• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Absorption Enhancement of Ultrathin Crystalline Silicon Solar Cells with Dielectric Si3N4 Nanostructures?

    2019-11-07 02:58:56XinYuTan譚新玉LeiSun孫磊GuoRongZhang張國容CanDeng鄧燦YiTengTu涂伊騰andLiGuan關麗
    Communications in Theoretical Physics 2019年11期
    關鍵詞:孫磊

    Xin-Yu Tan (譚新玉), Lei Sun (孫磊), Guo-Rong Zhang (張國容), Can Deng (鄧燦), Yi-Teng Tu (涂伊騰), and Li Guan (關麗)

    1China Three Gorges University,College of Materials and Chemical Engineering,Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Yichang 443002, China

    2Department of Physics Science and Technology, Hebei University, Baoding 071000, China

    3College of Electrical Engineering & New Energy, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Yichang 443002, China

    Abstract A design of ultrathin crystalline silicon solar cell with Si3N4 circular truncated cone holes(CTCs)arrays on the top is proposed.In this article, we perform an optical simulation of the structure.The finite-difference time-domain method is used to calculate the optical absorption of different periods, radius of top and bottom circles and depth of Si3N4 CTCs.The short-circuit current density generated by the optimized cells (30.17 mA/cm2) is 32.44% more than the value gained by control group (with flat Si3N4).Then adding a layer of back silver to allow us to better analyze optical absorption.Later, we simulate the optimization of the same configuration of different silicon thicknesses and find that our structure does enhance the light absorption.This work uses a combined path towards achieving higher photocurrent ultrathin crystalline silicon solar cells by constructing the texture of anti-reflection coating.

    Key words:photovoltaic, silicon, diffraction gratings, antireflection coatings

    1 Introduction

    Since the beginning of the 21st century, people are increasingly looking forward to the era of solar power generation under the serious impact of the two major crises of bottoming out of oil exploitation and deteriorating since ecological environment.[1]Solar energy is an inexhaustible source of renewable energy for mankind, which does not generate any environmental pollution.Photovoltaic is one of the fastest growing fields of research in recent years.[2]To this end, people developed solar cells.There are many types of solar cells, such as crystalline silicon solar cell, amorphous silicon solar cell, GaAs Solar Cells and Perovskite solar cells, etc.Silicon solar cells play a very important role in the photovoltaic industry.[3]Crystalline silicon solar cells occupy the dominant position in the solar cell market.Its preparation technology represents the preparation technology of the entire photovoltaic cell industry.Traditional crystalline silicon solar cells consist of silicon, the main part of the solar cell is fragile and easy to produce invisible cracks.Most of them have a layer of toughened glass as protection,resulting in heavy weight, inconvenient portability, poor seismic capacity, high cost.Thin film solar cells overcome the above shortcomings but with lower efficiency.Thin film silicon solar cells become increasingly important because high efficiency and low manufacturing costs of photovoltaic cells both need to be taken into account at the same time.Light trapping is a vital factor in the development of thin-film photovoltaic devices.Cell performances reduce with the active layers becoming thinner.One approach to enhancing their light utilization efficiency is to reduce the reflection of the incident light by front surface modifications.Until now, a number of proposals have been taken to achieve the goal, including anti-reflective coating and surface texturing.First method is to reduce the reflection on front surface.Second method increases the optical path length of light within the cell.For the former sort, reducing reflection on the surface via introducing the quarter wavelength antireflection layer has been proposed.Certain intermediate materials are usually used, such as silicon dioxide (SiO2),[4]silicon nitride(Si3N4),[5?6]and other transparent conductive oxides.[7]The second category is to construct surface texture ranging from random arrays to regularly arrays for more lights scattering or gain light scattering from noble metal nanoparticles that are excited at their surface plasmon resonance.The scattering may availably enhance the light absorption in thin film solar cells.For the first method, different materials have been studied for simulated results show that, an individual antireflection film in solar cells at the beginning.Then multiple antireflection films also have been investigated.As for the second method, a great number of nanostructures or metal nanoparticles[8?11]were proposed to increase light absorption, such as constructing photosensitive materials into arrays like nanoparticles,[11]nanowires,[12?15]nanoholes(NHs),[16?22]nanocones (NCs)[23]or introducing surface plasmons.Later combination methods show better results have been proposed,[24?26]In most of the articles,the researchers used the experience of predecessors to construct the surface morphology(make more light reflection happen) directly on solar cell material or to add multiple anti-reflection layers (make more light enter the cell) on the material.In this article, we combine two approaches to adding a textured anti-reflection layer on the surface of a solar cell to make both light reflection and anti-reflection happen at the same time and further produce optical coupling.The structure can be easily achieved by using nanoimprint lithography.[27]We systematically studied how the depth of circular truncated cone holes (CTCs), antireflection layer’s thickness, duty circle, thickness of silver and period affects solar cell’s short-current current density (Jsc) character.Simulated results show that aJscof 30.17 mA/cm2was produced in optimum parameters at an equivalent thickness of 2330 nm,produces an short-circuit current enhancement of 32.44% with respect to the planar reference system in the range of 300 nm to 1100 nm.And with a silver rear reflection equipped, theJscand short-circuit current enhancement mentioned above can be achieved to 32.26 mA/cm2.

    2 Methods

    3D diagram of the control group shows in Fig.1(a).It is a solar cell with 67 nm flat Si3N4anti-reflection layer.[33]We choose this thickness of Si3N4as control group because it has already been optimized and confirmed in Ref.[33].Figure 1(b) displays the diagram of designed cells with Si3N4CTCs etched by air.Model in Fig.1(c) adds a rear reflection layer compared with the model in Fig.1(b).The geometric parameters were introduced in Fig.1(d).The period of the model is shown asP.The thickness of Si3N4layer is set asH1, and the depth of CTCs is set asH2.The thickness between hole and silicon isH3.The relationship betweenH1,H2, andH3is defined asH1=H2+H3.The diameter on the top of CTCs isD.The diameter on the bottom of CTCs isd.The top duty circle (tdc) and bottom duty circle (bdc) of nanostructures is defined astdc=D/Pandbdc=d/P,[28]respectively.In our work, the thickness of active layer is fixed as 2.33 um for Refs.[19, 21?22].All outcomes gained by data simulation were calculated via finite difference time domain(FDTD)method.Many different numerical methods have been used to calculate absorptivity of solar cells such as transfer matrix method (TMM),[12]finite-difference time-domain method (FDTD),[10,17]rigorous coupled-wave analysis (RCWA)[22]and finite element method (FEM).[11]Compared with other numerical methods, the FDTD can be easy to calculate the distribution of electromagnetic field of arbitrary material and structure.So FDTD method is employed to simulate the optical behaviors of nanostructures in this paper.In our paper, we simulated a plane wave in the range of (300–1100)nm as incident light.The boundary conditions inxdirection andy-direction are set to periodic.The boundary condition inz-direction is set to PML (Perfect Match Layer).The optical constants for all the media studied in this work were provided in Palik’s experimental data.[29]The p-type and n-type regions are deemed to be slightly doped so they can be modelled by identical optical constants as intrinsic crystalline silicon.In our simulations,front reflectanceR(λ) on the surface and the transmittanceT(λ) at the back surface were measured, and the absorptance was defined byA(λ)=1?R(λ)?T(λ).Supposing every electron-hole pair benefits photocurrent, the short-circuit current density (Jsc) is gained by:[30]

    where,emeans the charge of an electron,cmeans the speed of light in the free space,hmeans Plank’s constant,λgmeans the free space wavelength corresponding to the band gap of c-Si(gE=1.12 eV),i.e.1127 nm, andIAM1.5(λ) is the solar irradiance under the global 37?tilt Air Mass 1.5 spectrum.[31]

    Fig.1 (Color online) (a) 3D diagram of structure with 67 nm flat Si3N4 used as a control group for optimization of texture parameter using simulation.(b) 3D diagram of structure with Si3N4 CTCs arrays used for optimization of texture parameter using simulation.(c)3D diagram of structure with Si3N4 CTCs arrays and back silver reflector used for optimization of texture parameter using simulation.(d)Schematic of the FDTD simulation model in Fig.1(b).PML perfectly matched layer, PBC periodic boundary condition.

    3 Results and Discussion

    In order to compare and explain the validity of the approach, we first studied theJscof 2330 nm bare c-Si film and the optimized structure only equipped with a 67 nm flat Si3N4antireflection as control group.TheJscof 2330 nm bare c-Si film is 15.89 mA/cm2calculated via the formula.And theJscof control group isJsc=22.78 mA/cm2.Figure 2 shows the relationship betweentdcandbdcin different period.Thetdcandbdcare studied for different array period valuesPthat ranging from 500 nm to 800 nm in steps of 100 nm whiletdcandbdcare both set varying from 0.2 to 1.0 in steps of 0.2.H1is first set as 500 nm andH2is first set as 450 nm.We use two-dimensional sweeping to find the best value ofJscin order to find the besttdcandbdc.Based on this we can find the best period from the trend ofJscas the period raising.

    We can learn from Figs.2(a)–2(d)that at the same period,there is a region of highJscwhere thebdcranges from 0.2 to 1.0,tdcvalues 1.0.This shows thatJscrises with increasing size of the circular truncated cone top hole.We can see that the results ofJscreach to the peak whentdcandbdcare set as 1.0 and 0.8, respectively.TheJscincreases from 500 nm to 700 nm in period but decreases in 800 nm.The drop at 800 nm indicates that the textured Si3N4has the best matching light absorption coupling effect when adjusting the duty circle of the circular truncated cone holes at a period of 700 nm.So the period is fixed in 700 nm.The peak value ofJscis 29.20 mA/cm2,produces a short-circuit enhancement of 28.18% with respect to the reference planar system.

    Fig.2 (Color online)Relationship of Jsc under different combinations of tdc and bdc in different period.(a)P=500 nm,(b) P=600 nm, (c) P=700 nm, (d) P=800 nm.

    Next,we try to find the influence ofH1andH3onJsc.In Fig.3(a),heretdcandbdcare fixed as 1.0 and 0.8.And period is fixed in 700 nm based on above results.From Fig.3(a) we can see thatJscincreased initially, followed by a decrease and the best result shows whenH3is 50 nm at the same timeH1ranges from 400 nm to 500 nm.WhenH1reaches 600 nm, the peak ofJscapproaches whenH3is 60 nm because of a combination effect caused by our designed structure.AndJscdecreases absorption occurs obviously whenH1ranges from 700 nm to 800 nm.And the best choice ofH1andH3is 600 nm and 60 nm,respectively.The best value ofJscis 30.17 mA/cm2, generates a short-circuit enhancement of 32.44%.We can roughly see the relationship betweenH3and absorption of silicon in Fig.3(b).With the increasing ofH3, the absorption increases asH3raises in the range of 450 nm to 590 nm,which is in accord with the theory of quarter wavelength layers.The Si3N4thin film between hole and silicon acts as a single quarter wavelength layer, which enhances the absorption in this area.But the absorption decreases asH3raises before 450 nm, The absorption before 450 nm decreases significantly whenH3increases to 70 nm,which makes the best total absorption occur ifH3is set as 60 nm.

    Fig.3 (Color online) (a) Relationship between Jsc and H3 at different H1.(b).Absorption spectrum for Si with different H3.(40 nm, 50 nm not shown here because the lines are too dense).

    The front system plays an important role in weakening the front reflection.After determining the best parameters on the front system of silicon, a rear reflector to enhance the back reflection is designed and studied to understand the behavior of the CTCs arrays.In order to enhance back reabsorption, a thin silver layer is designed to the back.The thickness of a flat silver back reflection(H)is been swept and shown in Fig.4(a).From Fig.4(a) we can see that, when thickness of silver ranges from 50 nm to 110 nm, theJscincreases slowly.WhenHis above 110 nm, theJscshows no increasing.So the optimizedHwe chose as 110 nm.Comparison of absorption spectra for different configurations lists in Fig.4(b).From Fig.4(b)we can see that,the absorption curve with the front system has greatly improved below the 450 nm compared with the flat system absorption curve.This is because that this wavelength band cannot enter the deep silicon.And the optical path is increased due to the combined effects of diffraction, reflection and refraction when the light enters the front system.In the wavelength range of 500 nm–590 nm,the comparison of the light absorption curves shows that the silicon absorption with the front system is slightly inferior to that of the quarter-wavelength layer specially constructed to enhance absorption in this band.The flat system absorption curve at a wavelength greater than 590 nm exhibits a well-shaped Fabry-Perot resonance.In the wavelength below 500 nm areas, light does not reach to the silver layer so the absorption curve with or without silver is the same.

    Fig.4 (Color online) (a) Relationship between Jsc and thickness of back silver.(b) Comparison of absorption spectra for different configurations.Blue line means the absorption spectrum equipped with 67 nm flat Si3N4.Red line means the absorption spectrum only with front system.Black line means the absorption spectrum with front system and back flat silver reflector.Green line means the absorption spectrum of bare silicon.

    In the wavelength above 500 nm areas, light reaches the bottom of the silver layer and being reabsorbed.It leads to a peak Jsc reaches 32.26 mA/cm2.The reference cell is an anti-reflection layer constructed in accordance with a quarter-wavelength layer that enhances transmission in the corresponding wavelength region to enhance absorption.After the morphology is formed,light absorption is a combined effect of anti-reflection and grating.An unusual light absorption decreasing occurred because of partly destructive interference (such as in the wavelength region of(500–600) nm).So light absorption in this area is weakened.But it should be noted that in the entire wavelength range except for(500–600)nm,our structure undoubtedly enhances light absorption.

    To comprehend the optical behaviors in silicon layer,we compared the outcome of the control group, structure with Si3N4CTCs arrays and structure with Si3N4CTCs arrays and back silver reflector.The absorption per unit volume, normalized to source power, can be calculated.Figure 5 shows the profile of the optical absorption per unit volume.[21]The unit is watt/um3.The absorption density maps of x-z cross-section are shown in Figs.5(a)–5(c) at the wavelengths of 600 nm.Figures 5(a)?5(c)display the absorption density maps of silicon in the structures configured as showed in Figs.1(a)–1(c),respectively.It can be seen from the wave pattern of the light absorption field that the light resonates strongly in the structure.Compared to the control group,structure with Si3N4CTCs arrays make more incident light enter deeper silicon.Thus, the absorption has been greatly improved.And structure with Si3N4CTCs arrays and back silver reflector further enhance the bottom absorption (Fig.5(c)).It can be known from Fig.5(d) that the front Si3N4CTCs arrays provide a great positive impact on light absorption.With a back reflector equipped, the absorption can be further improved.

    Fig.5 (Color online) Two-dimensional light absorption density distribution profiles of the silicon part in our solar cell at a wavelength of 600 nm of x-z cross-section.(a) The structure of control group corresponds to Fig.1(a).(b) The structure with Si3N4 CTCs arrays corresponds to Fig.1(b).(c) The structure with Si3N4 CTCs arrays and back silver reflector corresponds to Fig.1(c).(d) Comparison of the short-circuit currents generated by the three structures (red bars) corresponding to Figs.1(a)–1(c), the bare silicon (black dashed line).

    Later theJscenhancements of different thickness of silicon solar cells with and without optimized structure were calculated.The results are shown in Fig.6.The results show that with the increase of silicon thickness,the solar cellJscequipped with our optimized structure is still strengthening, but this enhancement is slowly decreasing due to the increase of silicon thickness.This is because the sunlight cannot enter the deep silicon with the increasing of silicon thickness.At the same time, this also shows that our structure does have the effect of enhancing light absorption.Nevertheless, in reality, effects such as drift-diffusion and uncertainties will continue to appear in real solar cells.Therefore, theJscobtained in reality will not reach the theoretical consequences.So far, thickness of 2330 nm silicon has become a research hot spot for many researchers.Compared to structures with absorbent layers of the same thickness, the short circuit photocurrent density approached by our structure is greater than the majority of the reported outcome.[19,21]In order to better compare the final results, we change the thickness of silicon to 2 um.A 30.37 mA/cm2Jsccould be generated and the outcome is also better than the result achieved by the structure with front-grating in Ref.[32].The Yablonovitch limit of 2 um silicon can generate a short circuit current of 35.5 mA/cm2.Compared to structure in Ref.[23],ourJscis lower.But our structure is not modified in the structure of silicon.

    Fig.6 (Color online)Jsc enhancement of different thickness (2330 nm, 2500 nm, 5000 nm, 10000 nm) of silicon solar cell with and without optimized structure.

    It is a modification of the structure of silicon nitride, and technically our structure forming technology is well developed.From this point of view, our structure is still innovative.We studied the enhancement of light absorption by front textured anti-reflection film combined with simple back single-layer reflective layer.From the perspective of optical research, a stronger enhancement was obtained by adding a front strong light trapping structure and a back strong reflection structure.This is a trend in the field of lighting trapping structures, which we will further design in our future research.

    4 Conclusion

    In general, the investigations on ultrathin-film silicon solar cells are necessary due to a variety of motivations.The effect of setting up a texture of antireflection layer on ability of light trapping was methodically studied and it can help to achieve higher photocurrent density for the improved PCE.We proposed and investigated ultrathin silicon solar cell architecture with CTCs anti-reflection layer.In CTCs,the available light bounces repeatedly in the hole and couples into silicon.And the thin-film Si3N4under the hole also has a positive influence on the enhancement of the couple.The combined effect of these two aspects produces a betterJsc.The results indicate that cells with Si3N4CTCs arrays get a stronger ability to absorb the light.TheJscgenerated by the cells with Si3N4CTCs arrays reaches 30.17 mA/cm2, which is 32.44% higher than the value gained by control group.And by simply adding a layer of silver rear reflection to the optimized configuration above, brings a photocurrent of 32.26 mA/cm2, produces a best short-circuit current enhancement of 41.62%higher than the control group.Although Si3N4is an insulator, the CTCs of our structure owns a great space.Thickness between Si3N4 and silicon is only 60 nm.The planar silicon solar cell on the market can be achieved in a thickness of 75 nm Si3N4.So this will not be a problem for preparation.In summary, the calculations presented in this paper demonstrate that it is potential to enhance absorption by building textures on antireflection layers.

    猜你喜歡
    孫磊
    孫磊
    揚子江(2022年4期)2022-07-04 22:23:49
    自動售票機拆移的必要性及施工注意事項分析
    20年租房合同緣何不算數(shù)?
    婦女生活(2020年5期)2020-06-12 11:35:08
    出征曲
    大眾文藝(2020年10期)2020-06-05 06:02:14
    孫磊:“妄念者”的詩
    齊魯周刊(2019年24期)2019-06-26 06:26:14
    一種窮途
    不知歸期的故人
    南風(2019年1期)2019-05-05 10:00:46
    情別戰(zhàn)友
    當代音樂(2018年1期)2018-05-14 21:11:39
    孫磊繪畫作品
    山花(2015年16期)2015-02-05 09:13:04
    電腦奇才合成美女,騙慘癡戀的遠方來客
    色综合欧美亚洲国产小说| 久久久久久人人人人人| 久久亚洲国产成人精品v| 久久99一区二区三区| 一区二区av电影网| 精品卡一卡二卡四卡免费| 免费看av在线观看网站| 高清视频免费观看一区二区| 日本av免费视频播放| av网站在线播放免费| 欧美乱码精品一区二区三区| 狠狠精品人妻久久久久久综合| 国产又爽黄色视频| 满18在线观看网站| 777米奇影视久久| 男男h啪啪无遮挡| 婷婷成人精品国产| 亚洲国产日韩一区二区| 日本一区二区免费在线视频| 大片免费播放器 马上看| 亚洲精品中文字幕在线视频| 啦啦啦 在线观看视频| 久久性视频一级片| 久久影院123| a 毛片基地| 欧美av亚洲av综合av国产av | 成人国产av品久久久| 黄色视频不卡| 又大又黄又爽视频免费| 中文字幕av电影在线播放| 国产亚洲一区二区精品| 亚洲在久久综合| 免费高清在线观看视频在线观看| 青春草亚洲视频在线观看| 国产精品99久久99久久久不卡 | 久久久久人妻精品一区果冻| 欧美精品亚洲一区二区| 欧美变态另类bdsm刘玥| 交换朋友夫妻互换小说| 可以免费在线观看a视频的电影网站 | 国产一级毛片在线| 欧美日本中文国产一区发布| 欧美日韩一级在线毛片| 好男人视频免费观看在线| 黄色 视频免费看| 精品人妻在线不人妻| 国产av码专区亚洲av| 性少妇av在线| 日韩欧美精品免费久久| 国产色婷婷99| 视频在线观看一区二区三区| 久久人人爽av亚洲精品天堂| 久久久久久久大尺度免费视频| h视频一区二区三区| 精品免费久久久久久久清纯 | av卡一久久| 中文字幕亚洲精品专区| 十八禁网站网址无遮挡| 操出白浆在线播放| 午夜日韩欧美国产| 欧美日韩亚洲高清精品| 波野结衣二区三区在线| 国产麻豆69| 久久韩国三级中文字幕| 国产亚洲av片在线观看秒播厂| 久久国产精品大桥未久av| 少妇人妻久久综合中文| 五月天丁香电影| 国产淫语在线视频| 欧美亚洲 丝袜 人妻 在线| 五月天丁香电影| 精品人妻一区二区三区麻豆| 美女脱内裤让男人舔精品视频| 精品久久久久久电影网| av不卡在线播放| 少妇精品久久久久久久| 亚洲国产欧美一区二区综合| 亚洲国产精品一区三区| 天天躁夜夜躁狠狠躁躁| 国产伦人伦偷精品视频| www.熟女人妻精品国产| 如何舔出高潮| 精品国产一区二区三区久久久樱花| 菩萨蛮人人尽说江南好唐韦庄| 大片免费播放器 马上看| 极品少妇高潮喷水抽搐| 天天操日日干夜夜撸| 一边亲一边摸免费视频| 久久久久久免费高清国产稀缺| 不卡视频在线观看欧美| 日本vs欧美在线观看视频| 精品久久久精品久久久| 一级爰片在线观看| 十八禁人妻一区二区| 丰满迷人的少妇在线观看| 激情视频va一区二区三区| 十八禁网站网址无遮挡| 亚洲国产av新网站| 咕卡用的链子| 国产亚洲av片在线观看秒播厂| 啦啦啦 在线观看视频| 亚洲一码二码三码区别大吗| 欧美精品av麻豆av| 曰老女人黄片| 午夜免费男女啪啪视频观看| 欧美日韩福利视频一区二区| 9191精品国产免费久久| h视频一区二区三区| 丝袜人妻中文字幕| 午夜福利视频精品| 欧美精品高潮呻吟av久久| 亚洲欧美精品自产自拍| 久久热在线av| 亚洲伊人色综图| 久久人妻熟女aⅴ| 日韩av免费高清视频| 亚洲国产精品成人久久小说| 亚洲在久久综合| 亚洲美女视频黄频| 久久久久精品性色| 亚洲国产日韩一区二区| 色综合欧美亚洲国产小说| 亚洲五月色婷婷综合| 亚洲国产精品999| 哪个播放器可以免费观看大片| 丁香六月欧美| 日韩视频在线欧美| 哪个播放器可以免费观看大片| 久久韩国三级中文字幕| 少妇精品久久久久久久| 欧美精品一区二区免费开放| 日韩欧美精品免费久久| 亚洲,欧美精品.| 在线观看免费午夜福利视频| 亚洲一区中文字幕在线| 日本黄色日本黄色录像| 亚洲国产av影院在线观看| 中文字幕精品免费在线观看视频| 1024香蕉在线观看| 免费不卡黄色视频| 久久人人爽人人片av| 亚洲精品美女久久av网站| 亚洲欧洲国产日韩| 午夜激情av网站| 一本一本久久a久久精品综合妖精| 亚洲一卡2卡3卡4卡5卡精品中文| 女性被躁到高潮视频| 午夜免费男女啪啪视频观看| 中文字幕人妻熟女乱码| 曰老女人黄片| 色94色欧美一区二区| 亚洲一级一片aⅴ在线观看| 欧美日韩精品网址| 午夜福利免费观看在线| 免费av中文字幕在线| 婷婷成人精品国产| 精品福利永久在线观看| 精品一区二区三区av网在线观看 | 欧美日本中文国产一区发布| av片东京热男人的天堂| 麻豆乱淫一区二区| 人体艺术视频欧美日本| 综合色丁香网| 日本欧美视频一区| 婷婷色综合大香蕉| 97人妻天天添夜夜摸| 在线精品无人区一区二区三| 在线观看三级黄色| 蜜桃国产av成人99| 最近最新中文字幕大全免费视频 | 一区二区三区激情视频| 在线天堂最新版资源| √禁漫天堂资源中文www| 国产一级毛片在线| 老鸭窝网址在线观看| 国产精品一区二区在线不卡| 亚洲精品国产区一区二| 亚洲精品aⅴ在线观看| 亚洲情色 制服丝袜| 亚洲美女搞黄在线观看| 婷婷色麻豆天堂久久| 午夜福利视频精品| 亚洲,欧美精品.| 色婷婷av一区二区三区视频| 国产亚洲一区二区精品| 国产福利在线免费观看视频| 国产免费视频播放在线视频| 一级爰片在线观看| 美女主播在线视频| 欧美变态另类bdsm刘玥| 哪个播放器可以免费观看大片| 午夜福利影视在线免费观看| 国产欧美亚洲国产| 国产男人的电影天堂91| 老熟女久久久| 街头女战士在线观看网站| 99久久综合免费| 日韩精品免费视频一区二区三区| 亚洲欧美成人综合另类久久久| 老司机影院成人| 男女床上黄色一级片免费看| 国产亚洲欧美精品永久| 自线自在国产av| 天天操日日干夜夜撸| 久久97久久精品| 男女无遮挡免费网站观看| 99精品久久久久人妻精品| 国产老妇伦熟女老妇高清| 亚洲成av片中文字幕在线观看| 日日撸夜夜添| 秋霞在线观看毛片| 国产成人精品无人区| 观看美女的网站| 久久国产精品男人的天堂亚洲| 国产精品一国产av| 我要看黄色一级片免费的| 亚洲,欧美精品.| 最近最新中文字幕免费大全7| 亚洲三区欧美一区| 午夜福利网站1000一区二区三区| 日日摸夜夜添夜夜爱| 美女午夜性视频免费| 欧美日韩一级在线毛片| 久久久精品区二区三区| 老鸭窝网址在线观看| 热re99久久国产66热| 成人午夜精彩视频在线观看| 中国三级夫妇交换| 成年av动漫网址| 一级片免费观看大全| 色播在线永久视频| 欧美人与善性xxx| 啦啦啦在线观看免费高清www| 亚洲国产成人一精品久久久| 丝袜人妻中文字幕| a 毛片基地| 90打野战视频偷拍视频| 日韩成人av中文字幕在线观看| 欧美97在线视频| 欧美日韩一级在线毛片| 亚洲精品在线美女| 亚洲精品视频女| 欧美乱码精品一区二区三区| 性高湖久久久久久久久免费观看| 91老司机精品| 另类亚洲欧美激情| 国产男女内射视频| 无遮挡黄片免费观看| 国产一区二区三区av在线| 亚洲精品日本国产第一区| 老汉色av国产亚洲站长工具| 在线观看国产h片| 国产在线一区二区三区精| 欧美亚洲 丝袜 人妻 在线| 一本大道久久a久久精品| 在线天堂中文资源库| 日本猛色少妇xxxxx猛交久久| 天天躁夜夜躁狠狠躁躁| av免费观看日本| av女优亚洲男人天堂| 午夜福利在线免费观看网站| 免费观看性生交大片5| 一区福利在线观看| 国产成人欧美在线观看 | 亚洲av日韩精品久久久久久密 | 可以免费在线观看a视频的电影网站 | 婷婷色麻豆天堂久久| 夜夜骑夜夜射夜夜干| 久久久久精品人妻al黑| 中国国产av一级| 亚洲国产看品久久| 狂野欧美激情性xxxx| 悠悠久久av| 婷婷色麻豆天堂久久| 亚洲第一青青草原| 爱豆传媒免费全集在线观看| 国产日韩欧美亚洲二区| 操出白浆在线播放| 女人被躁到高潮嗷嗷叫费观| 最新的欧美精品一区二区| 国产精品熟女久久久久浪| 色94色欧美一区二区| 久久综合国产亚洲精品| 久热这里只有精品99| 国产成人91sexporn| 超碰97精品在线观看| 久久久久久久久久久久大奶| 久久久久网色| 黄频高清免费视频| 一区二区三区乱码不卡18| 国产一区二区三区综合在线观看| 国产片内射在线| 国产成人系列免费观看| 亚洲精品乱久久久久久| 男人舔女人的私密视频| 99热国产这里只有精品6| 秋霞在线观看毛片| 婷婷色麻豆天堂久久| 国产老妇伦熟女老妇高清| 久久女婷五月综合色啪小说| 日日摸夜夜添夜夜爱| 国产成人一区二区在线| 日本猛色少妇xxxxx猛交久久| 91成人精品电影| 成人国产麻豆网| 婷婷成人精品国产| 成人黄色视频免费在线看| 国产黄色视频一区二区在线观看| 亚洲精品aⅴ在线观看| 日韩欧美精品免费久久| 美女脱内裤让男人舔精品视频| 少妇猛男粗大的猛烈进出视频| 成人亚洲欧美一区二区av| 大码成人一级视频| 极品少妇高潮喷水抽搐| e午夜精品久久久久久久| 女的被弄到高潮叫床怎么办| 亚洲色图 男人天堂 中文字幕| 男人爽女人下面视频在线观看| 国产男女超爽视频在线观看| 欧美精品av麻豆av| 国产午夜精品一二区理论片| 亚洲国产欧美在线一区| 欧美97在线视频| 亚洲成国产人片在线观看| 乱人伦中国视频| 99香蕉大伊视频| 日韩中文字幕欧美一区二区 | 欧美日韩福利视频一区二区| 蜜桃国产av成人99| 国产熟女午夜一区二区三区| 老汉色∧v一级毛片| 久久99精品国语久久久| 97精品久久久久久久久久精品| 国产成人精品久久二区二区91 | 90打野战视频偷拍视频| 色播在线永久视频| 精品国产一区二区三区久久久樱花| 久久 成人 亚洲| 日韩,欧美,国产一区二区三区| 中国国产av一级| 久久久欧美国产精品| 日韩大片免费观看网站| 一级爰片在线观看| 国产亚洲欧美精品永久| 一区二区日韩欧美中文字幕| 男女高潮啪啪啪动态图| 国产不卡av网站在线观看| 丰满乱子伦码专区| kizo精华| 国产一区二区 视频在线| 午夜免费男女啪啪视频观看| 成人18禁高潮啪啪吃奶动态图| 一区福利在线观看| av一本久久久久| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 精品一品国产午夜福利视频| www.熟女人妻精品国产| 尾随美女入室| 我的亚洲天堂| 日本黄色日本黄色录像| 在线观看免费高清a一片| 捣出白浆h1v1| 亚洲精品av麻豆狂野| 19禁男女啪啪无遮挡网站| 国产99久久九九免费精品| 在线精品无人区一区二区三| 高清不卡的av网站| 看十八女毛片水多多多| 午夜91福利影院| 成人亚洲欧美一区二区av| 亚洲欧美一区二区三区久久| 你懂的网址亚洲精品在线观看| 最近手机中文字幕大全| 男女之事视频高清在线观看 | 天堂俺去俺来也www色官网| 十八禁人妻一区二区| 亚洲熟女毛片儿| 国产精品成人在线| 亚洲国产成人一精品久久久| 日韩制服骚丝袜av| 欧美精品高潮呻吟av久久| 大码成人一级视频| 两个人免费观看高清视频| 国产精品三级大全| 宅男免费午夜| 久久综合国产亚洲精品| 岛国毛片在线播放| 大片免费播放器 马上看| 午夜福利在线免费观看网站| 高清欧美精品videossex| 制服丝袜香蕉在线| 狂野欧美激情性bbbbbb| av在线观看视频网站免费| 国产日韩欧美视频二区| 18在线观看网站| 精品国产超薄肉色丝袜足j| 如日韩欧美国产精品一区二区三区| 国产精品一二三区在线看| 欧美精品一区二区免费开放| 国产爽快片一区二区三区| 国产一区二区在线观看av| 老熟女久久久| 亚洲国产欧美在线一区| 欧美黑人精品巨大| 丰满乱子伦码专区| 午夜福利,免费看| 国产成人av激情在线播放| 在线精品无人区一区二区三| av卡一久久| 美女脱内裤让男人舔精品视频| 无限看片的www在线观看| 男女之事视频高清在线观看 | 国产无遮挡羞羞视频在线观看| 这个男人来自地球电影免费观看 | 观看av在线不卡| 欧美成人精品欧美一级黄| 在线观看免费午夜福利视频| videos熟女内射| 亚洲成国产人片在线观看| 男人添女人高潮全过程视频| 久久久久精品国产欧美久久久 | 另类精品久久| 人人妻人人澡人人看| 久久久久久人妻| 极品人妻少妇av视频| 丁香六月天网| 国产男女内射视频| 国产成人一区二区在线| 嫩草影院入口| 国产成人精品无人区| 亚洲精品成人av观看孕妇| 免费人妻精品一区二区三区视频| 亚洲专区中文字幕在线 | kizo精华| 丁香六月欧美| 天堂中文最新版在线下载| 久久久久精品性色| 亚洲美女黄色视频免费看| 狠狠精品人妻久久久久久综合| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品国产一区二区精华液| 久久毛片免费看一区二区三区| 黄片播放在线免费| 成人免费观看视频高清| 2021少妇久久久久久久久久久| 母亲3免费完整高清在线观看| 亚洲精品成人av观看孕妇| 哪个播放器可以免费观看大片| 韩国精品一区二区三区| 午夜激情久久久久久久| 久久av网站| 在线观看免费高清a一片| 中文字幕另类日韩欧美亚洲嫩草| 国产 精品1| 国产精品无大码| 老司机靠b影院| 色婷婷av一区二区三区视频| 日韩人妻精品一区2区三区| 国产精品免费视频内射| 婷婷色综合大香蕉| 波多野结衣av一区二区av| 多毛熟女@视频| 国产av一区二区精品久久| 欧美久久黑人一区二区| 亚洲人成77777在线视频| 老司机深夜福利视频在线观看 | 大陆偷拍与自拍| 亚洲国产精品成人久久小说| 如日韩欧美国产精品一区二区三区| 老熟女久久久| 国产亚洲午夜精品一区二区久久| 亚洲在久久综合| 一级毛片我不卡| a级毛片在线看网站| 老汉色∧v一级毛片| 操美女的视频在线观看| 久久婷婷青草| 午夜免费鲁丝| 狠狠婷婷综合久久久久久88av| 国产 精品1| 一区在线观看完整版| 精品亚洲成国产av| 亚洲欧洲精品一区二区精品久久久 | 男的添女的下面高潮视频| 黄网站色视频无遮挡免费观看| 人人妻人人澡人人看| 黑人巨大精品欧美一区二区蜜桃| 亚洲伊人久久精品综合| 久久精品熟女亚洲av麻豆精品| 青春草亚洲视频在线观看| 高清黄色对白视频在线免费看| 亚洲精品成人av观看孕妇| 日本一区二区免费在线视频| 天天影视国产精品| 日韩成人av中文字幕在线观看| 美女脱内裤让男人舔精品视频| 最近的中文字幕免费完整| 免费观看a级毛片全部| 男女午夜视频在线观看| av天堂久久9| 国产成人精品在线电影| 亚洲欧美中文字幕日韩二区| av免费观看日本| 一个人免费看片子| 中文字幕最新亚洲高清| videosex国产| 亚洲精品国产av成人精品| 亚洲精品久久久久久婷婷小说| 美女视频免费永久观看网站| 免费不卡黄色视频| 成年动漫av网址| 亚洲,一卡二卡三卡| 亚洲av日韩在线播放| 一边摸一边做爽爽视频免费| 少妇人妻久久综合中文| 国产不卡av网站在线观看| 亚洲国产欧美网| 久久免费观看电影| 嫩草影视91久久| 日韩av免费高清视频| 在线天堂中文资源库| 五月天丁香电影| 免费观看a级毛片全部| 日本欧美视频一区| 久久青草综合色| 男女之事视频高清在线观看 | 日日啪夜夜爽| 久久久久人妻精品一区果冻| 大陆偷拍与自拍| 国产日韩欧美视频二区| av片东京热男人的天堂| 国产伦理片在线播放av一区| 无限看片的www在线观看| 亚洲精品,欧美精品| 在线观看人妻少妇| 91老司机精品| 大话2 男鬼变身卡| 999精品在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品人妻al黑| 亚洲一区中文字幕在线| bbb黄色大片| 国产av一区二区精品久久| 亚洲成人手机| 亚洲激情五月婷婷啪啪| 日韩制服丝袜自拍偷拍| 国产片内射在线| 色网站视频免费| 黄网站色视频无遮挡免费观看| 日日撸夜夜添| 精品国产一区二区三区四区第35| av一本久久久久| 久久鲁丝午夜福利片| 在线 av 中文字幕| 一区二区三区精品91| 国产一级毛片在线| 精品久久久久久电影网| 国产精品国产av在线观看| 咕卡用的链子| 91aial.com中文字幕在线观看| 国产又爽黄色视频| 一二三四中文在线观看免费高清| 中文天堂在线官网| av线在线观看网站| 久久影院123| 成年美女黄网站色视频大全免费| 悠悠久久av| 国产成人啪精品午夜网站| 大香蕉久久网| 亚洲欧美一区二区三区国产| 日本vs欧美在线观看视频| 免费在线观看完整版高清| 国产精品熟女久久久久浪| 欧美日韩福利视频一区二区| 日韩欧美一区视频在线观看| netflix在线观看网站| 只有这里有精品99| 国产xxxxx性猛交| 久久 成人 亚洲| 18在线观看网站| 亚洲欧美色中文字幕在线| 高清不卡的av网站| 亚洲av国产av综合av卡| 午夜福利视频在线观看免费| 综合色丁香网| 母亲3免费完整高清在线观看| 99久久人妻综合| 青青草视频在线视频观看| 欧美在线一区亚洲| 亚洲国产精品国产精品| 国产精品女同一区二区软件| 51午夜福利影视在线观看| 午夜精品国产一区二区电影| 久久久精品94久久精品| 丝袜美腿诱惑在线| 亚洲av综合色区一区| 国产激情久久老熟女| 欧美日韩综合久久久久久| 久久人人爽人人片av| 777米奇影视久久| 亚洲成色77777| 秋霞在线观看毛片| 在线观看三级黄色| 国产精品一区二区在线观看99| 精品国产超薄肉色丝袜足j| 美女扒开内裤让男人捅视频| 久久国产精品大桥未久av| 蜜桃国产av成人99| 欧美少妇被猛烈插入视频| 狠狠婷婷综合久久久久久88av| 午夜精品国产一区二区电影| 青春草亚洲视频在线观看| 男女下面插进去视频免费观看|