• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of core electron temperature on current profile broadening with radiofrequency wave heating and current drive in EAST

    2022-09-06 13:04:26JiayuanZHANG張家源JinpingQIAN錢金平XianzuGONG龔先祖BinZHANG張斌MuquanWU吳木泉MiaohuiLI李妙輝JialeCHEN陳佳樂(lè)QingZANG臧慶ShiyaoLIN林士耀YanCHAO晁燕HailinZHAO趙海林RuirongLIANG梁瑞榮TianqiJIA賈天琦andYunchanHU胡云禪
    Plasma Science and Technology 2022年10期
    關(guān)鍵詞:張斌

    Jiayuan ZHANG(張家源),Jinping QIAN(錢金平),Xianzu GONG(龔先祖),Bin ZHANG (張斌),Muquan WU (吳木泉),Miaohui LI (李妙輝),Jiale CHEN (陳佳樂(lè)),Qing ZANG (臧慶),Shiyao LIN (林士耀),Yan CHAO (晁燕),Hailin ZHAO (趙海林),Ruirong LIANG (梁瑞榮),Tianqi JIA (賈天琦) and Yunchan HU (胡云禪)

    1 Institute of Plasma Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    2 University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 Advanced Energy Research Center,Shenzhen University,Shenzhen 518060,People’s Republic of China

    Abstract In recent EAST experiments,current profile broadening characterized by reduced internal inductance has been achieved by utilizing radio-frequency current drives(RFCD).In contrast to previous density scan experiments,which showed an outward shift of the current density profile of lower hybrid current drive (LHCD) in higher plasma density,the core electron temperature(Te(0)) is found to affect the LHCD current profile as well.According to equilibrium reconstruction,a significant increase in on-axis safety factor (q0) from 2.05 to 3.41 is observed by careful arrangement of RFCD.Simulations using ray-tracing code GENRAY and Fokker-Planck code CQL3D have been performed to thoroughly analyze the LHCD current profile,revealing the sensitivity of the LHCD current profile to Te(0).The LHCD current density tends to accumulate in the plasma core with higher current drive efficiency benefiting from higher Te(0).With a lower Te(0),the LHCD current profile broadens due to off-axis deposition of power density.The sensitivity of the power deposition and current profile of LHCD to Te(0)provides a promising way to effectively optimize current profile via control of the core electron temperature.

    Keywords: current profile broadening,equilibrium reconstruction,core electron temperature,lower hybrid wave

    1.Introduction

    The advanced tokamak (AT) is widely considered to be one of the most promising approaches to tackle challenges regarding future fusion reactors,where inductive current drive is replaced by external current drive and bootstrap current drive[1].Current profile tailoring is of great significance for AT operation since a proper current profile shape is capable of avoiding MHD activities and forming internal transport barriers (ITB),which would enhance plasma performance to a large extent.There have been a number of research projects on the active control of current profile in dominant machines worldwide.DIII-D proposed feedback control of on-axis or minimum value of q using electron cyclotron wave heating (ECH) and neutral beam injection(NBI) to modify plasma conductivity so as to slow down the inward penetration of Ohmic current during the current ramp-up phase [2].An elevated minimum q (qmin)~1.4 has also been obtained using off-axis NBI after redirecting up to 5 MW of NBI from on-to off-axis in DIII-D,reaching a high value of βN~3.5 free of tearing modes owing to high qmin[3].However,improved confinement was not obtained in JET using the same strategy,albeit a similar q profile was demonstrated,an alternative with a faster current ramp-up rate and current overshoot was chosen to reach the target of high plasma confinement with broad current profile[4].Besides,a sustained ITB for 3.7 s with low/negative magnetic shear remaining off-axis has also been obtained by continuing the coupling of LHCD power during the main heating phase in JET [5],where the lower hybrid wave spectral broadening induced by parametric instability(PI)[6,7]is considered to play an important role.ASDEX Upgrade[8]discovered different plasma confinements with early heating during the current rampup phase and late heating during the flattop phase,where the former generated a transient reversed q profile.Real-time control of qminhas been achieved in JT-60U [9]using off-axis LHCD which could raise on-axis q under a proper setup;this process was completed through the control of the injected power of LHCD,hence its current drive.

    In EAST,LHCD [10,11]has been used as the main actuator to control the current profile because of its widely recognized high current drive efficiency.Different shapes of safety factor profiles have been demonstrated in past EAST campaigns under careful LHCD arrangements [12-16].It is,however,not easy to establish weak or reversed magnetic shear due to high-Z impurity accumulation in the core region,which is believed to improve confinement significantly,especially when EAST has upgraded both upper and lower divertor to ITER-like tungsten divertors in 2021.Therefore,to explore current profile broadening in the hope of shear reversal establishment,a series of current profile control experiments have been conducted in EAST.In this work,broad current profiles characterized by reduced internal inductance operation have been achieved using different heating and current drive (H&CD) schemes of radiofrequency (RF) waves.By examining the current profile characteristics in the process,it is found that the Te(0) plays a key role in the current profile broadening.According to both experiments and simulation analysis,current profiles and power density profiles of LHCD are found to be sensitive to the Te(0)where higher Te(0) leads to peak LHCD current profile while lower Te(0) helps broaden the LHCD current profile.

    In the following sections,a summary of recent EAST experiments is given in section 2 with a detailed demonstration of current profile broadening experiments with different RF arrangements.The sensitivity of LHCD current profiles and power density profiles to the core electron temperature is discussed in section 3 in detail.Finally,a summary is given in section 4.

    2.Broadening of current profiles through RF adjustment

    It is desirable to obtain broad current profiles since ITB formation is heavily associated with the weak or reversed shear and hence broad or even hollow current profiles[17].EAST is equipped with very flexible radio-frequency heating and current drive systems which are in use at present to tailor the current profile,two ECH gyrotron systems capable of producing a maximum power of 2 MW in total at a frequency of 140 GHz,and two LHCD systems at frequencies of 2.45 GHz and 4.6 GHz,respectively.It should be noted that the 4.6 GHz LHCD is preferred to the 2.45 GHz LHCD in EAST to fulfill the role of current drive and current profile control,considering the avoidance of parametric instability (PI) [10]which would influence the coupling of the lower hybrid wave into plasmas and hence the current drive efficiency at lower frequency [18,19]and the topology analysis of the propagation domain [20].

    Figure 1 summarizes recent current profile control experiments with the same Ip= 0.4 MA in EAST,showing the correlation of the internal inductance between plasma density and Te(0),whererevealing the shape of the current profile (i.e.,decreasinglirepresents current profile broadening and vice versa).As shown in previous experiments[12],higher plasma density is beneficial to the current profile broadening because the LHCD current profile is likely to shift outward under higher plasma density as the LHCD is the dominant current drive in EAST.The correlation betweenliand neshown in figure 1(a) also demonstrates the same tendency,implying the effect of plasma density on current density profiles.On the other hand,the correlation betweenliand Te(0)makes it more obvious that higher Te(0)leads to a peak current profile as shown in figure 1(b),indicating that current density profiles may be more sensitive to Te(0).

    Figure 1.Summary of recent current profile control experiments in EAST,where (a) demonstrates the correlation between the internal inductance and plasma density and (b) shows the correlation between li and Te(0).

    Figure 2.Time traces of several plasma parameters of EAST shots with different RF H&CD schemes including (a) plasma current in MA,(b) line-averaged density,(c) internal inductance,(d) power of ECH in MW and (e) power of LHCD in MW.

    The sensitivity of Te(0)to current profile is also observed in detailed experiments.Broad current profiles characterized by reducedliwith Ip= 0.4 MA and line-averaged density〈ne〉~4.5 × 1019m?3have been achieved using different RF injection schemes as shown in figure 2.As can be seen from figure 2(d),the difference in RF H&CD lies mainly in the ECH power.In the discharge of #85327,an ECH power of 0.9 MW is applied,whereas no ECH power is applied in shot #85389.The power of LHCD is only slightly lower in the discharge of #85389,as shown in figure 2(e) at about 2.7 MW compared to 3 MW in shot #85327.Note that the first power stage in figure 2(e) indicates the injection of 2.45 GHz LHCD while the second indicates the injection of 4.6 GHz LHCD.The difference in the input power results in a significant decrease ofli,as is clearly shown in figure 2(c).In shot #85327,theliduring the flattop phase is about 0.88 while that in #85389 is about 0.74,representing obvious current profile broadening with LHCD only.

    Equilibrium reconstruction [21,22]has been carried out with the verification of the soft x-ray(SXR)emissivity profile based on the theory that iso-emissivity surfaces of SXR are able to represent surfaces of poloidal flux when assuming that electron density,impurity density and electron temperature are all constant on a magnetic surface [23].It should be pointed out that the reconstruction process has been constrained by the internal measurement of the polarimeterinterferometer (POINT) [24].The SXR iso-emissivity surfaces are used to verify the reconstruction results as a double check,as shown in figure 3(b).The equilibrium reconstruction results are deemed reasonable considering two factors.First,fluxes of both poloidal flux and SXR emissivity share the same peak location at R = 1.9 m,indicating the same magnetic axis in both profiles.Second,the rectangle in black illustrates four points along the profiles,showing the same value of poloidal flux at the same SXR emissivity with a tolerable error of 0.7% between F1and F2.As shown in figure 3(a),q0is 2.05 in #85327 with the H&CD of both LHCD and ECH while increased q0~3.41 is obtained in#85389 with LHCD only,confirming that the current profile is significantly broadened in#85389 with LHCD as the only actuator.The distinct difference in q profiles is also in line with that inl.i

    3.The impact of core electron temperature on current profile

    In order to understand the mechanism of current profile broadening through RF H&CD arrangement,an investigation into the influence of Te(0) on the current profile has been carried out.The main difference for the cases discussed above is the RF actuator which serves as the electron-heating source.Therefore,the difference in RF power input would straightforwardly influence the electron temperature.On the other hand,the deposition location of ECH is in the plasma core with the toroidal and poloidal angles of 200° and 77°,respectively,in shot#85327,which would consequently lead to the difference in Te(0).Based on these facts,Te(0) is assumed to play a key role in the current profile broadening process.

    Figure 4 illustrates time traces of ECE signals,liand RF power input from 1 to 4 s,covering phases of the initiation and the maintenance of theliseparation.ECE signals shown in figure 4(a)represent the Te(0)variation[25]with RF power injection,as in figures 4(c)and(d),clearly distinguishing the gap in Te(0)between shots#85327 and#85389.To examine the current profile behavior of LHCD when thelistarts to separate,hard x-ray (HXR) analysis has been carried out at t = 2.4 s,as the magenta dashed line shows in figure 4.The comparison between HXR radiation profiles in different forms is demonstrated in figure 5 where the shaded area represents the plasma core region near chord number 12.Figure 5(a) illustrates the relative intensity comparison of HXR profiles where higher intensity is observed for shot#85327 compared to shot #85389.It has been widely recognized that the measurement of LHCD performance can be examined by fast electron population generated through electron Landau damping[26,27],which can be observed by HXR diagnostics by receiving the bremsstrahlung emission in the spectrum range of the HXR.Hence,the higher HXR intensity shown in shot #85327 indicates that much more power is deposited in the plasma core,implying a higher LHCD efficiency for shot #85327 with higher Te(0) with ECH.On the other hand,the LHCD current profile broadening could be inferred by normalized HXR profiles given in figure 5(b) where the normalization is performed through normalizing the intensity of HXR in each chord to the value of chord 12,which could reveal the shape of the LHCD current profile.Compared to the normalized HXR profile for shot#85327,shot#85389 shows multiple peaks at chords of 11,13 and 15,indicating a much broader LHCD current profile with lower Te(0).Therefore,combined with the differences in both LHCD efficiency and power deposition location shift indicated by different forms of HXR profiles in figure 5,it is reasonable to conclude that a higher Te(0) with the H&CD scheme of both LHCD and ECH leads to a peak LHCD current profile and provides evidence of the sensitivity of the LHCD current profile to Te(0).

    Figure 3.(a)Safety factor profiles at t = 3.8 s during flattop phase with error bar in the light shaded area,(b)magnetic flux profile obtained in equilibrium reconstruction in blue versus emissivity profile obtained from SXR reconstruction in red at Z = 0,both of which are normalized to its own maximum value.The black rectangle marks four points on profiles,where E1 and E2 are on the emissivity profile,F1 and F2 are on the flux profile.

    Figure 4.Time histories from 1 to 4 s of several plasma parameters including(a)ECE signal signifying Te(0),(b)internal inductance,(c)power of ECH in MW and(d)power of LHCD in MW.The magenta dashed line indicates t = 2.4 s shortly after li separation while the green dashed line indicates t = 3.8 s when a large gap of li separation is maintained.

    Figure 5.HXR profiles for shot#85327 in red and shot#85389 in blue at t = 2.4 s.(a)HXR relative intensity profiles with error bars and(b) normalized HXR profiles.

    Figure 6.(a) Temperature profiles,(b) density profiles,(c) LHCD current profiles and (d) power deposition profiles of LHCD.The shaded area is the error bar region for each profile.

    Figure 7.Comparison of (a) measured HXR profiles and (b) HXR profiles came from CQL3D.

    More evidence could be found intuitively in the phase when a larger difference in Te(0) between shots #85327 and#85389 is maintained.A detailed simulation analysis of the LHCD current profile has been carried out during this phase at t = 3.8 s,as shown in figure 6,along with temperature profiles which came from Thomson scattering (TS) diagnostics and density profiles obtained by POINT and reflectometry.The difference in Te(0)shown in Teprofiles is in line with ECE signals,showing consistency of the measurement between TS and ECE.Density profiles in figure 6(b) only show slight differences,thus excluding the role of density in the current profile broadening process.

    Current density profiles and power deposition profiles of LHCD are calculated using ray-tracing code GENRAY and Fokker-Planck code CQL3D,as shown in figures 6(c) and(d).Note that errors may exist in Wentzel-Kramers-Brillouin(WKB) approximation in the ray-tracing code [28,29],nevertheless results are consistent with experimental observations.As can be seen,LHCD current profiles vary with temperature profiles.In the case of higher Te(0),the LHCD current profile peaks near the plasma core region with higher

    peak value.From the power deposition profile,one can also find that a large amount of power is deposited near the plasma core,which is in line with the current profile.Clear broadening of the LHCD current profile could be observed in shot#85389 with lower Te(0) by the generation of a second current peak near ρ~0.7.The peak value close to the core also decreases owing to lower LHCD efficiency.Likewise,the broadening of the LHCD current profile also reflects in the power deposition profile,whose shape remains flat in the radius of ρ<0.7.

    Measured HXR profiles in figure 7(a) show that the current drive efficiency drops with decreasing Te(0),indicated by decreased intensity in the core,which serves as another factor in current profile broadening.Simulated HXR profiles obtained in CQL3D code are also given in figure 7(b).In a comparison of simulated HXR profiles with measured ones,calculated LHCD current profiles using GENRAY-CQL3D could be verified.Despite spikes in measured HXR profiles which came from diagnostics,the shape and tendency are quite similar in the core region,showing a good match of LHCD current profiles between experiments and modelling.

    By summarizing results of both experimental observation and simulations,it is not difficult to conclude the sensitivity of the LHCD current profile to the Te(0).Based on the HXR profile analysis shortly afterlistarts to separate,the peak LHCD current profile could be found in the higher Te(0)case while the broadened current profile could be inferred from different forms of HXR profiles with lower Te(0).More intuitively,LHCD current profiles broaden as the LHCD deposition location shifts outward in the lower Te(0) case when theliseparation is maintained at t = 3.8 s compared to the higher Te(0) case.The formation of the peaked current profile is a result of the combined action of on-axis LHCD deposition and higher current drive efficiency in higher Te(0).

    4.Summary

    In this work,the clear broadening of a current profile characterized by lowerliis achieved by using LHCD as the only actuator compared with the case with H&CD of both LHCD and ECH.In the absence of ECH power,the Te(0) becomes lower compared to the case with both LHCD and ECH,which results in the outward shift of both the current profile and the power density profile of LHCD.The equilibrium reconstruction also confirms the current profile broadening behavior with q0increased to 3.41 in lower Te(0) from 2.05 in higher Te(0).More intuitively,the sensitivity of the LHCD current profile to Te(0) is carefully evaluated by HXR analysis and detailed simulations of LHCD current profiles using GENRAY and CQL3D,both of which confirm that higher Te(0) leads to the peaking of LHCD current profiles,while lower Te(0) is beneficial in the broadening of the LHCD current profile.

    As mentioned before,similar current profile broadening behavior has been observed in EAST density scan experiments.However,it is the difference in plasma density that accounts mainly for the LHCD current profile broadening,thus leading to the overall current density profile broadening.In fact,the temperature profile also varies in density scan experiments,albeit to a smaller degree.The summary in figure 1 points out the dependence of current profile broadening on plasma density,as well as on Te(0).The tendency found in the correlation betweenliand Te(0)is more obvious compared to density,which indicates that the current profile may be more easily affected by temperature.According to the sensitivity of the LHCD current profile to Te(0) demonstrated in this work,the profile control of temperature may be more effective in tailoring the current density profile in EAST,which provides promising approaches to establishing weak or reversed shear in future experiments.

    Acknowledgments

    This work is supported by the National MCF Energy R&D Program of China (No.2019YFE0304000),National Natural Science Foundation of China (Nos.12005262 and 11975274),the Anhui Provincial Natural Science Foundation(No.2108085J06),the Users with Excellence Program of Hefei Science Center CAS (Nos.2021HSC-UE018 and 2020HSC-UE011),the External Cooperation Program of Chinese Academy of Sciences (No.116134KYSB20180035)and the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences (No.DSJJ-2021-04).

    猜你喜歡
    張斌
    夕陽(yáng)家園
    金秋(2022年10期)2022-11-25 16:28:12
    Design of three-dimensional imaging lidar optical system for large field of view scanning
    A scanning distortion correction method based ongalvanometer Lidar system?
    Lagrangian analysis of the formation and mass transport of compressible vortex rings generated by a shock tube?
    一路有你都是歌
    Dynamic measurement of beam divergence angle of different fields of view of scanning lidar?
    《花之戀》
    The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers?
    Monolithic all- fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber?
    天水同映長(zhǎng)安塔
    金秋(2018年12期)2018-09-17 09:33:08
    国产精华一区二区三区| АⅤ资源中文在线天堂| 日本欧美国产在线视频| 亚洲欧美日韩高清在线视频| 在线观看66精品国产| 3wmmmm亚洲av在线观看| 噜噜噜噜噜久久久久久91| 一本久久中文字幕| 尤物成人国产欧美一区二区三区| 国产亚洲精品久久久久久毛片| 夜夜看夜夜爽夜夜摸| 日韩精品青青久久久久久| 最新中文字幕久久久久| 可以在线观看毛片的网站| 国内久久婷婷六月综合欲色啪| 三级毛片av免费| 别揉我奶头~嗯~啊~动态视频| 亚洲人与动物交配视频| 麻豆精品久久久久久蜜桃| 亚洲成a人片在线一区二区| 国产久久久一区二区三区| 午夜精品一区二区三区免费看| 麻豆一二三区av精品| 国产在视频线在精品| 久久草成人影院| 日本在线视频免费播放| 亚洲在线观看片| 欧美潮喷喷水| 免费无遮挡裸体视频| 欧美日韩精品成人综合77777| 亚洲av一区综合| 麻豆精品久久久久久蜜桃| 免费av观看视频| 天天躁夜夜躁狠狠久久av| 波多野结衣高清作品| 国产亚洲av嫩草精品影院| 亚洲av电影不卡..在线观看| 国产探花极品一区二区| 一区福利在线观看| а√天堂www在线а√下载| 美女 人体艺术 gogo| 国产精品永久免费网站| 黄色欧美视频在线观看| 91在线观看av| 亚洲国产精品合色在线| 亚洲成人av在线免费| 精品一区二区三区视频在线观看免费| 亚洲自拍偷在线| 激情 狠狠 欧美| 少妇熟女欧美另类| 亚洲三级黄色毛片| 91久久精品电影网| 舔av片在线| 少妇人妻精品综合一区二区 | 日本一本二区三区精品| 一进一出抽搐gif免费好疼| 欧美精品国产亚洲| 国产美女午夜福利| 亚洲人成网站在线观看播放| 无遮挡黄片免费观看| 亚州av有码| 91久久精品国产一区二区三区| 日本爱情动作片www.在线观看 | 九色成人免费人妻av| 嫩草影院精品99| 亚洲精品色激情综合| 黄色视频,在线免费观看| 亚洲av熟女| 国产精品嫩草影院av在线观看| 精品无人区乱码1区二区| 午夜精品国产一区二区电影 | 色在线成人网| 美女大奶头视频| 亚洲av美国av| 我要看日韩黄色一级片| 观看美女的网站| 99久国产av精品国产电影| 精品久久久久久成人av| 国产大屁股一区二区在线视频| 国产精品野战在线观看| 一个人看的www免费观看视频| 人妻夜夜爽99麻豆av| 久久人人精品亚洲av| 在线观看av片永久免费下载| 中文字幕久久专区| 乱码一卡2卡4卡精品| 人人妻人人看人人澡| 中文资源天堂在线| 国语自产精品视频在线第100页| 搞女人的毛片| 久久久欧美国产精品| 日本一二三区视频观看| 午夜免费激情av| 别揉我奶头~嗯~啊~动态视频| 免费看日本二区| 精品一区二区三区av网在线观看| 波多野结衣巨乳人妻| 精华霜和精华液先用哪个| 免费高清视频大片| 两个人视频免费观看高清| 我要看日韩黄色一级片| 天天一区二区日本电影三级| 黄色配什么色好看| 亚洲成人久久性| 少妇丰满av| 色哟哟·www| 久久韩国三级中文字幕| 午夜激情欧美在线| 人妻丰满熟妇av一区二区三区| 日韩在线高清观看一区二区三区| 搡老熟女国产l中国老女人| 久久精品91蜜桃| 亚洲成人精品中文字幕电影| 免费高清视频大片| 国产精品久久久久久av不卡| 男人的好看免费观看在线视频| 国产片特级美女逼逼视频| 成年免费大片在线观看| 亚洲人成网站高清观看| 色5月婷婷丁香| 日韩人妻高清精品专区| 菩萨蛮人人尽说江南好唐韦庄 | 午夜福利在线在线| 一区二区三区四区激情视频 | 在线观看免费视频日本深夜| 深夜精品福利| 性欧美人与动物交配| 亚洲最大成人中文| 国产高清视频在线观看网站| 可以在线观看的亚洲视频| 日韩成人伦理影院| 久久久成人免费电影| 国产亚洲精品久久久com| 亚洲精品乱码久久久v下载方式| 在线国产一区二区在线| 日韩精品有码人妻一区| 狠狠狠狠99中文字幕| 亚洲精品456在线播放app| 亚洲av二区三区四区| 黑人高潮一二区| 国产中年淑女户外野战色| 久久精品国产亚洲av涩爱 | 久久久久国内视频| 尾随美女入室| 精品乱码久久久久久99久播| 亚洲一区高清亚洲精品| 全区人妻精品视频| 亚洲av一区综合| 日本三级黄在线观看| 精品一区二区三区视频在线观看免费| 日韩成人av中文字幕在线观看 | 一级毛片电影观看 | 男女视频在线观看网站免费| 成人综合一区亚洲| 亚洲乱码一区二区免费版| 欧美xxxx黑人xx丫x性爽| 日韩大尺度精品在线看网址| eeuss影院久久| 美女cb高潮喷水在线观看| 赤兔流量卡办理| 一级a爱片免费观看的视频| 成人无遮挡网站| 美女被艹到高潮喷水动态| 国产一区二区三区av在线 | 国产综合懂色| 91av网一区二区| 亚洲精品国产av成人精品 | 天天躁日日操中文字幕| 91在线观看av| 精品午夜福利在线看| 可以在线观看的亚洲视频| 精品久久久久久久人妻蜜臀av| 白带黄色成豆腐渣| 国产探花在线观看一区二区| 久久久久国产网址| 男女啪啪激烈高潮av片| 天堂动漫精品| av在线播放精品| 久久久久性生活片| 国内精品久久久久精免费| 婷婷精品国产亚洲av| 日韩一本色道免费dvd| 久久久成人免费电影| 女人十人毛片免费观看3o分钟| 三级毛片av免费| 欧美极品一区二区三区四区| 久久久久久久久久成人| av在线观看视频网站免费| 淫秽高清视频在线观看| 在线免费观看不下载黄p国产| 丝袜喷水一区| 欧美绝顶高潮抽搐喷水| 日本-黄色视频高清免费观看| 日韩欧美三级三区| 一边摸一边抽搐一进一小说| 高清毛片免费看| 亚洲,欧美,日韩| 久久欧美精品欧美久久欧美| 狂野欧美激情性xxxx在线观看| 午夜福利在线观看吧| 欧美成人精品欧美一级黄| 男女那种视频在线观看| 一级黄色大片毛片| 国产精品久久久久久精品电影| 亚洲精品影视一区二区三区av| 国产69精品久久久久777片| 搡老熟女国产l中国老女人| 亚洲成人中文字幕在线播放| 久久久精品94久久精品| 国产精品一区www在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产午夜福利久久久久久| 99热网站在线观看| 日韩欧美精品免费久久| 国产大屁股一区二区在线视频| 国产精品1区2区在线观看.| 日本黄色视频三级网站网址| 国产欧美日韩精品亚洲av| 日本黄色片子视频| 18+在线观看网站| 亚洲国产高清在线一区二区三| 少妇被粗大猛烈的视频| 69av精品久久久久久| 校园春色视频在线观看| 免费人成在线观看视频色| 国产白丝娇喘喷水9色精品| 精品一区二区免费观看| 99国产精品一区二区蜜桃av| 亚洲av不卡在线观看| 欧美激情国产日韩精品一区| 五月伊人婷婷丁香| 免费人成视频x8x8入口观看| 亚洲精品456在线播放app| 看黄色毛片网站| 亚洲av中文av极速乱| 深爱激情五月婷婷| 欧美成人免费av一区二区三区| 搞女人的毛片| 婷婷色综合大香蕉| 禁无遮挡网站| 天堂网av新在线| 成人av一区二区三区在线看| 我要看日韩黄色一级片| 干丝袜人妻中文字幕| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久精品电影| 天天躁日日操中文字幕| 国产单亲对白刺激| 三级经典国产精品| 国产精品人妻久久久影院| 日韩欧美精品免费久久| 亚洲人成网站高清观看| 一级黄色大片毛片| 国产成人91sexporn| 一本久久中文字幕| 亚洲美女搞黄在线观看 | 成人av一区二区三区在线看| 91久久精品国产一区二区三区| 1024手机看黄色片| 老司机午夜福利在线观看视频| 婷婷亚洲欧美| 在线免费观看的www视频| 九色成人免费人妻av| 日日摸夜夜添夜夜爱| 国产精品久久视频播放| 久久精品夜色国产| 亚洲欧美成人精品一区二区| av在线蜜桃| 哪里可以看免费的av片| 欧美国产日韩亚洲一区| 日本 av在线| 成年免费大片在线观看| 午夜福利在线在线| 美女 人体艺术 gogo| 熟女电影av网| 亚洲五月天丁香| 伦精品一区二区三区| 麻豆国产97在线/欧美| 久久精品国产鲁丝片午夜精品| 亚洲自拍偷在线| 国产精品一区www在线观看| 亚洲人成网站在线播放欧美日韩| 国产黄色小视频在线观看| 亚洲人成网站在线观看播放| 国产一区二区激情短视频| 国产aⅴ精品一区二区三区波| 久久国产乱子免费精品| 成人鲁丝片一二三区免费| 久久久久久九九精品二区国产| 一边摸一边抽搐一进一小说| 欧美激情国产日韩精品一区| 乱人视频在线观看| 国产精品不卡视频一区二区| 我要看日韩黄色一级片| 亚洲国产日韩欧美精品在线观看| 欧美性猛交黑人性爽| 精品久久久噜噜| 免费av毛片视频| 女的被弄到高潮叫床怎么办| 亚洲成人中文字幕在线播放| 极品教师在线视频| av国产免费在线观看| 成年免费大片在线观看| 国产乱人视频| 可以在线观看的亚洲视频| 免费观看在线日韩| 亚洲四区av| 99视频精品全部免费 在线| 亚洲av熟女| 国产精品99久久久久久久久| 欧美一区二区亚洲| 欧美高清成人免费视频www| 长腿黑丝高跟| 国内精品久久久久精免费| 高清日韩中文字幕在线| 国产 一区 欧美 日韩| 久久精品夜夜夜夜夜久久蜜豆| 啦啦啦啦在线视频资源| 国产真实伦视频高清在线观看| 热99re8久久精品国产| 国产女主播在线喷水免费视频网站 | 欧美成人精品欧美一级黄| 日本与韩国留学比较| 国产中年淑女户外野战色| 国产精品综合久久久久久久免费| 别揉我奶头~嗯~啊~动态视频| 日本-黄色视频高清免费观看| 日韩欧美精品免费久久| 你懂的网址亚洲精品在线观看 | 搡老妇女老女人老熟妇| 久久99热6这里只有精品| 欧美一区二区精品小视频在线| 亚洲最大成人手机在线| 麻豆久久精品国产亚洲av| 插阴视频在线观看视频| 高清午夜精品一区二区三区 | 精品人妻一区二区三区麻豆 | 又爽又黄无遮挡网站| 婷婷精品国产亚洲av在线| 熟女人妻精品中文字幕| 嫩草影视91久久| 国产淫片久久久久久久久| 成人特级黄色片久久久久久久| 亚洲精品影视一区二区三区av| 99久久九九国产精品国产免费| 一夜夜www| 国产一区二区在线av高清观看| 国产精品久久电影中文字幕| 男人舔女人下体高潮全视频| 亚洲国产精品久久男人天堂| 精品国产三级普通话版| 亚洲国产精品国产精品| 我的女老师完整版在线观看| 十八禁国产超污无遮挡网站| 国产精品,欧美在线| 国产在视频线在精品| 精品一区二区免费观看| 男女那种视频在线观看| 亚洲熟妇熟女久久| 成人精品一区二区免费| 舔av片在线| 精品久久久久久久人妻蜜臀av| 女生性感内裤真人,穿戴方法视频| 黄色欧美视频在线观看| 国产精品综合久久久久久久免费| 亚洲国产色片| 男女啪啪激烈高潮av片| 热99re8久久精品国产| 亚洲精品亚洲一区二区| 啦啦啦啦在线视频资源| 黄片wwwwww| 欧美另类亚洲清纯唯美| 国产精品久久久久久精品电影| 在线播放国产精品三级| 97超视频在线观看视频| 国产探花在线观看一区二区| a级毛片免费高清观看在线播放| 亚洲中文日韩欧美视频| 国产精品精品国产色婷婷| 久久亚洲国产成人精品v| 黄色视频,在线免费观看| 色5月婷婷丁香| 久久综合国产亚洲精品| 亚洲,欧美,日韩| 校园人妻丝袜中文字幕| 国产毛片a区久久久久| 99久久无色码亚洲精品果冻| 熟女电影av网| 亚洲国产精品成人久久小说 | 亚洲国产欧洲综合997久久,| 精品久久久久久久人妻蜜臀av| a级毛片a级免费在线| 中国美白少妇内射xxxbb| 日韩欧美免费精品| 婷婷亚洲欧美| 午夜免费激情av| 国产一级毛片七仙女欲春2| 精品一区二区三区视频在线| 久久久午夜欧美精品| 99热6这里只有精品| 午夜影院日韩av| 极品教师在线视频| 99热网站在线观看| 精品国内亚洲2022精品成人| 九九热线精品视视频播放| 亚洲成av人片在线播放无| 深爱激情五月婷婷| 欧美不卡视频在线免费观看| 亚洲精品久久国产高清桃花| 精品一区二区三区人妻视频| 久久人人爽人人片av| 免费看a级黄色片| 亚洲精品456在线播放app| www日本黄色视频网| 国产久久久一区二区三区| 99热网站在线观看| 成人欧美大片| 免费观看人在逋| 色综合色国产| 国内精品宾馆在线| 国产爱豆传媒在线观看| 国产精品一二三区在线看| www日本黄色视频网| 色尼玛亚洲综合影院| 精品一区二区免费观看| 精品国内亚洲2022精品成人| 日韩强制内射视频| 欧美激情久久久久久爽电影| 春色校园在线视频观看| 日韩欧美 国产精品| 51国产日韩欧美| 国产精品无大码| 人妻久久中文字幕网| 国产精品久久久久久精品电影| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久黄片| a级一级毛片免费在线观看| 亚洲最大成人av| 少妇熟女aⅴ在线视频| 欧美xxxx黑人xx丫x性爽| 欧美日韩一区二区视频在线观看视频在线 | h日本视频在线播放| 美女xxoo啪啪120秒动态图| 亚洲熟妇熟女久久| 毛片女人毛片| 国产伦精品一区二区三区四那| av中文乱码字幕在线| 丰满乱子伦码专区| 亚洲一区高清亚洲精品| 你懂的网址亚洲精品在线观看 | 麻豆国产av国片精品| 伦精品一区二区三区| 亚洲欧美成人综合另类久久久 | 看非洲黑人一级黄片| 国产片特级美女逼逼视频| 亚洲最大成人中文| 国产成人福利小说| 色尼玛亚洲综合影院| 亚洲精品一区av在线观看| 午夜免费激情av| 亚洲精品影视一区二区三区av| 99久国产av精品| av在线蜜桃| 久久6这里有精品| 亚洲中文日韩欧美视频| 久久99热这里只有精品18| 在线免费观看不下载黄p国产| 国产老妇女一区| 日本免费a在线| 国产在线精品亚洲第一网站| 男女下面进入的视频免费午夜| 麻豆精品久久久久久蜜桃| 永久网站在线| 免费搜索国产男女视频| 18+在线观看网站| 国产精品一区二区三区四区久久| 成人亚洲精品av一区二区| 99国产极品粉嫩在线观看| 久久午夜亚洲精品久久| 天天一区二区日本电影三级| 噜噜噜噜噜久久久久久91| 精品国内亚洲2022精品成人| 色综合亚洲欧美另类图片| 久久精品国产亚洲网站| 国产一级毛片七仙女欲春2| 亚洲精品影视一区二区三区av| 国产精品亚洲美女久久久| 一级毛片电影观看 | 日本五十路高清| 成人性生交大片免费视频hd| 欧美日韩综合久久久久久| 一级毛片久久久久久久久女| 亚洲丝袜综合中文字幕| 我的女老师完整版在线观看| 国产91av在线免费观看| 国产午夜精品久久久久久一区二区三区 | 午夜福利在线观看吧| 在线国产一区二区在线| 国产一区亚洲一区在线观看| 欧美高清性xxxxhd video| 国产男靠女视频免费网站| 久久午夜亚洲精品久久| 日韩,欧美,国产一区二区三区 | 欧美成人精品欧美一级黄| 三级国产精品欧美在线观看| 69av精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一区二区三区四区久久| 久久精品国产亚洲av天美| 日韩欧美精品v在线| 亚洲欧美精品综合久久99| 国产av在哪里看| 久久人人爽人人片av| 成人av一区二区三区在线看| 美女cb高潮喷水在线观看| 欧美最新免费一区二区三区| 少妇裸体淫交视频免费看高清| 国产亚洲精品综合一区在线观看| 精品久久久久久久久av| 久久久精品大字幕| 亚洲自偷自拍三级| 国产乱人偷精品视频| 婷婷六月久久综合丁香| 色av中文字幕| 日本色播在线视频| 国产亚洲欧美98| 男人舔奶头视频| 国产美女午夜福利| ponron亚洲| 国产片特级美女逼逼视频| 国产精品一区二区性色av| 亚洲精品国产av成人精品 | 国产黄色小视频在线观看| av在线亚洲专区| 免费大片18禁| 久久久久免费精品人妻一区二区| 麻豆国产97在线/欧美| 99热这里只有是精品50| 久久中文看片网| 国产色爽女视频免费观看| www.色视频.com| 亚洲av电影不卡..在线观看| 欧美日韩精品成人综合77777| 成年女人毛片免费观看观看9| 蜜臀久久99精品久久宅男| 国产成人aa在线观看| 12—13女人毛片做爰片一| 欧美色视频一区免费| 亚洲成人久久性| 麻豆成人午夜福利视频| 人妻夜夜爽99麻豆av| 国产精华一区二区三区| 熟女电影av网| 男插女下体视频免费在线播放| 你懂的网址亚洲精品在线观看 | 蜜臀久久99精品久久宅男| 精品无人区乱码1区二区| 婷婷精品国产亚洲av在线| 99热全是精品| 亚洲精品在线观看二区| 国产日本99.免费观看| 1000部很黄的大片| 老司机影院成人| 免费观看在线日韩| 最近在线观看免费完整版| 国产成人精品久久久久久| 成人性生交大片免费视频hd| 日韩人妻高清精品专区| 能在线免费观看的黄片| 神马国产精品三级电影在线观看| 美女 人体艺术 gogo| 最好的美女福利视频网| 欧美极品一区二区三区四区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲第一电影网av| 亚洲av免费在线观看| 亚洲三级黄色毛片| 亚洲精品国产成人久久av| 午夜日韩欧美国产| 俄罗斯特黄特色一大片| 两性午夜刺激爽爽歪歪视频在线观看| 日日摸夜夜添夜夜爱| 女同久久另类99精品国产91| 久久午夜亚洲精品久久| 嫩草影视91久久| 亚洲一区高清亚洲精品| 最新中文字幕久久久久| 丝袜喷水一区| 国产高清视频在线观看网站| 赤兔流量卡办理| 精品免费久久久久久久清纯| 国产精品1区2区在线观看.| 美女cb高潮喷水在线观看| 精品人妻偷拍中文字幕| 免费在线观看成人毛片| 中文字幕av成人在线电影| 性欧美人与动物交配| 国产不卡一卡二| 国产综合懂色| 久久精品影院6| 免费av观看视频| 丝袜美腿在线中文| 在线天堂最新版资源| 国产精品美女特级片免费视频播放器| 自拍偷自拍亚洲精品老妇| 99热这里只有精品一区| 日韩三级伦理在线观看| 久久久欧美国产精品| а√天堂www在线а√下载| 在线a可以看的网站| 国产精品一区www在线观看| 亚洲自拍偷在线| 国产精品永久免费网站| 国产av不卡久久| 亚洲无线观看免费|