完整版| 国产免费男女视频| 亚洲,欧美精品.| 欧美黄色淫秽网站| 全区人妻精品视频| 俄罗斯特黄特色一大片| 制服人妻中文乱码| 日本五十路高清| 国产精品久久视频播放| 国产亚洲精品综合一区在线观看| 男女做爰动态图高潮gif福利片| 亚洲色图 男人天堂 中文字幕| 欧美高清成人免费视频www| 精品国产三级普通话版| 在线观看免费午夜福利视频| 一二三四在线观看免费中文在| 中文字幕熟女人妻在线| 久久人妻av系列| 欧美av亚洲av综合av国产av| 精品一区二区三区视频在线 | 99国产精品99久久久久| 久久精品夜夜夜夜夜久久蜜豆| 99精品久久久久人妻精品| 亚洲最大成人中文| 亚洲精品美女久久久久99蜜臀| 成年免费大片在线观看| 网址你懂的国产日韩在线| 一进一出抽搐动态| 精品一区二区三区四区五区乱码| 久久国产精品影院| 91av网站免费观看| 99热这里只有是精品50| www日本黄色视频网| 亚洲人成电影免费在线| 欧美日韩瑟瑟在线播放| 国产三级黄色录像| 日韩欧美国产在线观看| 亚洲欧美日韩无卡精品| 国产欧美日韩一区二区精品| 激情在线观看视频在线高清| 国产一区二区激情短视频| av黄色大香蕉| 少妇人妻一区二区三区视频| 午夜精品久久久久久毛片777| 国语自产精品视频在线第100页| 欧美日韩中文字幕国产精品一区二区三区| 成人18禁在线播放| 日本与韩国留学比较| 久久午夜亚洲精品久久| 曰老女人黄片| 亚洲九九香蕉| 麻豆一二三区av精品| 他把我摸到了高潮在线观看| 少妇的丰满在线观看| 成人av一区二区三区在线看| 色精品久久人妻99蜜桃| 久久精品亚洲精品国产色婷小说| 哪里可以看免费的av片| 国产精品 欧美亚洲| 亚洲自拍偷在线| 精品熟女少妇八av免费久了| 麻豆成人av在线观看| 一个人免费在线观看电影 | www.999成人在线观看| 校园春色视频在线观看| 人人妻,人人澡人人爽秒播| 又大又爽又粗| 欧美不卡视频在线免费观看| 亚洲av电影在线进入| 国产成人av激情在线播放| 草草在线视频免费看| 又爽又黄无遮挡网站| 此物有八面人人有两片| 成人性生交大片免费视频hd| 动漫黄色视频在线观看| 老鸭窝网址在线观看| 特级一级黄色大片| 日韩三级视频一区二区三区| 中文在线观看免费www的网站| 久久精品夜夜夜夜夜久久蜜豆| 老司机午夜福利在线观看视频| 女人高潮潮喷娇喘18禁视频| 久久久色成人| 黑人巨大精品欧美一区二区mp4| 国产黄色小视频在线观看| 国产1区2区3区精品| 五月玫瑰六月丁香| 法律面前人人平等表现在哪些方面| 无遮挡黄片免费观看| 无人区码免费观看不卡| 我的老师免费观看完整版| 桃红色精品国产亚洲av| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕一二三四区| 在线十欧美十亚洲十日本专区| 制服丝袜大香蕉在线| 久久精品国产综合久久久| 国产成年人精品一区二区| 两个人看的免费小视频| 18禁黄网站禁片免费观看直播| 亚洲成人久久爱视频| 成人av一区二区三区在线看| 美女cb高潮喷水在线观看 | 久久中文字幕人妻熟女| 亚洲av片天天在线观看| 成年女人永久免费观看视频| 亚洲在线自拍视频| 在线永久观看黄色视频| 国产激情久久老熟女| 男女下面进入的视频免费午夜| 狂野欧美激情性xxxx| 午夜影院日韩av| 久久久国产成人精品二区| 精品久久久久久,| 精品欧美国产一区二区三| 在线观看66精品国产| 日本 欧美在线| 三级男女做爰猛烈吃奶摸视频| 91久久精品国产一区二区成人 | 久久精品国产综合久久久| 国产一区二区在线av高清观看| 亚洲人成网站高清观看| 午夜免费观看网址| 国产久久久一区二区三区| 久久亚洲精品不卡| 日本在线视频免费播放| 热99在线观看视频| 久久伊人香网站| 18禁国产床啪视频网站| 99热这里只有精品一区 | 日本免费a在线| 亚洲av片天天在线观看| 一个人免费在线观看的高清视频| 可以在线观看毛片的网站| 亚洲精品粉嫩美女一区| 看黄色毛片网站| 亚洲精品国产精品久久久不卡| 波多野结衣巨乳人妻| 男女床上黄色一级片免费看| 人妻丰满熟妇av一区二区三区| 国产精品九九99| 日本一本二区三区精品| 国产蜜桃级精品一区二区三区| 欧美黄色淫秽网站| 欧美一区二区精品小视频在线| 日本免费a在线| 国产成人av激情在线播放| 巨乳人妻的诱惑在线观看| 久久性视频一级片| 亚洲av片天天在线观看| 欧美午夜高清在线| 黄色片一级片一级黄色片| 国产精品98久久久久久宅男小说| 露出奶头的视频| 99国产精品99久久久久| a级毛片a级免费在线| 国产激情欧美一区二区| 女生性感内裤真人,穿戴方法视频| 波多野结衣巨乳人妻| 国产精品自产拍在线观看55亚洲| 国产1区2区3区精品| 视频区欧美日本亚洲| 波多野结衣巨乳人妻| 听说在线观看完整版免费高清| 中文字幕高清在线视频| 色综合站精品国产| 亚洲一区二区三区不卡视频| 午夜亚洲福利在线播放| 亚洲专区字幕在线| 国产黄色小视频在线观看| 日韩精品中文字幕看吧| 这个男人来自地球电影免费观看| 在线观看66精品国产| 成年人黄色毛片网站| 一进一出抽搐gif免费好疼| 久久久久性生活片| 亚洲自拍偷在线| 精品午夜福利视频在线观看一区| 搡老岳熟女国产| 人妻久久中文字幕网| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧洲精品一区二区精品久久久| 亚洲av美国av| 麻豆一二三区av精品| 国产精品自产拍在线观看55亚洲| 亚洲自偷自拍图片 自拍| 日韩av在线大香蕉| 亚洲精品在线美女| 亚洲国产色片| 神马国产精品三级电影在线观看|