韋瑋, 朱業(yè), 顧建軍, 顧翔
在hUCMSCs中過表達(dá)和以構(gòu)建生物起搏表型細(xì)胞的研究*
韋瑋, 朱業(yè)△, 顧建軍, 顧翔△
(揚(yáng)州大學(xué)臨床醫(yī)學(xué)院,蘇北人民醫(yī)院心血管內(nèi)科,江蘇 揚(yáng)州 225001)
擬利用慢病毒載體將和轉(zhuǎn)染至永生化人臍帶間充質(zhì)干細(xì)胞(hUCMSCs),探討體外過表達(dá)和的hUCMSCs是否具有起搏樣細(xì)胞表型。進(jìn)行hUCMSCs體外傳代培養(yǎng)。分別構(gòu)建攜帶和基因的慢病毒載體及空載體,通過慢病毒介導(dǎo)和基因轉(zhuǎn)染至hUCMSCs。采用CCK-8實(shí)驗(yàn)檢測各組細(xì)胞活力。應(yīng)用RT-qPCR和Western blot方法檢測起搏相關(guān)因子mRNA和蛋白表達(dá)水平。(1)慢病毒過表達(dá)載體構(gòu)建成功,-MSCs組和-MSCs組轉(zhuǎn)染效率約為50%~55%--MSCs組轉(zhuǎn)染效率約40%~45%,形態(tài)較前也稍有變化,折光性較好;(2)實(shí)驗(yàn)組細(xì)胞生長速度較對照組變緩(<0.05);(3)過表達(dá)組中HCN4、Tbx18和Tbx3的mRNA表達(dá)量顯著高于對照組(<0.05),Nkx2.5和Cx43的mRNA表達(dá)量顯著低于對照組(<0.01);(4)與對照組相比,單基因過表達(dá)組Cx45蛋白水平顯著上調(diào),Nkx2.5和Cx43蛋白水平顯著下調(diào)(<0.01),雙基因過表達(dá)組比單基因過表達(dá)組上調(diào)(或下調(diào))更顯著(<0.01)。過表達(dá)和(或)的hUCMSCs具有起搏樣細(xì)胞表型;共轉(zhuǎn)染有促進(jìn)hUCMSCs向起搏樣細(xì)胞表型轉(zhuǎn)化的疊加效果。
生物起搏器;人臍帶間充質(zhì)干細(xì)胞;基因;基因
病態(tài)竇房結(jié)綜合征(sick sinus syndrome, SSS)是臨床上常見的嚴(yán)重心臟疾病之一,極大地增加了患者死亡風(fēng)險(xiǎn)。目前,電子起搏器是竇房結(jié)功能障礙(sinus node dysfunction, SND)患者的一線治療手段,但仍存在很多局限性,譬如需要定期更換電池、導(dǎo)線斷裂等,迫使人們尋找更為理想的起搏方式。隨著細(xì)胞生物學(xué)及心臟電生理學(xué)的不斷發(fā)展,使得干細(xì)胞移植構(gòu)建心臟生物起搏器成為可能[1]。
由超極化激活環(huán)核苷酸門控通道(hyperpolarization-activated cyclic nucleotide-gated channel, HCN)產(chǎn)生的電流f,即起搏電流,是舒張期緩慢去極化的關(guān)鍵[2]。HCN4是HCN的主要亞型,該通道突變會導(dǎo)致SND[3]。矮小同源盒2(short stature homeobox 2, Shox2)對竇房結(jié)(sinoatrial node,SAN)細(xì)胞的發(fā)育和分化同樣重要。敲除的小鼠由于、和的表達(dá)增加以及、和的表達(dá)下調(diào)而死于SSS[4]。Nkx2.5是心臟發(fā)育的重要轉(zhuǎn)錄因子,其變異可導(dǎo)致心律失常。胚胎轉(zhuǎn)錄因子T-box 3 (Tbx3)和T-box 18 (Tbx18)也是正常SAN發(fā)育所必需的。表達(dá)Tbx18轉(zhuǎn)錄因子的間充質(zhì)祖細(xì)胞與SAN的產(chǎn)生有關(guān),而Tbx3在SAN中充當(dāng)轉(zhuǎn)錄抑制因子[5]。另外,SAN中心表達(dá)間隙連接蛋白45(connexin 45, Cx45),使SAN與周圍的心房肌形成電絕緣;Cx43在SAN中表達(dá)量很低甚至不表達(dá)[6]。
與成人骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells, BMSCs)不同,人臍帶間充質(zhì)干細(xì)胞(human umbilical cord mesenchymal stem cells, hUCMSCs)具有更易獲得,成本低,免疫原性弱和良好增殖活力等優(yōu)勢,為后續(xù)研究及臨床應(yīng)用提供更好的基礎(chǔ)[7]。
在本研究中,我們擬構(gòu)建攜帶和基因的慢病毒載體,并將和基因轉(zhuǎn)染至hUCMSCs,運(yùn)用RT-qPCR及Western blot檢測目的基因和起搏相關(guān)因子在細(xì)胞內(nèi)的表達(dá)情況,初步驗(yàn)證過表達(dá)和后的hUCMSCs是否具有起搏樣細(xì)胞表型。
取自揚(yáng)州大學(xué)表觀遺傳學(xué)實(shí)驗(yàn)室提供的永生化hUCMSCs,使用無任何倫理爭議。
pLentis-Ubi-MCS-EGFP、pLentis-Ubi-MCS-ERFP、GV載體質(zhì)粒、pHelper 1.0和pHelper 2.0載體質(zhì)粒(上海吉凱生物技術(shù)有限公司);α-MEM培養(yǎng)液和DMEM培養(yǎng)液(HyClone);胎牛血清(Gibco);RIPA裂解液、BCA試劑盒、SDS-PAGE凝膠制備試劑盒和胰蛋白酶(上海碧云天生物有限公司);青霉素-鏈霉素和嘌呤霉素(Sigma);兔抗Shox2多克隆抗體等(Affinity Biosciences);FastKing一步法除基因組cDNA第一鏈合成預(yù)混試劑盒和瓊脂糖凝膠DNA回收試劑盒(北京天根生化科技有限公司);AceQ qPCR SYBR Green Master Mix、RNA-easy Isolation Reagent、CCK-8試劑盒和ClonExpress II One Step Cloning Kit(南京諾唯贊生物科技股份有限公司)。引物由武漢賽維爾生物科技有限公司合成。
3.1攜帶和基因慢病毒載體的構(gòu)建、鑒定和包裝在pLentis-Ubi-MCS-EGFP/ERFP克隆位點(diǎn)進(jìn)行H I/I雙酶切,對載體酶切產(chǎn)物進(jìn)行瓊脂糖凝膠電泳,回收目的條帶。在NCBI查詢Shox2和HCN4的mRNA序列,設(shè)計(jì)特異性引物。將引物稀釋進(jìn)行PCR擴(kuò)增目的基因片段,根據(jù)目的條帶和線性載體片段的大小將條帶裁剪,用瓊脂糖凝膠DNA回收試劑盒回收片段,再與線性化載體通過ClonExpress II One Step Cloning Kit進(jìn)行連接。將連接反應(yīng)產(chǎn)物加入到DH5α細(xì)胞中,取菌液均勻涂布在含有抗生素平板上,挑取單個(gè)克隆通過PCR鑒定陽性克隆,隨后測序,測序結(jié)果與目的基因序列進(jìn)行比對分析。轉(zhuǎn)染前24 h將對數(shù)生長期293T細(xì)胞調(diào)整細(xì)胞密度后重新接種于10 cm2細(xì)胞培養(yǎng)皿。細(xì)胞密度80%左右可用于轉(zhuǎn)染;離心管中加入各DNA溶液(GV載體質(zhì)粒、pHelper 1.0載體質(zhì)粒和pHelper 2.0載體質(zhì)粒),與助轉(zhuǎn)染試劑混合均勻。緩慢滴加至293T細(xì)胞培養(yǎng)液中,6 h后棄去培養(yǎng)液再加入10% MEM培養(yǎng)液20 mL,繼續(xù)培養(yǎng)72 h。收集轉(zhuǎn)染后293T細(xì)胞上清液,過濾上清液于超速離心管離心,棄上清,加入病毒保存液重懸離心,取上清分裝后-80 ℃保存。特異性引物序列見表1。
表1 引物序列
F: forward; R: reverse.
3.2和慢病毒載體轉(zhuǎn)染hUCMSCs和穩(wěn)定株篩選
3.2.1單轉(zhuǎn)染和基因?qū)⒌?代hUCMSCs接種于24孔板中,細(xì)胞生長達(dá)孔底面積約30%時(shí)進(jìn)行轉(zhuǎn)染。按MOI=250,把病毒液和助轉(zhuǎn)液稀釋至需要濃度,吸出孔板中的培養(yǎng)液。將混合液混勻后取適量體積加入每孔細(xì)胞中。12 h后更換常規(guī)培養(yǎng)液,放入5% CO2、37 ℃恒溫培養(yǎng)箱培養(yǎng)。
3.2.2共轉(zhuǎn)染和基因取出轉(zhuǎn)染后的hUCMSCs再進(jìn)行共轉(zhuǎn)染[8]。將攜帶基因慢病毒和助轉(zhuǎn)劑混合均勻加入每孔細(xì)胞中。120 h后將細(xì)胞放在倒置熒光顯微鏡下觀察隨機(jī)多個(gè)視野中同時(shí)表達(dá)紅、綠色熒光細(xì)胞數(shù)。
3.3hUCMSCs過表達(dá)細(xì)胞株生長曲線檢測取對數(shù)生長期過表達(dá)細(xì)胞株接種于96孔板中,對照組為hUCMSCs,實(shí)驗(yàn)組為-MSCs、-MSCs和--MSCs。根據(jù)CCK-8試劑盒說明書每組設(shè)置4個(gè)復(fù)孔,37 ℃恒溫培養(yǎng)箱培養(yǎng)24 h后,每孔細(xì)胞中加入10 μL CCK-8溶液,37 ℃孵育2 h。吸出上清,轉(zhuǎn)移至新的96孔板中,用酶標(biāo)儀檢測450 nm處的吸光度()值,連續(xù)測量6 d后繪制生長曲線。
3.4RT-qPCR檢測目的基因的mRNA表達(dá)RT-qPCR反應(yīng)液配制在冰上進(jìn)行。通過逆轉(zhuǎn)錄試劑盒將各組RNA逆轉(zhuǎn)錄成cDNA,隨后用熒光定量試劑盒配制反應(yīng)體系,根據(jù)說明書將引物、SYBR熒光染料、ddH2O和cDNA制成混合液再加到96孔板內(nèi)。利用Bio-Rad實(shí)時(shí)定量PCR儀檢測,反應(yīng)程序設(shè)定為:95 ℃ 5 min; 95 ℃ 10 s, 60 ℃ 30 s, 95℃ 15 s, 60 ℃ 60 s,95 ℃ 15 s,擴(kuò)增40個(gè)循環(huán)。以GAPDH作為內(nèi)參照,運(yùn)用2-ΔΔCt法計(jì)算基因相對表達(dá)量。引物序列見表1。
3.5Western blot檢測目的基因的蛋白表達(dá)胰酶消化貼壁生長的hUCMSCs后移至EP管中,加入配制好的裂解液(RIPA+PMSF)吹打均勻,冰上裂解30 min后4 ℃離心15 min,取上清至新的EP管中。樣品加入對應(yīng)體積的上樣緩沖液,100 ℃煮沸10 min以變性。上樣、轉(zhuǎn)膜。結(jié)束后將膜置于搖床上5%脫脂乳室溫封閉2 h,洗膜。根據(jù)抗體說明書進(jìn)行對應(yīng)抗體稀釋、孵育,ECL超敏發(fā)光液顯影拍照。使用ImageJ軟件進(jìn)行各組目的蛋白表達(dá)相對豐度分析,每組樣本均進(jìn)行3次獨(dú)立重復(fù)實(shí)驗(yàn)取均值。
所有數(shù)據(jù)采用SPSS 26.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。兩組間比較采用檢驗(yàn),多組間比較采用單因素方差分析。采用GraphPad Prism 7.0進(jìn)行統(tǒng)計(jì)圖的繪制。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
通過5'和3'兩端特異性引物進(jìn)行PCR擴(kuò)增并獲取目的基因片段,再進(jìn)行重組質(zhì)粒的制備獲得pLentis-Ubi-MCS-EGFP-目的條帶,條帶大小與基因的CDS區(qū)條帶大小一致,如圖1A所示。將pLentis-Ubi-MCS-EGFP-過表達(dá)載體菌液送至公司測序,并將結(jié)果序列至NCBI數(shù)據(jù)庫進(jìn)行比對,如圖1B所示,序列信息完全一致即慢病毒過表達(dá)載體構(gòu)建成功。
Figure 1. The lentiviral recombinant vector was successfully constructed (taking pLentis-UBI-MCS-EGFP-HCN4 recombinant rector as an example). A: PCR products [1: negative control (ddH2O); 2: negative control (empty control); 3: positive control (GAPDH); 4: marker from top to bottom: 5 kb, 3 kb, 2 kb, 1.5 kb, 1 kb, 750 bp, 500 bp, 250 bp, and 100 bp; 5 to 12: transformant (136 bp)]; B: the sequencing results of pLentis-Ubi-MCS-EGFP-HCN4 overexpression vector were compared in the NCBI database, which was completely consistent with the database sequence information.
以病毒感染復(fù)數(shù)MOI=250,轉(zhuǎn)染72 h后鏡下逐漸能觀察到細(xì)胞有熒光表達(dá),120 h時(shí)-MSCs組和-MSCs組細(xì)胞轉(zhuǎn)染效率約為50%~55%。細(xì)胞隨著培養(yǎng)時(shí)間延長表達(dá)熒光的細(xì)胞量有所增加,形態(tài)較前也稍有變化,胞體較為圓潤,偶見多角形或棒桿狀生長,細(xì)胞折光性較好,見圖2。
Figure 2. The hUCMSCs infection rate (120 h after transfection). A: Shox2-MSCs group (GFP); C: HCN4-MSCs group (RFP); B and D: the same field of vision under their corresponding inverted microscope, respectively.
進(jìn)行共轉(zhuǎn)染時(shí)選擇穩(wěn)定表達(dá)的細(xì)胞株進(jìn)行基因轉(zhuǎn)染,鏡下觀察細(xì)胞折光性較好,表達(dá)的為紅色熒光蛋白(red fluorescent protein, RFP),表達(dá)的為綠色熒光蛋白(green fluorescent protein, GFP),共轉(zhuǎn)染效率約為40%~45%,見圖3。
Figure 3. The hUCMSCs co-infection rate (120 h after transfection). A: HCN4-Shox2-MSCs (GFP); B: HCN4-Shox2-MSCs (RFP); C: HCN4-Shox2-MSCs merged fluorescence.
通過CCK-8法繪制細(xì)胞生長曲線,結(jié)果表明,或(和)基因轉(zhuǎn)染顯著減慢了hUCMSCs的生長速度。與轉(zhuǎn)染空載病毒的hUCMSCs(對照組)相比,-MSCs組和-MSCs組細(xì)胞在第4~6天生長速度明顯減慢(<0.05),--MSCs組生長速度減慢更明顯(<0.01),見圖4。
Figure 4. The growth rate of cells in Shox2-MSCs group and HCN4-MSCs group was significantly decreased, and that in Shox2-HCN4-MSCs group was more significantly reduced. Mean±SD. n=4. *P<0.05, **P<0.01 vs MSCs group.
-MSCs組和MSCs組HCN4、Tbx18和Tbx3的mRNA表達(dá)量顯著高于對照組(<0.05),Nkx2.5和Cx43的mRNA表達(dá)量顯著低于對照組(<0.01);-MSCs組和對照組比較Tbx3的mRNA表達(dá)顯著升高,Cx43和Nkx2.5 mRNA表達(dá)顯著降低(<0.05);--MSCs組中上述因子mRNA表達(dá)量與-MSCs組和-MSCs組相比變化更顯著(<0.05),見圖5。
Figure 5. Results of RT-qPCR. A: relative expression of Shox2 mRNA in each group; B: relative expression of HCN4 mRNA in each group; C: relative expression of Cx43 mRNA in each group; D: relative expression of Tbx3 mRNA in each group; E: relative expression of Nkx2.5 mRNA in each group; F: relative expression of Tbx18 mRNA in each group. Mean±SD. n=3. *P<0.05, **P<0.01 vs control group; △△P<0.01 vsShox2-MSCs group.
與對照組相比,-MSCs組Cx45蛋白水平上調(diào),Nkx2.5和Cx43蛋白水平下調(diào)(<0.01),-MSCs組檢測到Cx45和Cx43蛋白表達(dá);--MSCs組比-MSCs組和-MSCs組上調(diào)(或下調(diào))更顯著(<0.01),見圖6。
Figure 6. Results of Western blot. A: relative expression of Shox2 protein in each group; B: relative expression of HCN4 protein in each group; C: relative expression of Cx43, Cx45 and Nkx2.5 proteins in each group. Mean±SD. n=3. *P<0.05, **P<0.01 vs control group; △P<0.05 vsShox2-MSCs group.
MSCs是具有分化成各種細(xì)胞類型潛力的多能基質(zhì)細(xì)胞。與成人BMSCs不同,hUCMSCs是一種成體干細(xì)胞,可從人臍帶分離出來,成本低、免疫原性弱,且增殖能力更強(qiáng),這些因素都成為hUCMSCs應(yīng)用于異體或自體研究的優(yōu)勢。通常它們在體外擴(kuò)增至第8代后開始進(jìn)入衰老階段,為了滿足后續(xù)實(shí)驗(yàn)要求,本研究采用經(jīng)永生化處理的hUCMSCs,運(yùn)用RT-qPCR及Western blot檢測目的基因和起搏相關(guān)因子在細(xì)胞內(nèi)的表達(dá)情況,驗(yàn)證過表達(dá)和后的hUCMSCs是否具有起搏樣細(xì)胞表型,為研究永生化hUCMSCs結(jié)合起搏基因體外構(gòu)建生物起搏器的基礎(chǔ)研究和未來臨床應(yīng)用提供依據(jù)。
起搏細(xì)胞的獨(dú)特之處在于它們具有緩慢的去極化階段。HCN通道可在動作電位的超極化階段增加內(nèi)向電流并產(chǎn)生f,是起搏器細(xì)胞中離子電流f的分子決定因素[9]。HCN通道特性可以通過cAMP與通道C端的環(huán)核苷酸結(jié)合結(jié)構(gòu)域結(jié)合來調(diào)節(jié),從而促進(jìn)通道激活[10]。在本研究中,我們以轉(zhuǎn)染一種轉(zhuǎn)錄因子、一種離子通道蛋白或二重組合的形式將hUCMSCs轉(zhuǎn)化為心臟起搏樣細(xì)胞,并揭示了在發(fā)育中的房室連接處的新型表達(dá)域。
HCN4是在SAN中存在的主要離子通道亞型。Ueda等[11]報(bào)道,在SSS患者中檢測到基因突變,該患者表現(xiàn)出反復(fù)暈厥、心電圖QT間期延長和多形性室性心動過速、尖端扭轉(zhuǎn)型室性心動過速。Milanesi等[12]也報(bào)告了SSS與基因突變之間的關(guān)聯(lián)。在動物模型心臟中過表達(dá)可表現(xiàn)出生物起搏活性。研究顯示,心動過緩是竇房結(jié)中Nkx2.5上調(diào)從而導(dǎo)致miR-423-5p上調(diào)后抑制HCN4水平的結(jié)果[13]。
Shox2通過抑制Nkx2.5的表達(dá)激活起搏細(xì)胞的基因程序,敲除小鼠因Nkx2.5、Cx40和Cx43的表達(dá)增加,以及HCN4、Tbx3和胰島因子1的表達(dá)下調(diào)而死于SAN發(fā)育不全和起搏細(xì)胞增殖減少引起的心動過緩[14]。小鼠胚胎干細(xì)胞中過表達(dá)外源性可增強(qiáng)Cx45、HCN4和內(nèi)源性Shox2的表達(dá),并下調(diào)Nkx2.5和Cx43[15]。
Nkx2.5是心臟發(fā)育的重要轉(zhuǎn)錄因子,參與心房、心室和間隔的形成以及心肌細(xì)胞的分化與發(fā)育[16]。此外,在完全性房室傳導(dǎo)阻滯的豬心室中注射過表達(dá)的腺病毒載體后,注射區(qū)域的起搏活性增強(qiáng),Nkx2.5和Cx43的表達(dá)水平降低,HCN4水平上調(diào)[17]??傊?,在心臟發(fā)育過程中Tbx18、Tbx3和Shox2在竇房結(jié)的發(fā)育中起協(xié)調(diào)作用,Shox2抑制Nkx2.5和Cx43的表達(dá)同時(shí)會上調(diào)HCN4、Tbx18和Tbx3等水平。最近研究顯示Shox2和HCN4可在竇房結(jié)細(xì)胞共表達(dá),且二者對心臟起搏發(fā)展具有協(xié)同作用[18]。所以,在本研究中我們除了選擇慢病毒作為目的基因整合入靶細(xì)胞的載體外,也進(jìn)行兩個(gè)目的基因共表達(dá)。本研究通過RT-qPCR和Western blot結(jié)果顯示,--MSCs組HCN4 mRNA表達(dá)量比-MSCs組稍高;-MSCs組高表達(dá)Shox2蛋白,-MSCs和--MSCs組中HCN4蛋白明顯上調(diào)。這表明hUCMSCs可以成功過表達(dá)或基因且具有一定的上調(diào)過表達(dá)作用。
本研究顯示,-MSCs組和-MSCs組轉(zhuǎn)染效率為50%~55%,即隨著培養(yǎng)時(shí)間延長表達(dá)熒光的hUCMSCs數(shù)量進(jìn)一步增加,折光性更好。表明慢病毒可以作為感染hUCMSCs的理想載體。共轉(zhuǎn)染時(shí)轉(zhuǎn)染效率40%~45%,較單轉(zhuǎn)染效率降低,可能與整合進(jìn)入細(xì)胞內(nèi)的總載體數(shù)量和大小有關(guān)。另外,在進(jìn)行目的基因過表達(dá)時(shí),影響慢病毒轉(zhuǎn)染效率的一個(gè)關(guān)鍵因素是細(xì)胞傳代數(shù),對于大鼠原代MSCs,第1代和第5代之間的差異約為8%[19]。而我們在實(shí)驗(yàn)中檢測到第5代與第7代之間單基因轉(zhuǎn)染效率無差異,可能是本研究所利用的hUCMSCs此前經(jīng)過永生化處理,細(xì)胞傳代數(shù)影響較小。
本研究具有一定的局限性。首先,本研究只在離體細(xì)胞水平上進(jìn)行了起搏基因修飾,未在動物模型體內(nèi)進(jìn)行驗(yàn)證;其次,由于技術(shù)層面上的限制與不足,未使用膜片鉗確認(rèn)過表達(dá)和的hUCMSCs可以充分激活f電流,以及測定相關(guān)的電生理參數(shù)如L型鈣電流、動作電位時(shí)程等;此外,和沒有按不同的比例進(jìn)行共表達(dá)處理,無法得到最佳的共表達(dá)比率。
綜上所述,本研究通過過表達(dá)和基因的hUCMSCs經(jīng)過RT-qPCR和Western blot在細(xì)胞分子水平上的檢測,證實(shí)過表達(dá)和后的hUCMSCs具有起搏樣細(xì)胞表型。這支持了我們通過外源性目的基因轉(zhuǎn)染hUCMSCs誘導(dǎo)生物起搏樣細(xì)胞生成策略的可行性。但我們還需要下一步在細(xì)胞功能學(xué)層面進(jìn)行檢測。
[1] Cingolani E, Goldhaber JI, Marban E. Next-generation pacemakers: from small devices to biological pacemakers[J]. Nat Rev Cardiol, 2018, 15(3):139-150.
[2] Li N, Csepe TA, Hansen BJ, et al. Molecular mapping of sinoatrial node HCN channel expression in the human heart[J]. Circ Arrhythm Electrophysiol, 2015, 8(5):1219-1227.
[3] Biel M, Wahl C, Schneider A. Cardiac HCN channels: structure, function, and modulation[J]. Trends Cardiovasc Med, 2002, 12(5):206-212.
[4] Espinoza-Lewis RA, Yu L, He FL,et al. Shox2 is essential for thedifferentiationof cardiac pacemaker cells by repressing Nkx2-5[J]. Dev Biol, 2009, 327(2):376-385.
[5] Wiese C, Airik R, Grieskamp T, et al. Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3[J]. Circ Res, 2009, 104(3):388-397.
[6] Boyett MR, Yoo S, Inada S, et al. Connexins in the sinoatrial and atrioventricular nodes[J]. Adv Cardiol, 2006, 42:175-197.
[7]葉錦豪, 季楊, 顧杰蕾, 等. 低氧預(yù)處理臍帶間充質(zhì)干細(xì)胞來源的外泌體對內(nèi)皮細(xì)胞功能的影響[J]. 中國病理生理雜志, 2020, 36(8):1351-1358.
Ye JH, Ji Y, Gu JL, et al. Effects of hypoxic preconditioning of umbilical cord mesenchymal stem cell-derived exosomes on endothelial cell function[J]. Chin J Pathophysiol, 2020, 36(8):1351-1358.
[8] Gao F, Zhao Y, Zhang B, et al. Suppression of lncRNA Gm47283 attenuates myocardial infarction viamiR-706/Ptgs2/ferroptosis axis[J]. Bioengineered, 2022, 13(4):10786-10802.
[9] Ravagli E, Bucchi A, Bartolucci C, et al. Cell-specific dynamic clamp analysis of the role of funny Ifcurrent in cardiac pacemaking[J]. Prog Biophys Mol Biol, 2016, 120(1/2/3):50-66.
[10] Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities[J]. Cell Stem Cell, 2018, 22(6):824-833.
[11] Ueda K, Nakamura K, Hayashi T, et al. Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia[J]. J Biol Chem, 2004, 279(26):27194-27198.
[12] Milanesi R, Baruscotti M, Gnecchi RT, et al. Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel[J]. N Engl J Med, 2006, 354(2):151-157.
[13] D'Souza A, Pearman CM, Wang YW, et al. Targeting miR-423-5p reverses exercise training-induced HCN4 channel remodeling and sinus bradycardia[J]. Circ Res, 2017, 121(9):1058-1068.
[14] Liu HB, Chen CH, Espinoza-Lewis RA, et al. Functional redundancy between humanand mousegenes in the regulation of sinoatrial node formation and pacemaking function[J]. J Biol Chem, 2011, 286(19):17029-17038.
[15] Ionta V, Liang WB, Kim EH, et al. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability[J]. Stem Cell Reports, 2015, 4(1):129-142.
[16] Wang WJ, Niu ZY, Wang Y, et al. Comparative transcriptome analysis of atrial septal defect identifies dysregulated genes during heart septum morphogenesis [J]. Gene, 2016, 575(2 Pt 1):303-312.
[17] Hu YN, Li N, Liu L, et al. Genetically modified porcine mesenchymal stem cells by lentiviral Tbx18 create a biological pacemaker [J]. Stem Cells Int, 2019, 2019:3621314.
[18] Darche FF, Rivinius R, K?llensperger E, et al. Pacemaker cell characteristics of differentiated and HCN4-transduced human mesenchymal stem cells[J]. Life Sci, 2019, 232:116620.
[19] McGinley L, McMahon J, Strappe P, et al. Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in anmodel of ischaemia [J]. Stem Cell Res Ther, 2011, 2(2):12.
Construction of biological pacemaker phenotype cells by overexpressingandin hUCMSCs
WEI Wei, ZHU Ye△, GU Jian-jun, GU Xiang△
(,,,225001,)
In this study, we intend to use lentiviral vectors to transfectandgene into immortalized human umbilical cord mesenchymal stem cells (hUCMSCs), and to explore whether the transfected hUCMSCshave pacing cell-like phenotype.The hUCMSCs were cultured and passaged. Lentiviral vectors carryingandgenes and empty vectors were constructed, andandgenes were transfected to hUCMSCs by lentivirus. Cell viability in each group was detected by CCK-8 assay. The mRNA and protein expression levels of related genes were detected by RT-qPCR and Western blot.(1) The lentiviral overexpression vector was successfully constructed. The transfection efficiency of-MSCs group and-MSCs group was about 50%~55%,--MSCs group was about 40%~45%. (2) The growth rate of cells in the experimental group was slower than that in the control group (<0.05). (3) The mRNA expression levels of HCN4, Tbx18 and Tbx3 in the overexpression group were significantly higher than those in the control group (<0.05), and the expression levels of Nkx2.5 and Cx43 were significantly lower than those in the control group (<0.01). (4) Compared with the control group, the protein level of Cx45 in the single-gene overexpression group was significantly up-regulated and the protein levels of Nkx2.5 and Cx43 were significantly down-regulated (<0.01). The upregulation and downregulation were more significant in the double overexpression group (<0.01).hUCMSCs overexpressingand/orhave pacemaker-like cell phenotype, and the co-transfection has the additive effect of promoting the transformation of hUCMSCs into pacemaker-like cells.
Biological pacemaker; Human umbilical cord mesenchymal stem cells;gene;gene
1000-4718(2022)09-1592-08
2022-04-14
2022-07-19
顧翔 Tel: 18952781166; E-mail: guxiang@yzu.edu.cn; 朱業(yè) Tel: 13773531101; E-mail: 307971331@qq.com
R363.2; R541.7+2
A
10.3969/j.issn.1000-4718.2022.09.008
[基金項(xiàng)目]國家自然基金青年科學(xué)基金資助項(xiàng)目(No. 81800250);揚(yáng)州市“十三五”科教強(qiáng)衛(wèi)專項(xiàng)經(jīng)費(fèi)資助醫(yī)學(xué)重點(diǎn)人才(No. ZDRC20181)
(責(zé)任編輯:宋延君,李淑媛)