楊帥, 李昌清, 賴虹君, 王艷鋒
(1.安陽師范學(xué)院 建筑工程學(xué)院,河南 安陽 455000; 2.天津大學(xué) 機(jī)械工程學(xué)院, 天津 300350)
聲子晶體是一種周期性排列的多相結(jié)構(gòu)。由于其特有的物理特性,近些年受到了廣泛的關(guān)注和研究[1-5],其中最引人注目的是能夠操控彈性波的能力。通過單元結(jié)構(gòu)的設(shè)計(jì),可以較為自由地實(shí)現(xiàn)波的局域化、負(fù)折射、定向傳播等奇異的物理特性。這些特性在吸聲降噪[6-7]、振動(dòng)控制[8-9]、聲隱身斗篷[10-11]、聲整流器件[12-13]等諸多領(lǐng)域具有廣闊的應(yīng)用前景。聲子晶體在新效應(yīng)、新特性等方面的研究極大地提高人們對(duì)聲波的控制能力,有望實(shí)現(xiàn)功能器件性能的極大提升,為民用、軍用高端裝備及工業(yè)設(shè)備的設(shè)計(jì)帶來巨大變革。本文研究了由工字型鋼柱正方排列在空氣中組成的聲子晶體的波動(dòng)特性,討論了波在完好聲子晶體中產(chǎn)生的負(fù)折射效應(yīng),并通過引入缺陷,分析了線性波導(dǎo)和耦合共振波導(dǎo)中導(dǎo)波的傳播特性。
本文考慮工字型鋼正方排列在空氣中,如圖1所示。其中單胞幾何參數(shù)為:晶格常數(shù)a0=2 cm,工字型鋼由3個(gè)相同的矩形組合而成,L=1.4 cm,t=0.2 cm。鋼的密度ρs=7 800 kg/m3,彈性模量E=210 GPa,泊松比ν=0.275??諝獾拿芏圈補(bǔ)=1.25 kg/m3,波速c=343 m/s。
機(jī)械波在固體中的傳播形式為矢量波(可以分為縱波和橫波),而在流體中的傳播形式為標(biāo)量波(只有縱波)。因此,在計(jì)算流固耦合型聲子晶體的能帶結(jié)構(gòu)時(shí),不僅要將整個(gè)區(qū)域分為流體和固體區(qū)域,而且要在流固連接處建立合理的邊界條件以滿足實(shí)際情況。在流固界面法向位移和力連續(xù),即:
Us·n=Uf·n
(1)
p·n=σ·n
(2)
式中:Us、Uf分別為固體和流體中的位移;n為流固界面的法向向量;p為界面處流體壓強(qiáng);σ為界面處固體的應(yīng)力張量。因?yàn)榱鞴腆w系具有相同周期的函數(shù),根據(jù)Bloch定理,邊界上應(yīng)滿足:
Us(r+a)=ei(k·a)Us(r)
(3)
p(r+a)=ei(k·a)p(r)
(4)
對(duì)于二維聲子晶體,r=(x,y)為位置矢量;k=(kx,ky)為波矢且被限制在第一布里淵區(qū)內(nèi)(圖1所示)。
目前,計(jì)算聲子晶體的方法有很多,比如傳遞矩陣法,平面波展開法,時(shí)域有限差分法,多重散射法和有限元法等[14]。其中有限元法在適用性、計(jì)算速度、精確度及收斂性等方面有著明顯的優(yōu)越性而被廣泛應(yīng)用。本文采用有限元軟件Comsol Multiphysics進(jìn)行計(jì)算。單胞內(nèi)特征方程的離散形式為:
(K-ω2M)U=0
(5)
式中:U是節(jié)點(diǎn)位移;K和M分別是剛度矩陣和質(zhì)量矩陣。需要說明的是,由于工字型散射體是長(zhǎng)方形對(duì)稱,故第一布里淵區(qū)與正方晶格的結(jié)果有些區(qū)別,如圖1(c)所示。將波矢k遍歷圖1(c)所示的第一布里淵區(qū)進(jìn)行計(jì)算,就可得到能帶結(jié)構(gòu)。
首先計(jì)算了圖1所示聲子晶體的能帶結(jié)構(gòu),如圖2(a)所示。同時(shí),圖中還給出了ΓX方向和ΓY方向含8個(gè)單胞有限結(jié)構(gòu)的響應(yīng)譜。分別在有限結(jié)構(gòu)的一側(cè)邊界處施加一個(gè)長(zhǎng)度為l的線源激勵(lì),在結(jié)構(gòu)另一邊拾取響應(yīng)。為了消除反射的影響,在接收端加入完美匹配層。結(jié)構(gòu)的響應(yīng)值為:
(6)
式中|pt|和|pi|分別為透射波和入射波的壓強(qiáng)幅值。在感興趣的頻率范圍內(nèi)計(jì)算并拾取響應(yīng),即可得到結(jié)構(gòu)的頻率響應(yīng)函數(shù)??梢钥闯觯瑘D示頻率范圍內(nèi)出現(xiàn)了5條完全帶隙,帶隙范圍分別是5 500~6 000 Hz、9 335~10 092 Hz、10 186~11 055 Hz、17 210~17 690 Hz和20 200~20 700 Hz。圖中陰影表示了主要的方向帶隙。可以看到結(jié)構(gòu)的響應(yīng)在帶隙內(nèi)衰減明顯,衰減域與方向帶隙寬度幾乎相同。ΓY方向能帶結(jié)構(gòu)在10 kHz和20 kHz附近出現(xiàn)2條平帶。但10 kHz處的平帶在響應(yīng)譜中也能明顯的看到,20 kHz處的平帶卻沒有在響應(yīng)譜中體現(xiàn)出來。為了探究原因,圖中給出了這2條能帶上Y點(diǎn)的振動(dòng)模態(tài)。藍(lán)色(深色)表示負(fù)壓強(qiáng),紅色(淺色)表示正壓強(qiáng)??梢钥闯?,10 kHz附近平帶對(duì)應(yīng)的模態(tài)關(guān)于ΓY方向是對(duì)稱的,因此可以被平面波源激發(fā)。而20 kHz附近平帶對(duì)應(yīng)的模態(tài)關(guān)于ΓY是反對(duì)稱的,不能被平面波源激發(fā)。
另外,計(jì)算了工字型鋼繞單胞中心逆時(shí)針旋轉(zhuǎn)φ=45°單胞的能帶結(jié)構(gòu),如圖2(b)所示。圖中陰影表示了主要的完全帶隙。可以明顯看出,此時(shí)的帶隙明顯變寬,相應(yīng)主要的幾條帶隙范圍分別變?yōu)椋? 046~7 126 Hz、7 845~12 674 Hz、14 535~17 071 Hz、19 454~22 692 Hz和23 808~24 763 Hz。可見,旋轉(zhuǎn)工字型鋼會(huì)對(duì)結(jié)構(gòu)的帶隙產(chǎn)生明顯的影響。與φ=0°時(shí)的情況類似,在20 kHz附近也出現(xiàn)了一條平帶。圖中給出了這條能帶上Y點(diǎn)的振動(dòng)模態(tài)。振動(dòng)模態(tài)為中心對(duì)稱模式,此種振動(dòng)也不會(huì)被平面波源激發(fā)。
等頻率曲線反映的是波矢和頻率之間的關(guān)系。計(jì)算等頻率曲線的方法與計(jì)算能帶結(jié)構(gòu)類似,不同的是需要對(duì)整個(gè)布里淵區(qū)的波矢k進(jìn)行遍歷求解。本文圖中用等效波數(shù)Ωx=kx·a0/π,Ωy=ky·a0/π表示橫縱坐標(biāo),不同顏色表示相應(yīng)的頻率。聲子晶體的強(qiáng)頻散特性會(huì)使其等頻率曲線非常復(fù)雜,進(jìn)而出現(xiàn)群速度方向與波矢方向不一致的情況。這會(huì)在聲子晶體中產(chǎn)生一些異常波動(dòng)行為,如負(fù)折射。
圖3為圖1中單胞(φ=0°)第1階能帶的等頻率曲線。從圖中可以看出,在頻率較小時(shí),等頻率曲線的形狀為橢圓,但是隨著頻率的增大,等頻率曲線的曲率在逐漸變小。在5.25 kHz時(shí)等頻率曲線幾乎為一條直線。
為了更加清晰地說明等頻率曲線的意義,計(jì)算了不同頻率下中心點(diǎn)源激勵(lì)在周期結(jié)構(gòu)中的傳播,如圖4所示。可以看出,在低頻下,波可以向四周傳播,且y方向波長(zhǎng)大于x方向波長(zhǎng),聲壓場(chǎng)分布為一個(gè)個(gè)以y軸為長(zhǎng)軸的同心橢圓(圖4(a)、(b))。對(duì)比圖3等頻率曲線,由于波長(zhǎng)和波矢的反比關(guān)系,在等頻率曲線中為一個(gè)個(gè)以x軸為長(zhǎng)軸的同心橢圓。而隨著頻率增大,波漸漸在x方向不能傳播,對(duì)應(yīng)等頻率曲線中,隨頻率增大,等頻率曲線由橢圓變成曲線(圖4(c)、(d))。隨著頻率繼續(xù)增大,等頻率曲線漸漸變成直線,此時(shí)波只能沿y方向傳播,圖4(e)、(f)也驗(yàn)證了這一點(diǎn)。
圖3 φ=0°時(shí)一階能帶的等頻率曲線Fig.3 Equifrequency contour of 1st band forφ=0°
圖4 不同頻率中心點(diǎn)源激勵(lì)時(shí)的壓強(qiáng)分布Fig.4 Pressure distribution of wave propagation under central point source at different frequencies
圖3中等頻率曲線在5.25 kHz時(shí)幾乎為一條直線。這意味著在這個(gè)頻率處,波的傳播會(huì)表現(xiàn)出一定的方向性,僅沿y方向傳播,如圖4(f)所示。圖5給出了5 255 Hz時(shí)波從45°方向入射到聲子晶體后的聲壓場(chǎng)分布。由圖5可知,波在聲子晶體中以幾乎垂直于法線的方向傳播,并以相同的角度射出。這個(gè)現(xiàn)象與等頻率曲線所顯示的結(jié)果一致。
圖5 φ=0°時(shí)波以5 255 Hz傳播時(shí)的壓強(qiáng)分布Fig.5 Pressure distribution of wave propagation at 5 255 Hz forφ=0°
另外,計(jì)算了φ=45°時(shí)單胞的第1階能帶的等頻率曲線,如圖6(a)所示??梢钥闯?,隨著頻率的增大,等頻率曲線先從正圓變成矩形,然后逐漸變回正圓。在一定的頻率范圍內(nèi),沿ΓM方向等頻率曲線為直線且垂直于ΓM連線,這為負(fù)折射現(xiàn)象的產(chǎn)生提供了基礎(chǔ)。圖6(b)給出了3 045 Hz時(shí)波從45°方向入射(也就是沿ΓM方向)進(jìn)入聲子晶體后的聲壓場(chǎng)分布。從圖中可以看出,聲子晶體中的折射波與入射波在法線的同側(cè),也就是出現(xiàn)了負(fù)折射現(xiàn)象。隨后,在出射界面,波以相同的角度射出。
通過改變一排單胞的幾何形狀或材料,可以將理想的聲子晶體轉(zhuǎn)化為含線缺陷的聲子晶體。線缺陷聲子晶體容易使波在缺陷中傳播,產(chǎn)生波導(dǎo)現(xiàn)象。因此線缺陷在聲學(xué)濾波器和聲學(xué)傳感器領(lǐng)域具有很大的應(yīng)用價(jià)值。為了研究工字型鋼/空氣二維聲子晶體的波導(dǎo)特性,分別計(jì)算了具有中心缺陷的1×13超胞結(jié)構(gòu)在ΓX方向上的能帶結(jié)構(gòu)和具有中心缺陷的1×13超胞結(jié)構(gòu)在ΓY方向上的能帶結(jié)構(gòu),即圖7所示。圖中陰影表示完美超胞的帶隙。從圖7可以看出,線缺陷的引入在ΓX方向帶隙內(nèi)出現(xiàn)了一條導(dǎo)波帶,但在ΓY方向帶隙內(nèi)出現(xiàn)了2條導(dǎo)波帶。從導(dǎo)波帶的模態(tài)可以看出,P2點(diǎn)所在導(dǎo)波帶受通帶影響較大,局域性較差。其他2點(diǎn)則表現(xiàn)出良好的局域性。
圖6 φ=45°時(shí)一階能帶的等頻率曲線和波以3 045 Hz傳播時(shí)的壓強(qiáng)分布Fig.6 Equifrequency contour of 1st band and pressure distribution of wave propagation at 3 045 Hz forφ=45°
圖7 線性波導(dǎo)的能帶結(jié)構(gòu)和對(duì)應(yīng)點(diǎn)的振動(dòng)模態(tài)Fig.7 Band structures and vibration modes of linear waveguides
為了進(jìn)一步研究導(dǎo)波的傳播特性,采用有限元法計(jì)算了3種由13×13單胞組成的有限陣列結(jié)構(gòu)的響應(yīng),如圖8所示。設(shè)計(jì)了3種線缺陷形式,分別為沿x方向直線型,沿y方向直線型和Z型。其響應(yīng)分別用虛線、短點(diǎn)線和實(shí)線在圖中標(biāo)識(shí)。相應(yīng)陰影區(qū)域表示不同缺陷可以形成波導(dǎo)的范圍。從圖中可以看出,x方向直線型缺陷結(jié)構(gòu)在5.5~8.5 kHz出現(xiàn)峰值,意味著波在這個(gè)頻率內(nèi)可以很好地通過。對(duì)于y方向直線型缺陷結(jié)構(gòu),其響應(yīng)在5~6.8 kHz出現(xiàn)峰值。對(duì)比圖7可以發(fā)現(xiàn),響應(yīng)譜的峰值范圍與相應(yīng)方向超胞的帶隙范圍基本重合。也說明了不同方向的波導(dǎo)一般會(huì)出現(xiàn)在不同帶隙范圍內(nèi)。對(duì)于Z型線性波導(dǎo),響應(yīng)譜的峰值出現(xiàn)在大約5.8~6.7 kHz。可以看出,這個(gè)范圍在前2種缺陷結(jié)構(gòu)響應(yīng)譜峰值范圍的交集內(nèi),這是由于Z型線性波導(dǎo)本質(zhì)上是由x方向直線型和y方向直線型2種線性波導(dǎo)組合而成。
為了更清晰地顯示導(dǎo)波現(xiàn)象,圖9給出了波在2種直線型波導(dǎo)中傳播的聲壓場(chǎng)分布。從圖9(a)中可以看出,波在x方向直線型線性波導(dǎo)中可以很好地傳播,其傳播模態(tài)與圖7(a)所示模態(tài)一致。相似的情況也發(fā)生在y方向直線型線性波導(dǎo)中,如圖9(b)所示。但只有圖7(b)P1點(diǎn)所對(duì)應(yīng)的模態(tài)被激發(fā)。
圖9 直線型波導(dǎo)傳播時(shí)的壓強(qiáng)分布Fig.9 Pressure distributions of linear waveguides
接下來計(jì)算了波在Z型線性波導(dǎo)中的傳播,壓力分布如圖10所示。由圖可知,頻率為6 520 Hz時(shí)波在Z型線性波導(dǎo)中能夠較好地傳播,而在7 470 Hz時(shí),波并不能沿缺陷傳播。這是由于Z型線性波導(dǎo)包含x方向和y方向2種直線型線性波導(dǎo),其導(dǎo)波產(chǎn)生的頻率范圍必須在2種直線型線性波導(dǎo)共同的導(dǎo)波頻率范圍內(nèi)。
由一系列缺陷腔或共振體周期排列形成的耦合共振波導(dǎo),可以實(shí)現(xiàn)很強(qiáng)的局域性和低群速度傳輸[15]。為了研究耦合共振波導(dǎo)的波動(dòng)特性,首先分別計(jì)算了耦合共振波導(dǎo)在ΓX方向(2×13單胞)和ΓY方向(2×13單胞)的能帶結(jié)構(gòu),如圖11所示。圖中陰影表示完美超胞的帶隙。從圖11可以看出,耦合缺陷的引入在ΓX方向和ΓY方向帶隙內(nèi)均出現(xiàn)了一條導(dǎo)波帶,范圍分別為6.1~6.5 kHz和5.5~5.8 kHz。從模態(tài)圖可以看出,導(dǎo)波均呈現(xiàn)一定的局域性,且ΓX方向局域性相對(duì)較強(qiáng)。
圖10 Z型線性波導(dǎo)中波傳播時(shí)的壓強(qiáng)分布Fig.10 Pressure distribution of Z-type linear waveguide
圖11 耦合共振波導(dǎo)的能帶結(jié)構(gòu)和對(duì)應(yīng)點(diǎn)的振動(dòng)模態(tài)Fig.11 Band structures and vibration modes of coupled-resonator waveguides
接下來,研究了耦合共振波導(dǎo)的傳播特性。同樣采用有限元法計(jì)算了2種由13×13單胞組成的有限波導(dǎo)結(jié)構(gòu)的響應(yīng),如圖12所示。設(shè)計(jì)了沿x方向和y方向的2種直線型耦合共振波導(dǎo)。其響應(yīng)分別用點(diǎn)劃線和實(shí)線在圖中標(biāo)識(shí)。相應(yīng)陰影區(qū)域表示不同缺陷可以形成耦合共振波導(dǎo)的范圍。
圖12 直線型耦合共振波導(dǎo)的響應(yīng)譜和計(jì)算模型Fig.12 Transmission spectrum of straight coupled-resonantor waveguides and calculation models
從圖中可以看出,x方向直線型耦合共振波導(dǎo)在6.1~6.5 kHz和8.7~8.9 kHz范圍出現(xiàn)峰值,意味著波在這個(gè)頻率內(nèi)可以很好的通過。對(duì)于y方向直線型耦合共振波導(dǎo),其響應(yīng)在5.1~5.8 kHz出現(xiàn)峰值。2個(gè)響應(yīng)譜的峰值范圍沒有重合,這與圖11能帶結(jié)果相一致。同時(shí)這也意味著波不能在彎折耦合共振波導(dǎo)中傳播。
為了更清晰地顯示波導(dǎo)現(xiàn)象,圖13給出了波在2種直線型耦合共振波導(dǎo)中傳播的聲壓場(chǎng)分布。從圖13(a)中可以看出,波在x方向直線型耦合共振波導(dǎo)中可以很好地傳播,但是相比圖9(a),能量有些發(fā)散。相似的情況也發(fā)生在y方向直線型耦合共振波導(dǎo)中,如圖13(b)所示。
圖13 直線型耦合共振波導(dǎo)中波傳播時(shí)的壓強(qiáng)分布Fig.13 Pressure distributions of straight coupled-resonantor waveguides
1)計(jì)算了2種結(jié)構(gòu)的等頻率曲線,闡明不同形狀等頻率曲線的意義,并進(jìn)一步研究了聲子晶體中出現(xiàn)的負(fù)折射現(xiàn)象。
2)研究了含線缺陷以及耦合共振缺陷結(jié)構(gòu)中導(dǎo)波的傳播特性,說明結(jié)構(gòu)中產(chǎn)生波導(dǎo)的條件,計(jì)算了直線型和Z型線性波導(dǎo)以及直線型耦合共振波導(dǎo)的波動(dòng)特性,說明了復(fù)雜(如Z型)波導(dǎo)中導(dǎo)波存在的條件。