高重慶, 周星言, 劉均立, 洪健
小鼠肝癌治療模型的研究進(jìn)展*
高重慶, 周星言, 劉均立, 洪健△
(暨南大學(xué)基礎(chǔ)醫(yī)學(xué)與公共衛(wèi)生學(xué)院,廣東 廣州 510630)
小鼠;肝細(xì)胞癌;動(dòng)物模型;肝癌治療
原發(fā)性肝癌(以下簡(jiǎn)稱(chēng)肝癌)是世界上常見(jiàn)的惡性腫瘤和腫瘤致死病因之一,其發(fā)病率和死亡率逐年上升,我國(guó)是肝癌高發(fā)區(qū),發(fā)病人數(shù)占全球的半數(shù)以上[1]。由于肝癌侵襲性強(qiáng),具有早期侵犯門(mén)靜脈和肝靜脈分支等特性,易發(fā)生肝內(nèi)轉(zhuǎn)移,疾病進(jìn)展迅速,預(yù)后極差[2]。近年來(lái),隨著手術(shù)、微創(chuàng)介入、放療等局部治療和化療、免疫、靶向等系統(tǒng)治療方式不斷完善,肝癌患者5年生存率逐漸提高,但是整體療效仍欠佳[3]。小鼠肝癌模型在一定程度上模擬了腫瘤患者的體內(nèi)微環(huán)境,為肝癌新藥物的篩選提供良好的工具[4]。其中,小鼠肝癌治療模型是在肝癌早期、進(jìn)展期及術(shù)后進(jìn)行干預(yù)或治療,旨在對(duì)不同階段肝癌進(jìn)行防治,為肝癌的臨床前藥物評(píng)價(jià)體系和指導(dǎo)治療提供重要的依據(jù)。本文結(jié)合目前國(guó)內(nèi)外有關(guān)小鼠肝癌治療模型的研究情況,作如下綜述。
人類(lèi)肝癌發(fā)生與肝炎病毒慢性感染、化學(xué)致癌物暴露及代謝功能紊亂等多種因素有關(guān)[5-6],其致癌機(jī)制是一個(gè)多步驟、多因素、多基因協(xié)同的復(fù)雜過(guò)程[7-8],涉及肝損傷、肝纖維化、肝硬化及肝癌等病理改變[9-10]。為較早對(duì)肝癌進(jìn)行防治,該模型主要在肝癌發(fā)生的早期階段進(jìn)行人為干預(yù),能較大程度地模擬人類(lèi)肝癌發(fā)生發(fā)展過(guò)程,因而常被用于肝癌發(fā)生機(jī)制及早期干預(yù)的研究[11]。主要包括致癌物誘導(dǎo)、基因工程及非酒精性脂肪肝炎(non-alcoholic steatohepatitis, NASH)小鼠肝癌模型。
1.1致癌物誘導(dǎo)的小鼠肝癌模型化學(xué)致癌物誘導(dǎo)的小鼠肝癌模型的病理過(guò)程能較好地模擬肝損傷-肝炎-肝硬化-肝癌的演變進(jìn)程,是肝癌研究中可行性高的治療模型[12]。目前已知多種類(lèi)型化學(xué)致癌物,根據(jù)作用機(jī)理分為遺傳毒性和非遺傳毒性?xún)纱箢?lèi)。遺傳毒性致癌物可與DNA直接反應(yīng),在數(shù)百個(gè)位點(diǎn)破壞DNA,誘導(dǎo)DNA損傷而致癌,包括二乙基亞硝胺(diethylnitrosamine, DEN)[13]、四氯化碳(carbon tetrachloride, CCl4)[14]、黃曲霉毒素(aflatoxin, AFT)[15]和硫代乙酰胺(thioacetamide, TAA)[16]等;非遺傳毒性致癌物不直接與DNA反應(yīng),而是通過(guò)控制細(xì)胞增殖、凋亡和分化從而誘導(dǎo)腫瘤發(fā)生,包括苯巴比妥(phenobarbital, PB)[17]和哌磺氯苯酸(tibric acid)等。
DEN是常用的遺傳毒性致癌物,被肝臟中的酶如細(xì)胞色素P450代謝成甲醛、甲醇和烷基化中間產(chǎn)物后,直接損傷DNA誘發(fā)肝癌[18-19]。2周齡的C57BL/6J雄性小鼠腹腔注射DEN(2~5 mg/kg)平均40周后,80%~100%誘導(dǎo)成肝癌[20]。CCl4通過(guò)產(chǎn)生一系列細(xì)胞因子、趨化因子和促炎物質(zhì),引起Kupffer細(xì)胞產(chǎn)生炎性應(yīng)答,在損傷、炎癥和修復(fù)的過(guò)程中引發(fā)肝癌[21-23]。由于單獨(dú)使用DEN造模時(shí)間較長(zhǎng),目前常將DEN與CCl4聯(lián)合使用誘導(dǎo)肝癌,可縮短造模時(shí)間,降低小鼠死亡率,成模率高達(dá)100%[24]。
DEN與CCl4聯(lián)合使用誘導(dǎo)的肝癌模型中,小鼠血清丙氨酸轉(zhuǎn)氨酶、天冬氨酸轉(zhuǎn)氨酶和甲胎蛋白(α-fetoprotein, AFP)水平明顯上升,表明兩者聯(lián)合使用誘導(dǎo)的肝癌伴有肝細(xì)胞損傷和增生,具有與人體肝癌相似的病變過(guò)程[25-26]。此外,該模型誘導(dǎo)肝癌發(fā)生過(guò)程中檢測(cè)到多種癌基因表達(dá)上調(diào),應(yīng)用抑制劑或敲除上調(diào)癌基因,減弱肝癌發(fā)生過(guò)程中的炎癥反應(yīng)和DNA損傷,降低肝癌發(fā)生率[27-29]。這種模型遵循了肝炎-纖維化-肝癌的自然演變過(guò)程,對(duì)模擬重復(fù)暴露于特定環(huán)境誘發(fā)的腫瘤具有重要的借鑒意義。
1.2轉(zhuǎn)基因小鼠肝癌模型轉(zhuǎn)基因小鼠肝癌模型是利用基因工程技術(shù)導(dǎo)入或敲除動(dòng)物體內(nèi)特定基因,影響動(dòng)物性狀表達(dá)并產(chǎn)生穩(wěn)定遺傳修飾的動(dòng)物模型[30-31]。該模型在研究特殊基因在肝癌發(fā)生過(guò)程中的作用具有獨(dú)特優(yōu)勢(shì),為肝癌發(fā)病機(jī)制的探索、藥物篩選和臨床醫(yī)學(xué)研究提供一種新的實(shí)驗(yàn)?zāi)P?。根?jù)修飾基因不同分為病毒基因、原癌基因、生長(zhǎng)因子及腫瘤微環(huán)境等轉(zhuǎn)基因模型。其中,HBV轉(zhuǎn)基因小鼠模型是目前應(yīng)用較多的肝癌模型之一。
基因是目前構(gòu)建HBV轉(zhuǎn)基因小鼠肝癌模型時(shí)采用較多的基因,作為HBV編碼的病毒反式激活因子,能夠控制轉(zhuǎn)錄過(guò)程、調(diào)節(jié)其它病毒基因表達(dá)[32]。已有研究證實(shí)基因的單獨(dú)表達(dá)能通過(guò)影響宿主的生物合成,干擾基因的表達(dá)和細(xì)胞分化,誘發(fā)小鼠肝癌。分析結(jié)果顯示HBV DNA序列在肝、腎組織中選擇性高表達(dá),與HBV感染者情況相同。4月齡時(shí)轉(zhuǎn)基因小鼠肝細(xì)胞發(fā)生異常改變,并伴有HBx蛋白的高水平表達(dá);8~10月齡時(shí),肝臟出現(xiàn)似腺瘤的腫瘤結(jié)節(jié),其內(nèi)肝細(xì)胞HBx蛋白表達(dá)水平進(jìn)一步升高,同時(shí)甲胎蛋白檢測(cè)呈陽(yáng)性[33]。
1.3細(xì)胞譜系示蹤小鼠肝癌模型細(xì)胞譜系示蹤技術(shù)是指利用細(xì)胞特異的標(biāo)志物對(duì)某類(lèi)細(xì)胞進(jìn)行標(biāo)記,并對(duì)該細(xì)胞后代的增殖、分化以及遷移等活動(dòng)進(jìn)行追蹤觀察,在揭示復(fù)雜多樣生物學(xué)過(guò)程中的具體分子機(jī)制中發(fā)揮關(guān)鍵作用[34]。目前基于Cre-loxP系統(tǒng)和CRISPR-Cas9基因編輯技術(shù)建立的細(xì)胞譜系示蹤小鼠肝癌模型,是最常用的用于研究肝癌細(xì)胞起源與轉(zhuǎn)化的小鼠模型。
Cre-loxP介導(dǎo)的譜系示蹤是目前廣泛使用的體內(nèi)追蹤細(xì)胞命運(yùn)轉(zhuǎn)化的技術(shù)。通過(guò)在目的細(xì)胞中表達(dá)Cre重組酶進(jìn)而去除插入到小鼠loxP側(cè)翼的轉(zhuǎn)錄終止結(jié)構(gòu),可以使隨后的報(bào)告基因表達(dá),達(dá)到標(biāo)記并敲除特定基因的效果。將Cre片段插入肝臟特異性表達(dá)的白蛋白(albumin,)啟動(dòng)子之后,構(gòu)建肝細(xì)胞特異性啟動(dòng)Albumin-Cre小鼠。利用該小鼠與基因或功能域的loxP小鼠雜交,獲得了肝細(xì)胞特異性基因或域敲除的小鼠,該模型中敲除引起肝細(xì)胞中NF-κB過(guò)度激活,促進(jìn)肝細(xì)胞癌進(jìn)展[35]。
CRISPR/Cas9可以在基因組特定位置快速準(zhǔn)確的將大片段癌基因敲入小鼠的DNA中,建立體細(xì)胞基因編輯小鼠模型。該模型打破小鼠遺傳品系限制,實(shí)現(xiàn)不同遺傳背景或在已有基因修飾小鼠模型基礎(chǔ)上的基因編輯,縮短造模周期,降低造成本?;贑RISPR/Cas9系統(tǒng)在小鼠體內(nèi)敲入癌基因同時(shí)敲除抑癌基因,1個(gè)月后小鼠肝臟中形成腫瘤[36]。
1.4NASH小鼠肝癌模型非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease, NAFLD)是指除酒精和其他明確的肝損傷因素外所致的,以彌漫性肝細(xì)胞大泡性脂肪變?yōu)橹饕卣鞯穆愿闻K疾?。?7]。在NAFLD患者中,約10%~30%會(huì)發(fā)展成更為嚴(yán)重的NASH,最終導(dǎo)致肝硬化甚至肝細(xì)胞癌[38]。隨著生活水平的提高和飲食結(jié)構(gòu)的改變,NASH患病率逐年升高,且尚無(wú)有效治療手段。因此,建立一個(gè)可靠的NASH動(dòng)物模型對(duì)推進(jìn)NASH發(fā)病機(jī)制的研究以及進(jìn)行藥物篩選意義重大。目前,較為常用的動(dòng)物模型有蛋氨酸及膽堿缺乏(methionine- and choline-deficient, MCD)飲食和高脂飲食(high-fat diet, HFD)誘導(dǎo)的小鼠NASH模型[39-40],但這兩種模型均不能較好模擬臨床NASH病人的諸多病理特征,存在較明顯缺陷。2018年首次報(bào)道的西方飲食(western diet, WD)+CCl4誘導(dǎo)的NASH模型,與人類(lèi)NASH基因譜表達(dá)高度相似,且優(yōu)于原有模型,故近幾年成為主流NASH模型[41]。
通過(guò)高脂肪、高果糖和高膽固醇的西方飲食,結(jié)合每周腹腔內(nèi)注射的低劑量CCl4作為加速劑,建立肝臟廣泛纖維化和腫瘤快速進(jìn)展的NASH小鼠肝癌模型,12周內(nèi)出現(xiàn)人類(lèi)NASH的所有代謝和組織學(xué)特征,24周時(shí)發(fā)展為肝癌[42]。該模型概述了脂肪肝從單純脂肪變性到炎癥、纖維化及肝癌不同階段的病理改變,與人類(lèi)病變過(guò)程高度相似,且其簡(jiǎn)易性和可重復(fù)性使其成為研究NASH肝癌發(fā)病機(jī)制和研發(fā)新治療方法的有效模型。
常見(jiàn)的肝癌進(jìn)程分為肝硬化、癌前期、早期和進(jìn)展期四個(gè)階段[43]。肝癌起病隱匿、發(fā)展迅速,多數(shù)患者就診時(shí)已處于進(jìn)展期階段。隨著甲苯磺酸索拉非尼的問(wèn)世,進(jìn)展期肝癌的治療取得了一定程度的進(jìn)展,但由于藥物耐藥和患者耐受等原因,療效仍欠佳[44]。小鼠肝癌進(jìn)展期的治療模型充分模擬腫瘤體內(nèi)進(jìn)展過(guò)程,維持了原有瘤組織的結(jié)構(gòu)和絕大部分生物學(xué)特性,目前,常將人源腫瘤細(xì)胞或組織移植到免疫缺陷小鼠體內(nèi),使腫瘤細(xì)胞或組織在宿主體內(nèi)以類(lèi)似于患者體內(nèi)的方式顯示其惡性特征。根據(jù)移植物來(lái)源不同,分為人源腫瘤細(xì)胞系異種移植(cell-derived xenograft, CDX)和人源腫瘤組織異種移植(patient-derived xenograft, PDX),移植部位有異位移植與原位移植[45-46]。小鼠肝癌進(jìn)展期治療模型是在腫瘤進(jìn)展階段進(jìn)行人為干預(yù)治療,用于研究不同治療方式對(duì)肝癌進(jìn)展的影響。
2.1CDX小鼠肝癌模型CDX小鼠肝癌模型是指將人源腫瘤細(xì)胞經(jīng)體外傳代培養(yǎng)獲得穩(wěn)定細(xì)胞系,通過(guò)皮下、原位、腹腔移植或尾靜脈注射的方式接種到免疫缺陷小鼠體內(nèi),形成皮下、原位和轉(zhuǎn)移瘤模型[47]。CDX模型具有實(shí)驗(yàn)周期短、建模成功率高、實(shí)驗(yàn)費(fèi)用低等優(yōu)點(diǎn),作為抗腫瘤藥物篩選模型已得到廣泛應(yīng)用[48-49]。CDX小鼠肝癌模型根據(jù)移植部位不同可分為皮下移植瘤模型、原位移植瘤模型和轉(zhuǎn)移瘤模型[50-51]。其中,不同肝癌細(xì)胞系成瘤特點(diǎn)不同(表1)。提高成瘤率(1)選取成瘤率較高的細(xì)胞系;(2)增大細(xì)胞懸液濃度;(3)若成瘤率仍較低,將已成瘤鼠的瘤塊取出接種至新鼠體內(nèi),成瘤后再取出接種新鼠,如此傳2~3代,待腫瘤性質(zhì)穩(wěn)定后,再將腫瘤取出,剪碎、研磨、勻漿成為細(xì)胞懸液后再接種。
表1 人肝癌細(xì)胞系小鼠移植瘤的成瘤比較
2.1.1CDX皮下移植瘤模型CDX皮下移植瘤模型是將人源肝癌細(xì)胞移植到免疫缺陷小鼠皮下,觀察腫瘤的形成、發(fā)展及抗腫瘤藥物療效的模型[52]。皮下移植操作簡(jiǎn)便、易于觀察、成功率高。主要操作步驟:將(1~5)×106對(duì)數(shù)生長(zhǎng)期的人源肝癌細(xì)胞懸浮于0.1~0.2 mL無(wú)血清培養(yǎng)液或PBS中,接種于裸鼠皮下血管豐富且易操作的部位,如腋下、腹股溝、側(cè)腹部或頸背部等,其中腋下中部皮下成瘤率高。1周左右可在注射部位觸及2~3 mm3皮下瘤腫塊,并用游標(biāo)卡尺定期測(cè)量腫瘤尺寸。
2.1.2CDX原位移植瘤模型CDX原位移植瘤模型是將人源肝癌細(xì)胞移植到免疫缺陷小鼠肝臟左外葉被膜下的小鼠肝癌模型[53]。接種等量腫瘤細(xì)胞,不同組小鼠初始瘤負(fù)荷相同,腫瘤的大小和位置較易控制,個(gè)體差異較小,接種成活率高。但因涉及小鼠的麻醉、開(kāi)關(guān)腹等手術(shù)過(guò)程,操作相對(duì)復(fù)雜[54]。主要操作步驟:將(1~5)×106對(duì)數(shù)生長(zhǎng)期的人源肝癌細(xì)胞懸浮于10~20 μL含有50%高濃度基質(zhì)膠的無(wú)血清培養(yǎng)液或PBS中,直接注射到小鼠的肝左外葉被膜下,約1周后形成肝腫瘤。
2.1.3CDX轉(zhuǎn)移瘤模型腫瘤轉(zhuǎn)移是肝癌致死的首要原因,其過(guò)程包括:原位侵襲、腫瘤細(xì)胞內(nèi)滲并存活于循環(huán)系統(tǒng)、腫瘤細(xì)胞外滲形成轉(zhuǎn)移灶等。腫瘤細(xì)胞的器官轉(zhuǎn)移往往有其偏好的器官,如肝、肺、骨和淋巴結(jié)等[55]。用生物發(fā)光活體成像技術(shù)監(jiān)測(cè)腫瘤生長(zhǎng)及后期的轉(zhuǎn)移情況可以初步判斷腫瘤細(xì)胞的轉(zhuǎn)移能力。肝癌轉(zhuǎn)移模型能夠模擬體內(nèi)腫瘤轉(zhuǎn)移過(guò)程,有助于對(duì)腫瘤轉(zhuǎn)移機(jī)制的研究及抗肝癌轉(zhuǎn)移藥物藥效的評(píng)估[56]。根據(jù)移植部位不同分為腹腔移植轉(zhuǎn)移瘤模型和尾靜脈注射轉(zhuǎn)移瘤模型。
腹腔移植轉(zhuǎn)移瘤模型是將人源肝癌細(xì)胞注入免疫缺陷小鼠腹腔內(nèi),操作簡(jiǎn)單,可局部侵襲腸、胰腺、腎和肌肉組織等,部分發(fā)生肝內(nèi)或肺轉(zhuǎn)移,但移植瘤位置較深,不利于觀察和測(cè)量。主要操作步驟:取(1~5)×106對(duì)數(shù)生長(zhǎng)期的人源肝癌細(xì)胞懸浮于10~20 μL無(wú)血清培養(yǎng)液或PBS中,直接注射到裸鼠右下腹腔內(nèi),移植成功率可達(dá)100%。
尾靜脈轉(zhuǎn)移瘤模型是將人源肝癌細(xì)胞經(jīng)小鼠尾靜脈注入免疫缺陷小鼠體內(nèi),通過(guò)肺部的毛細(xì)血管網(wǎng)進(jìn)入動(dòng)脈血液循環(huán)系統(tǒng),由于腫瘤細(xì)胞粘稠阻塞小鼠肺部微血管,主要造成肺轉(zhuǎn)移,后期可能發(fā)生遠(yuǎn)處器官的轉(zhuǎn)移。主要操作步驟:?。?~5)×106對(duì)數(shù)生長(zhǎng)期的人源肝癌細(xì)胞懸浮于10~20 μL無(wú)血清培養(yǎng)液或PBS中,經(jīng)尾靜脈注入小鼠體內(nèi),肺轉(zhuǎn)移率可達(dá)100%。
2.2PDX小鼠肝癌模型PDX小鼠肝癌模型是將手術(shù)或穿刺獲得的新鮮腫瘤組織經(jīng)過(guò)處理后直接植入免疫缺陷小鼠體內(nèi)建立的個(gè)體化腫瘤模型,高度保留了原始患者腫瘤基質(zhì)組成部分,擁有更“自然”的腫瘤微環(huán)境,可維持親代腫瘤的遺傳特征并模擬生長(zhǎng)、侵襲和轉(zhuǎn)移在內(nèi)的多種生物學(xué)行為[64]。該模型幫助科研人員研究腫瘤異質(zhì)性和遺傳復(fù)雜性,深入探索腫瘤的發(fā)生機(jī)制及潛在治療靶點(diǎn)。PDX模型對(duì)治療的反應(yīng)與原發(fā)腫瘤高度相似,能夠相對(duì)準(zhǔn)確地反映體內(nèi)情況,在篩選藥物敏感性、耐藥標(biāo)記物及預(yù)測(cè)患者對(duì)治療藥物的反應(yīng)(包括療效、毒副作用、吸收程度等)等方面具有極大優(yōu)勢(shì),因此被廣泛應(yīng)用于抗腫瘤藥物的研發(fā)中[65-66]。與傳統(tǒng)的CDX模型相比,PDX模型對(duì)治療方法臨床應(yīng)用潛力的評(píng)估更加精確[67]。臨床前研究中,利用CDX模型進(jìn)行藥物篩選與臨床相關(guān)性不到5%;應(yīng)用PDX模型后,其相關(guān)性高達(dá)90%[68]。臨床應(yīng)用中,手術(shù)后患者對(duì)放化療及靶向治療的選擇存在很多隨機(jī)性與盲目性,應(yīng)用指南一線(xiàn)藥物之后,對(duì)二、三線(xiàn)藥物的選擇更具有隨機(jī)性,此時(shí)利用PDX模型可為患者篩選出更有效的藥物,設(shè)計(jì)個(gè)體化治療方案[69]。
腫瘤組織來(lái)源于患者手術(shù)或活檢標(biāo)本,不可重復(fù)獲取,PDX模型可將少量珍貴的臨床樣本快速擴(kuò)大,且第一代所得樣本可直接用于下一代建模。但隨著傳代次數(shù)增加,原始腫瘤組織中只有適應(yīng)體外培養(yǎng)條件的單個(gè)克隆得以保留,因而喪失了克隆異質(zhì)性,腫瘤微環(huán)境逐漸被細(xì)胞外基質(zhì)取代,因此對(duì)傳代次數(shù)有一定限制[70]。根據(jù)移植部位不同可分為PDX皮下移植瘤模型和原位移植瘤模型。
PDX與CDX皮下和原位移植瘤模型移植方法相同,其主要不同點(diǎn)在于PDX模型需要用穿刺針將制備好的標(biāo)本接種到上述部位[71]。標(biāo)本取材制備取新鮮腫瘤組織放入4 ℃含5%雙抗(青霉素和鏈霉素)的RPMI-1640無(wú)菌培養(yǎng)液中,去除結(jié)締組織和壞死組織后剪成約1 mm×1 mm×1 mm的腫瘤塊移植物,置于4 ℃環(huán)境的上述培養(yǎng)液中暫存,并在標(biāo)本離體后2 h內(nèi)完成移植。
2.3免疫系統(tǒng)人源化小鼠模型免疫系統(tǒng)紊亂會(huì)導(dǎo)致人類(lèi)腫瘤的發(fā)生[72]。腫瘤的免疫治療主要通過(guò)激活機(jī)體抗腫瘤免疫反應(yīng)或阻斷腫瘤免疫逃逸來(lái)清除體內(nèi)的癌細(xì)胞,是繼手術(shù)、放化療、分子靶向之后的一種新的提高患者生存期的治療方法[73-74]。肝癌免疫系統(tǒng)人源化小鼠模型是將人的造血細(xì)胞、淋巴細(xì)胞或組織植入免疫缺陷小鼠體內(nèi),在小鼠身上重建人類(lèi)免疫系統(tǒng),然后再將人源肝癌細(xì)胞或組織移植至小鼠體內(nèi)構(gòu)建的一種新的小鼠模型。該模型模擬人體腫瘤細(xì)胞與免疫系統(tǒng)之間的相互作用,在腫瘤免疫治療藥物研發(fā)和臨床前評(píng)估中具有重要的應(yīng)用前景。根據(jù)免疫系統(tǒng)重建的方法,模型主要分為三類(lèi):Hu-PBL(humanized peripheral blood mononuclear cells)、Hu-HSCs(humanized hematopoietic stem cells)和Hu-BLT(humanized bone marrow, liver, thymus)小鼠模型。
Hu-HSCs小鼠模型的造血系統(tǒng)及免疫細(xì)胞是造血干細(xì)胞在小鼠體內(nèi)重新發(fā)育而來(lái),對(duì)小鼠宿主具有免疫耐受,不會(huì)發(fā)生致死性移植物抗宿主反應(yīng),常被用于肝癌免疫系統(tǒng)人源化小鼠模型的構(gòu)建。構(gòu)建方式[75]:首先將免疫缺陷小鼠經(jīng)亞致死劑量輻照處理,然后將1×105CD34+HSC(來(lái)源于人粒細(xì)胞集落刺激因子G-CFS動(dòng)員的血液、骨髓、臍帶血或胎兒肝)在24 h內(nèi)經(jīng)骨髓腔或尾靜脈注射入小鼠體內(nèi),8周后將人源肝癌細(xì)胞或組織移植至小鼠體內(nèi)(方法同上文CDX/PDX小鼠肝癌模型)。
肝癌外科治療是患者獲得長(zhǎng)期生存的重要手段,但肝癌患者行根治性手術(shù)后 5 年復(fù)發(fā)率高達(dá) 50%~70%,降低術(shù)后復(fù)發(fā)率是提高肝癌整體療效的關(guān)鍵[76]。肝癌術(shù)后復(fù)發(fā)往往與術(shù)前已經(jīng)存在的微小播散灶和(或)肝癌多中心發(fā)生有關(guān),導(dǎo)致肝癌術(shù)后復(fù)發(fā)的機(jī)制可能包括以下幾個(gè)方面[77]:(1)肝臟病灶切除過(guò)程中,因擠壓、搬動(dòng)肝臟造成腫瘤破裂,使腫瘤細(xì)胞殘留并轉(zhuǎn)為休眠狀態(tài);(2)肝再生創(chuàng)造適合腫瘤生長(zhǎng)的微環(huán)境,促進(jìn)更多的血管生成物質(zhì)及細(xì)胞因子進(jìn)入血管,激活休眠狀態(tài)的微小病灶[78-79];(3)肝再生激活肝細(xì)胞增殖的信號(hào)通路,促進(jìn)腫瘤生長(zhǎng)?,F(xiàn)階段尚無(wú)全球公認(rèn)的肝癌術(shù)后輔助治療方案[80]。對(duì)于合并高危復(fù)發(fā)因素的患者,往往積極采取干預(yù)措施,包括抗病毒、動(dòng)脈介入、系統(tǒng)化療、分子靶向及中醫(yī)藥治療等,但是除了抗病毒藥物治療之外,其他治療尚缺乏強(qiáng)有力的循證醫(yī)學(xué)證據(jù)充分支持[81]。因此,目前提倡多學(xué)科合作及個(gè)體化的綜合治療,而基于遺傳信息的精準(zhǔn)治療是未來(lái)的發(fā)展方向。
小鼠肝癌術(shù)后復(fù)發(fā)的治療模型可模擬患者術(shù)后腫瘤的復(fù)發(fā)轉(zhuǎn)移,為抗肝癌藥物的研發(fā)提供更加有效的治療模型[82],為肝癌的精準(zhǔn)治療提供強(qiáng)有力的臨床前證據(jù)。具體操作步驟:在原位移植模型的基礎(chǔ)上,再次開(kāi)腹,觀察肝臟、腹腔無(wú)腫瘤轉(zhuǎn)移后,將已成瘤的小鼠肝臟行根治性手術(shù)切除,充分止血后逐層關(guān)閉腹腔[83]。隨后觀察腫瘤復(fù)發(fā)情況,可結(jié)合生物發(fā)光活體成像技術(shù)追蹤腫瘤復(fù)發(fā)及再次轉(zhuǎn)移情況。
小鼠肝癌模型能準(zhǔn)確反映肝癌的生物學(xué)特性,模擬肝癌在人體內(nèi)自然生長(zhǎng)、侵襲及轉(zhuǎn)移的全部過(guò)程;小鼠肝癌治療模型作為小鼠肝癌模型的主要組成部分,為肝癌的基礎(chǔ)與臨床研究提供有力依據(jù)??茖W(xué)有效的的治療模型應(yīng)與人類(lèi)大多數(shù)肝癌病理組織類(lèi)型相一致,具有合適的腫瘤體積、生長(zhǎng)速度和存活時(shí)間,能反映肝癌的生物學(xué)特性,模擬人體的腫瘤微環(huán)境,方法操作簡(jiǎn)便,成功率高,重復(fù)性好。但不同模型有其優(yōu)缺點(diǎn),應(yīng)根據(jù)不同研究目的合理選擇。小鼠肝癌發(fā)生的早期干預(yù)模型模擬肝癌的發(fā)生過(guò)程,有利于進(jìn)行肝癌早期干預(yù)的研究;小鼠肝癌進(jìn)展期治療模型模擬肝癌發(fā)生后的疾病進(jìn)展過(guò)程,有利于研究不同干預(yù)方式對(duì)肝癌進(jìn)展階段的治療效果;小鼠肝癌根治術(shù)后復(fù)發(fā)治療模型模擬了患者術(shù)后腫瘤的復(fù)發(fā)與轉(zhuǎn)移,有利于研究不同抗癌藥物根治術(shù)后的輔助治療效果。目前,肝癌的治療是在多學(xué)科合作和個(gè)體化綜合治療基礎(chǔ)上聯(lián)合分子靶向藥物,實(shí)現(xiàn)腫瘤的精準(zhǔn)治療,小鼠肝癌治療模型是篩選抗肝癌藥物的良好實(shí)驗(yàn)工具,期待未來(lái)開(kāi)發(fā)出更多治療模型,為肝癌的精準(zhǔn)治療提供可靠依據(jù)。
[1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
[2] Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1):6-9.
[3] Wei W, Zeng H, Zheng R, et al. Cancer registration in china and its role in cancer prevention and control[J]. Lancet Oncol, 2020, 21(7):342-349.
[4] Zhao Y, Shuen TWH, Toh TB, et al. Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy[J]. Gut, 2018, 67(10):1845-1854.
[5] Fujiwara N, Friedman SL, Goossens N, et al. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine[J]. J Hepatol, 2018, 68(3):526-549.
[6] Fedeles BI, Essigmann JM. Impact of DNA lesion repair, replication and formation on the mutational spectra of environmental carcinogens: aflatoxin B1as a case study[J]. DNA Repair (Amst), 2018(11), 71:12-22.
[7] Jiang HY, Chen J, Xia CC, et al. Noninvasive imaging of hepatocellular carcinoma: from diagnosis to prognosis[J]. World J Gastroenterol, 2018, 24(22):2348-2362.
[8] Kulik L, El-Serag HB. Epidemiology and management of hepatocellular carcinoma[J]. Gastroenterology, 2019, 156(2):477-491.
[9] Mak LY, Wong DK, Pollicino T, et al. Occult hepatitis B infection and hepatocellular carcinoma: epidemiology, virology, hepatocarcinogenesis and clinical significance[J]. J Hepatol, 2020, 73(4):952-964.
[10] D'Souza S, Lau KC, Coffin CS, et al. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma[J]. World J Gastroenterol, 2020, 26(38):5759-5783.
[11] Mancarella S, Krol S, Crovace A, et al. Validation of hepatocellular carcinoma experimental models for TGF-β promoting tumor progression[J]. Cancers (Basel), 2019, 11(10):1510.
[12] Connor F, Rayner TF, Aitken SJ, et al. Mutational landscape of a chemically-induced mouse model of liver cancer[J]. J Hepatol, 2018, 69(4):840-850.
[13] Esparza-Baquer A, Labiano I, Sharif O, et al. TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms[J]. Gut, 2021, 70(7):1345-1361.
[14] Marrone AK, Shpyleva S, Chappell G, et al. Differentially expressed micrornas provide mechanistic insight into fibrosis-associated liver carcinogenesis in mice[J]. Mol Carcinog, 2016, 55(5):808-817.
[15] Fishbein A, Wang W, Yang H, et al. Resolution of eicosanoid/cytokine storm prevents carcinogen and inflammation-initiated hepatocellular cancer progression[J]. Proc Natl Acad Sci U S A, 2020, 117(35):21576-21587.
[16] Nazmy EA, El-Khouly OA, Zaki MMA, et al. Targeting p53/TRAIL/caspase-8 signaling by adiponectin reverses thioacetamide-induced hepatocellular carcinoma in rats[J]. Environ Toxicol Pharmacol, 2019, 72:103240.
[17] Kakehashi A, Ishii N, Okuno T, et al. Progression of hepatic adenoma to carcinoma inmutant mice induced by phenobarbital[J]. Oxid Med Cell Longev, 2017, 2017:8541064.
[18] Memon A, Pyao Y, Jung Y, et al. A modified protocol of diethylnitrosamine administration in mice to model hepatocellular carcinoma[J]. Int J Mol Sci, 2020, 21(15):5461.
[19] Tang Q, Wang Q, Zhang Q, et al. Gene expression, regulation of DEN and HBx induced HCC mice models and comparisons of tumor, para-tumor and normal tissues[J]. BMC Cancer, 2017, 17(1):862.
[20] Lei CJ, Wang B, Long ZX, et al. Investigation of PD-1H in DEN-induced mouse liver cancer model[J]. Eur Rev Med Pharmacol Sci, 2018, 22(16):5194-5199.
[21] Wang B, Chou YE, Lien MY, et al. Impacts of CCL4 gene polymorphisms on hepatocellular carcinoma susceptibility and development[J]. Int J Med Sci, 2017, 14(9):880-884.
[22] Zheng D, Jiang Y, Qu C, et al. Pyruvate kinase M2 tetramerization protects against hepatic stellate cell activation and liver fibrosis[J]. Am J Pathol, 2020, 190(11):2267-2281.
[23] Jiang Y, Chen P, Hu K, et al. Inflammatory microenvironment of fibrotic liver promotes hepatocellular carcinoma growth, metastasis and sorafenib resistance through STAT3 activation[J]. J Cell Mol Med, 2021, 25(3):1568-1582.
[24] Qu C, Zheng D, Li S, et al. Tyrosine kinase SYK is a potential therapeutic target for liver fibrosis[J]. Hepatology, 2018, 68(3):1125-1139.
[25] Lin Y H, Zhang S, Zhu M, et al. Mice with increased numbers of polyploid hepatocytes maintain regenerative capacity but develop fewer hepatocellular carcinomas following chronic liver injury[J]. Gastroenterology, 2020, 158(6):1698-1712.
[26] Ma X, Qiu Y, Sun Y, et al. NOD2 inhibits tumorigenesis and increases chemosensitivity of hepatocellular carcinoma by targeting AMPK pathway[J]. Cell Death Dis, 2020, 11(3):174.
[27] Li J, Wang Q, Yang Y, et al. GSTZ1 deficiency promotes hepatocellular carcinoma proliferation via activation of the KEAP1/NRF2 pathway[J]. J Exp Clin Cancer Res, 2019, 38(1):438.
[28] Liu Y, Song L, Ni H, et al. ERBB4 acts as a suppressor in the development of hepatocellular carcinoma[J]. Carcinogenesis, 2017, 38(4):465-473.
[29] Feng H, Liu J, Qiu Y, et al. RNA-binding motif protein 43 (RBM43) suppresses hepatocellular carcinoma progression through modulation of cyclin B1 expression[J]. Oncogene, 2020, 39(33):5495-5506.
[30] Sakurai T, Kamiyoshi A, Kawate H, et al. Production of genetically engineered mice with higher efficiency, lower mosaicism, and multiplexing capability using maternally expressed Cas9[J]. Sci Rep, 2020, 10(1):1091.
[31] Yin H, Xue W, Anderson DG. CRISPR-Cas: a tool for cancer research and therapeutics[J]. Nat Rev Clin Oncol, 2019, 16(5):281-295.
[32] Levrero M, Zucman-Rossi J. Mechanisms of hbv-induced hepatocellular carcinoma[J]. J Hepatol, 2016, 64(1):S84-S101.
[33] Kruse RL, Barzi M, Legras X, et al. A hepatitis b virus transgenic mouse model with a conditional, recombinant, episomal genome[J]. JHEP Rep, 2021, 3(2):100252-100259.
[34] Simeonov KP, Byrns CN, Clark ML, et al. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states[J]. Cancer Cell, 2021, 39(8):1150-1162.
[35] Zhang W, Zhangyuan G, Wang F, et al. The zinc finger protein Miz1 suppresses liver tumorigenesis by restricting hepatocyte-driven macrophage activation and inflammation[J]. Immunity, 2021, 54(6):1168-1185.
[36] Mou H, Ozata DM, Smith JL, et al. CRISPR-SONIC: targeted somatic oncogene knock-in enables rapidcancer modeling[J]. Genome Med, 2019, 11(1):21.
[37] Anstee QM, Reeves HL, Kotsiliti E, et al. From nash to hcc: current concepts and future challenges[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(7):411-428.
[38] Kucukoglu O, Sowa JP, Mazzolini GD, et al. Hepatokines and adipokines in nash-related hepatocellular carcinoma[J]. J Hepatol, 2021, 74(2):442-457.
[39] 楊慶宇, 郜娜. 白藜蘆醇通過(guò)miRNA-122調(diào)節(jié)神經(jīng)酰胺水平而治療非酒精性脂肪肝[J]. 中國(guó)病理生理雜志, 2017, 33(8):1506-1513.
Yang QY, Gao N. Effects of resveratrol on levels of ceramide via regulating miRNA-122 intreating non-alcoholic fatty liver disease[J]. Chin J Pathophysiol, 2017, 33(8):1506-1513.
[40] Chyau CC, Wang HF, Zhang WJ, et al. Antrodan alleviates high-fat and high-fructose diet-induced fatty liver disease in C57BL/6 mice model via AMPK/SIRT1/SREBP-1c/PPARγ pathway[J]. Int J Mol Sci, 2020, 21(1):360.
[41] Tsuchida T, Lee YA, Fujiwara N, et al. A simple diet- and chemical-induced murine nash model with rapid progression of steatohepatitis, fibrosis and liver cancer[J]. J Hepatol, 2018, 69(2):385-395.
[42] Villanueva A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15):1450-1462.
[43] Forner A, Reig M, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2018, 391(10127):1301-1314.
[44] Tang W, Chen Z, Zhang W, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects[J]. Signal Transduct Target Ther, 2020, 5(1):87-97.
[45] Hu B, Li H, Guo W, et al. Establishment of a hepatocellular carcinoma patient-derived xenograft platform and its application in biomarker identification[J]. Int J Cancer, 2020, 146(6):1606-1617.
[46] Reiberger T, Chen Y, Ramjiawan RR, et al. An orthotopic mouse model of hepatocellular carcinoma with underlying liver cirrhosis[J]. Nat Protoc, 2015, 10(8):1264-1274.
[47] He L, Tian DA, Li PY, et al. Mouse models of liver cancer: progress and recommendations[J]. Oncotarget, 2015, 6(27):23306-23322.
[48] Zhou Q, Tian W, Jiang Z, et al. A positive feedback loop of AKR1C3-mediated activation of NF-κB and STAT3 facilitates proliferation and metastasis in hepatocellular carcinoma[J]. Cancer Res, 2021, 81(5):1361-1374.
[49] Zhou Y, Huan L, Wu Y, et al. LncRNA ID2-AS1 suppresses tumor metastasis by activating the HDAC8/ID2 pathway in hepatocellular carcinoma[J]. Cancer Lett, 2020, 469:399-409.
[50] Febbraio MA, Reibe S, Shalapour S, et al. Preclinical models for studying nash-driven hcc: how useful are they?[J]. Cell Metab, 2019, 29(1):18-26.
[51] Wu Y, Wang J, Zheng X, et al. Establishment and preclinical therapy of patient-derived hepatocellular carcinoma xenograft model[J]. Immunol Lett, 2020, 22(3):33-43.
[52] 王春玲, 張榮芳, 陳峰杰, 等. miR-509靶向Rac1調(diào)節(jié)人肝癌LM3細(xì)胞侵襲和遷移及裸鼠模型的存活[J]. 中國(guó)病理生理雜志, 2019, 35(5):813-818.
Wang CL, zhang RF, Chen FJ, et al. miR-509 regulates growth, invasion and migration of human hepatocellular carcinoma LM3 cells and survival of nude mice[J]. Chin J Pathophysiol, 2019, 35(5):813-818.
[53] Seyhoun I, Hajighasemlou S, Muhammadnejad S, et al. Combination therapy of sorafenib with mesenchymal stem cells as a novel cancer treatment regimen in xenograft models of hepatocellular carcinoma[J]. J Cell Physiol, 2019, 234(6):9495-9503.
[54] Jiang Y, Chen S, Li Q, et al. Tank-binding kinase 1 (TBK1) serves as a potential target for hepatocellular carcinoma by enhancing tumor immune infiltration[J]. Front Immunol, 2021, 12:612139.
[55] Tang TC, Man S, Lee CR, et al. Impact of metronomic uft/cyclophosphamide chemotherapy and antiangiogenic drug assessed in a new preclinical model of locally advanced orthotopic hepatocellular carcinoma[J]. Neoplasia, 2010, 12(3):264-274.
[56] Lv X, Yu H, Zhang Q, et al. SRXN1 stimulates hepatocellular carcinoma tumorigenesis and metastasis through modulating ROS/p65/BTG2 signalling[J]. J Cell Mol Med, 2020, 24(18):10714-10729.
[57] Liao WW, Zhang C, Liu FR, et al. Effects of miR-155 on proliferation and apoptosis by regulating FoxO3a/BIM in liver cancer cell line HCCLM3[J]. Eur Rev Med Pharmacol Sci, 2020, 24(13):7196-7176.
[58] Li GC, Ye QH, Dong QZ, et al. TGF beta1 and related-Smads contribute to pulmonary metastasis of hepatocellular carcinoma in mice model[J]. J Exp Clin Cancer Res, 2012, 31(1):93.
[59] Li X, Hu J, Gu B, et al. Animal model of intrahepatic metastasis of hepatocellular carcinoma: establishment and characteristic[J]. Sci Rep, 2020, 10(1):15199.
[60] Alessandri G, Pessina A, Paroni R, et al. Single-shot local injection of microfragmented fat tissue loaded with paclitaxel induces potent growth inhibition of hepatocellular carcinoma in nude mice[J]. Cancers (Basel), 2021, 13(21):5505-5512.
[61] López-Cánovas JL, Del Rio-Moreno M, García-Fernandez H, et al. Splicing factor SF3B1 is overexpressed and implicated in the aggressiveness and survival of hepatocellular carcinoma.[J]. Cancer Lett, 2021, 496:72-83.
[62] Mo SJ, Hou X, Hao XY, et al. EYA4 inhibits hepatocellular carcinoma growth and invasion by suppressing NF-κB-dependent RAP1 transactivation[J]. Cancer Commun (Lond), 2018, 38(1):9-15.
[63] Guo X, Jiang H, Shi B, et al. Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma[J]. Front Pharmacol, 2018, 9:1118.
[64] Ben-David U, Ha G, Tseng YY, et al. Patient-derived xenografts undergo mouse-specific tumor evolution[J]. Nat Genet, 2017, 49(11):1567-1575.
[65] Meehan TF. Know thy pdx model[J]. Cancer Res, 2019, 79(17):4324-4325.
[66] Okada S, Vaeteewoottacharn K, Kariya R. Application of highly immunocompromised mice for the establishment of patient-derived xenograft (PDX) models[J]. Cells, 2019, 8(8):889-899.
[67] Huang L, Bockorny B, Paul I, et al. Pdx-derived organoids modeldrug response and secrete biomarkers[J]. JCI Insight, 2020, 5(21):135544-135554.
[68] Xu W, Zhao ZY, An QM, et al. Comprehensive comparison of patient-derived xenograft models in hepatocellular carcinoma and metastatic liver cancer[J]. Int J Med Sci, 2020, 17(18):3073-3081.
[69] Shi J, Li Y, Jia R, et al. The fidelity of cancer cells in pdx models: characteristics, mechanism and clinical significance[J]. Int J Cancer, 2020, 146(8):2078-2088.
[70] Jung J, Seol HS, Chang S. The generation and application of patient-derived xenograft model for cancer research[J]. Cancer Res Treat, 2018, 50(1):1-10.
[71] Meehan TF, Conte N, Goldstein T, et al. PDX-MI: minimal information for patient-derived tumor xenograft models[J]. Cancer Res, 2017, 77(21):e62-e66.
[72] Bruni D, Angell HK, Galon J, et al. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy[J]. Nat Rev Cancer, 2020, 20(11):662-680.
[73] Walsh NC, Kenney LL, Jangalwe S, et al. Humanized mouse models of clinical disease[J]. Annu Rev Pathol, 2017, 24(12):187-215.
[74] Allen TM, Brehm MA, Bridges S, et al. Humanized immune system mouse models: progress, challenges and opportunities[J]. Nat Immunol, 2019, 20(7):770-774.
[75] Zhao Y, Shuen TWH, Toh TB, et al. Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy[J]. Gut, 2018, 67(10):1845-1854.
[76] Heimbach JK, Kulik LM, Finn RS, et al. Aasld guidelines for the treatment of hepatocellular carcinoma[J]. Hepatology, 2018, 67(1):358-380.
[77] Lee KF, Chong CCN, Fong AKW, et al. Pattern of disease recurrence and its implications for postoperative surveillance after curative hepatectomy for hepatocellular carcinoma: experience from a single center[J]. Hepatobiliary Surg Nutr, 2018, 7(5):320-330.
[78] Tabrizian P, Jibara G, Shrager B, et al. Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis[J]. Ann Surg, 2015, 261(5):947-955.
[79] Xu X F, Xing H, Han J, et al. Risk factors, patterns, and outcomes of late recurrence after liver resection for hepatocellular carcinoma: a multicenter study from China[J]. JAMA Surg, 2019, 154(3):209-217.
[80] European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma[J]. J Hepatol, 2018, 69(1):182-236.
[81] Wang Z, Ren Z, Chen Y, et al. Adjuvant transarterial chemoembolization for HBV-related hepatocellular carcinoma after resection: a randomized controlled study[J]. Clin Cancer Res, 2018, 24(9):2074-2081.
[82] Lauko A, Bayik D, Lathia JD. IL-11 drives postsurgical hepatocellular carcinoma recurrence[J]. EBioMedicine, 2019, 47:18-19.
[83] Wang D, Zheng X, Fu B, et al. Hepatectomy promotes recurrence of liver cancer by enhancing IL-11-STAT3 signaling[J]. EBioMedicine, 2019, 46:119-132.
Research progress in mouse treatment model of liver cancer
GAO Chong-qing, ZHOU Xing-yan, LIU Jun-li, HONG Jian△
(,,510632,)
Primary liver cancer is one of the most common aggressive malignancies worldwide. Due to the insidiousness of the onset of hepatocellular carcinoma (HCC) and the lack of effective treatments, the prognosis of HCC patients is abysmal. The mouse liver cancer model is a common carrier for the study of primary liver cancer. The mouse treatment model of liver cancer is widely used in studies of the pathogenesis of primary liver cancer and screenings of new drugs. Among them, the induced and genetically engineered mouse liver cancer models simulate the whole process from liver injury to tumorigenesis, which are mainly used for the study of early intervention of tumors. The transplanted cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse liver cancer models simulate the microenvironment of tumor cells growing, which are mainly used to study systemic therapy in the advanced stage of liver cancer. The postoperative recurrence model of mouse liver cancer mainly simulates the recurrence of tumors after resection in liver cancer patients and is mainly used to study postoperative adjuvant treatments. This article aims to introduce the principles, characteristics, modeling methods, and application of various mouse liver cancer models commonly used in anti-tumor therapy.
Mice; Hepatocellular carcinoma; Animal model; Treatment of liver cancer
1000-4718(2022)09-1686-08
2022-03-10
2022-05-19
13902280717; E-mail: hongjian7@jnu.edu.cn
R735.7; R363
A
10.3969/j.issn.1000-4718.2022.09.019
[基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 81871987);中央高校基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金資助(No. 21620106)
(責(zé)任編輯:宋延君,羅森)