• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of nitrogen concentration on the properties of N-DLC prepared by helicon wave plasma chemical vapor deposition

    2022-09-06 13:04:40YanYANG楊燕TianyuanHUANG黃天源MaoyangLI李茂洋YaoweiYU余耀偉JianjunHUANG黃建軍BinYU于斌XuemeiWU吳雪梅andPeiyuJI季佩宇
    Plasma Science and Technology 2022年10期
    關(guān)鍵詞:楊燕建軍

    Yan YANG (楊燕),Tianyuan HUANG (黃天源),Maoyang LI (李茂洋),Yaowei YU (余耀偉),Jianjun HUANG (黃建軍),Bin YU (于斌),Xuemei WU (吳雪梅) and Peiyu JI (季佩宇)

    1 College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,People’s Republic of China

    2 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,People’s Republic of China

    3 Advanced Energy Research Center,Shenzhen University,Shenzhen 518060,People’s Republic of China

    4 School of Physical Science and Technology,Soochow University,Suzhou 215123,People’s Republic of China

    5 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    6 School of Optoelectronic Science and Engineering,Soochow University,Suzhou 215123,People’s Republic of China

    Abstract Nitrogen-doped diamond-like carbon (N-DLC) films were synthesized by helicon wave plasma chemical vapor deposition (HWP-CVD).The mechanism of the plasma influence on the N-DLC structure and properties was revealed by the diagnosis of plasma.The effects of nitrogen doping on the mechanical and hydrophobicity properties of DLC films were studied.The change in the ratio of precursor gas flow reduces the concentration of film-forming groups,resulting in a decrease of growth rate with increasing nitrogen flow rate.The morphology and structure of N-DLC films were characterized by scanning probe microscopy,Raman spectroscopy,and X-ray photoemission spectroscopy.The mechanical properties and wettability of N-DLC were analyzed by an ultra-micro hardness tester and JC2000DM system.The results show that the content ratio of N+ andN2+ is positively correlated with the mechanical properties and wettability of N-DLC films.The enhancement hardness and elastic modulus of N-DLC are attributed to the increase in sp3 carbonnitrogen bond content in the film,reaching 26.5 GPa and 160 GPa respectively.Water contact measurement shows that the increase in the nitrogen-bond structure in N-DLC gives the film excellent hydrophobic properties,and the optimal water contact angle reaches 111.2°.It is shown that HWP technology has unique advantages in the modulation of functional nanomaterials.

    Keywords: N-DLC,helicon wave plasma,microstructure,hardness,hydrophobicity

    1.Introduction

    Heteroatomic doping can change the content of coordination defects,sp bond content,and lattice disorder in diamond-like films,thus improving the hardness,friction coefficient,chemical inertia,resistivity,and semiconductor characteristics of diamond-like films [1].Its applications in optical,mechanical,electronic,and biomedical fields have been expanded [2-6].The doping of nitrogen can shift the atoms in the film,changing the bond structure and content ratio.Therefore,it can significantly improve the adhesion between the film and substrate,and the residual stress of the coating can be reduced.In addition,it enhances the mechanical and tribological properties of the films.Nitrogen-doped diamond-like carbon (N-DLC)films improve bond strength due to the possible formation of carbon-nitrogen bonds.Therefore,they have many industrial applications,such as critical engine components,hard drives,scratch-resistant glasses,mechanical surface seals,surgical tools,etc.There are many techniques for preparing N-DLC films.Chen and Hong have studied the effect of SiOx-incorporation hydrocarbons on the tribological properties of DLC films using a 13.56 MHz magnetically confined inductively coupled plasma (ICP) system [7].Paul et al have studied the effect of gold-doped DLC on residual stress using a radiofrequency (RF) capacitively coupled plasma chemical vapor deposition (CCP-CVD) sputtering technique at room temperature [8].In addition,numerous researchers and groups have synthesized N-DLC thin films using various deposition methods such as microwave surface-wave plasma CVD [9],DC magnetron sputtering [10],electron cyclotron resonanceassisted microwave plasma CVD (ECR-MPCVD) [11],and inductively coupled plasma deposition (ICP) systems [1,12].

    However,the synthesis of N-DLC thin films by helicon wave plasma CVD (HWP-CVD) method has rarely been reported.HWP has high electron density,low electron temperature and strong controllability of plasma parameters.It has become an ideal plasma source for the preparation of nanomaterials.There is no built-in electrode,so it will not pollute the material.In this work,HWP-CVD technology was used to study the preparation of N-DLC thin films [13-15].The effect of fixed precursor methane changing nitrogen flow was investigated in a previous work [16].The mechanical properties affected by the structure of the thin film were analyzed.The prepared films present void structures that affect their mechanical properties,so we conducted a new round of experiments by regulating the proportion of nitrogen/carbon atoms in the precursors.The effects of gas-phase species on the morphology,bond content,structure,and properties of N-DLC films in plasma were investigated.

    In this work,the effect of nitrogen content on the structure and properties of N-DLC thin films prepared by HWP-CVD technology was investigated.The gas-phase species in the plasma were diagnosed by optical emission spectroscopy (OES) and mass spectrometry (MS).We analyzed the effects of the change of relative content of species on the bond structure and properties of N-DLC films without changing the substrate and other discharge parameters.Scanning electron microscopy (SEM),Raman spectra(Raman),and X-ray photoelectron spectroscopy (XPS) characterized the film morphological structure and chemical bonding state.The effects of bonding state on mechanical properties and wettability were analyzed.

    2.Experiment

    The N-DLC thin films were deposited on a silicon substrate by self-design HWP-CVD,named High Magnetic field Helicon experiment (HMHX) for which more detail can be found in[17].A schematic illustration of HMHX is shown in figure 1.In brief,the discharge was realized at RF (13.56 MHz) power(1.5 kW) using an internal right helical antenna with a static axial magnetic field from 12 electromagnets that surround the chamber.The silicon substrate was fixed in the reaction chamber about 40 cm away from the plasma source region where the helical antenna was set.Si substrate was cleaned beforehand by acetone for 5 min,absolute ethyl alcohol for 5 min and ultra-pure water for 5 min in an ultrasonic bath.Prior to deposition,the silicon substrate was cleaned for 10 min by argon HWP to remove residual surface contaminants [18].In the process of N-DLC film deposition,the precursors argon,methane and nitrogen were used as the HWP discharge gas,reaction gas and doping gas respectively.Argon was fed to the source region through the mass flow controller as a discharge gas,with the flow rate set to 50 sccm.At the same time,mixtures of CH4and N2with different gas flow ratios fN2through different mass flow controllers were fed into the reaction chamber,wherefN2=N2/(N2+CH4),(fN2=0%,10%,20%,30%,40%,50%).The helicon antenna was coupled to a 1.5 kW RF power generator at 13.56 MHz via a matching box.In order to avoid the influence of gas pressure changes on plasma characteristics during the experiment,the total flow of gas into the chamber was controlled and the gas pressure kept at a constant value of 0.4 Pa through the valve.

    In the thin film deposition region,the species composition of the plasma was diagnosed using OES (MS5204i) and mass spectroscopy (EQP,Hiden).XPS (Thermo ESCALAB 250 XI) was used for the chemical states of nitrogen and carbon at the surface.The surface morphology and thickness of N-DLC thin films were characterized by SEM (Hitachi SU8010).Visible Raman (HR 800) were collected with a micro-Raman spectroscopy system using a frequency-doubled Nd:YAG laser operating at an excitation wavelength of 514 nm.The hardness and modulus of elasticity of N-DLC were measured by an ultra-micro hardness tester (DUH-211S).Contact angle measurements were carried out by a JC2000DM system (Beijing Zhongyi Kexin Technology).

    3.Results and discussion

    The surface morphologies and the thickness of N-DLC thin films were characterized by SEM.Figure 2 shows the surface and cross-section SEM images of N-DLC deposited at different fN2(from 0% to 50%).From these images,the influence of the nitrogen flow ratio on the morphology and thickness of the deposition process can be evaluated.It was found that the dopant causes an increase in particle sizes.Raman also corroborates these results.The particle size on the surface of the film increases with increasing fN2.For nitrogen content at 50%,the N-DLC films exhibit a different morphology from those observed.It shows a porous surface,which may be due to the formation of amorphous carbon nitride[10].There is no gap between the film and the substrate from the cross section,indicating that the adhesion is excellent,and the films all have a dense structure.The thickness and growth rate of the film were calculated by the cross-section of SEM,as shown in figure 3.The growth rate of the films decreases from 18.67 to 0.53 nm s?1corresponding to fN2from 0% to 50%.With increasing fN2,the concentration of CH molecules and C+decreases,resulting in a decrease in growth rate.No matter what,films with different nitrogen content show good homogeneity and adhesion without cracks.

    Figure 1.Schematic of HMHX experimental apparatus.

    Figure 2.Surface microstructure and cross-sections of all samples under different fN2.

    Figure 3.Growth rate and thickness of films as a function of fN2.

    The properties and microstructure of carbon bonding were studied by Raman.Figure 4(a)shows a D peak centered around 1332 cm?1and a G peak centered at 1580 cm?1,which indicates that the thin films mainly have a diamond-like carbon structure [19,20].The D peak results from the breathing modes of sp2 carbon atoms in rings,and the G peak originates from bond stretching of all pairs of sp2 carbon sites in rings and chains [18,21].Thus the D peak represents disordered sp2-hybridized carbon with an amount of sp3-hybridized carbon,while the G peak represents graphite-like sp2-hybridized carbon in the deposited thin films [9,20,22].The area integral ratio of peaks D and G,the full width half maximum (FWHM) of the G band,and the position of the G peak were used to study the structure of the thin films[1,20,21,23],as shown in figure 4(b).It was found that the variation of G peak position and the ratio of D to G peak intensity correlated with the increase in nitrogen content,reaching its maximum at 40%,all in the opposite direction of the FWHM of the G peak.The increase in ID/IGand the G peak position shifted to higher-value wavenumbers,which indicates that the dopant causes an increase in the sp2-hybridized carbon cluster size.The sp2 content increases while the CC bonding disorders and sp3 content decrease[10,24,25],and the number of rings per cluster increases with a decrease in the fraction of chain groups [21].Finally,the observed decrease of FWHM of the G peak is also consistent with the increased cluster size [26].

    Figure 4.(a)Raman spectra of the films deposited at different fN2,(b)ID/IG ratios,G-FWHM,and G-position calculated by the fitting of the D peak and G peak.

    XPS is an important technique to characterize the surface composition and chemical bonding of the N-DLC thin films.Figure 5(a) shows typical XPS spectra of DLC and N-DLC films deposited by fN2at 0% and 40%,respectively,with an etching depth of 2 nm.The positions of carbon (C1s),nitrogen (N1s),and oxygen (O1s) peaks were measured at 285,400,and 533 eV,respectively.The etching depth is 2 nm from the surface of the film,and the content of carbon,nitrogen and oxygen in the film varies under different fN2as shown in table 1.For the deposited DLC,only carbon and oxygen peaks were detected.The peak of nitrogen appeared in N-DLC.Through analyzing the oxygen content in the N-DLC thin films,it was found that oxygen is not only adsorbed on the surface of the sample but also bound to the carbon and nitrogen bonds.As for the presence of oxygen,the gas adsorbed by the wall of the chamber is released by the plasma bombardment during the discharge process,or by the adsorption of oxygen in the atmosphere [23,25].

    Figure 5.XPS survey scan of N-DLC thin film deposited at 40% of fN2 with an etching depth of 10 nm.

    Figure 6.(a)Deconvolution of C1s peak of N-DLC thin films at different fN2,(b)bonding states for the relative behavior as a function of fN2.

    Table 1.Proportions (%) of C,N and O content under different fN2.

    Figure 6(a) shows the fittings of deconvolution XPS spectra of C1s peaks of N-DLC thin films deposited at different fN2ranging from 0% to 50%.The C1s peak shifts to higher energy and becomes broad with increasing nitrogen concentration in the thin film.This is due to the increase in nitrogen content and the presence of CN bonds [1,27].The curve fitting data for peaks located at 284.3,285.4,286.7,288.3 eV were respectively assigned to sp2 CC,sp3 CC,sp1 C≡N,and sp3 CN [25,26,28-30].Figure 6(b) shows all bonding states for the relative behavior as a function of fN2.The formation of CN bonds is accompanied by the increase in sp2 CC bonds,resulting in a decrease in sp3 CC bond content.Therefore,with increasing fN2,the content of sp3 CC decreases significantly[19,29].However,the contents of sp3 CN and sp1 C≡N are relatively stable at different fN2in the films.

    Figure 7.(a)Deconvolution of N1s peak of N-DLC thin films at different fN2,(b)bonding states for the relative behavior as a function of fN2.

    Figure 8.(a) Typical OES of pure argon (50 sccm),Ar:CH4 (50:50 sccm) and Ar:CH4:N2 (50:25:25 sccm).(b) Relative content of filmforming ions changing with fN2.

    Figure 7(a) shows the fitting of deconvolution XPS spectra of N1s peaks of N-DLC thin films deposited at different fN2.When fN2was increased from 10%to 40%,the N1s peak split into two peaks,which indicated that the degree of crystallization in the films was enhanced [20].However,it is difficult to explain the reasons for this change in the N1s peak at 50% of fN2.The N1s peak was deconvoluted into three peaks.The first peak located at 398.2 eV corresponds to sp3 CN and the second peak located at 400.5 eV corresponds to sp2 CN,which allows for crosslinking of curved planes and formation of CNx[31].The third peak located at 402.6 eV corresponds to N=O,which can be from other types of CN bonding[25,32].It is obvious that the sp3 CN bond increases with increasing fN2and the sp2 CN bond decreases with increasing fN2from figure 7(b).The results suggest that the initial increase in thin-film nitrogen concentration promotes an increase in the sp3 carbon bonding fraction and lattice disorder [19].From figure 7(a),it can be concluded that the N-O peak’s relative area remains almost constant.

    Figure 9.Typical+ion mass spectrometry obtained from an HWPproduced Ar:CH4:N2 (50:25:25 sccm) plasma.

    Figure 10.(a)Hardness,modulus of elasticity and N-sp3 for N-DLC films as a function of fN2.(b)Ion ratio of[N+]/[N2+]as a function of fN2.

    Figure 11.Nitrogen flow rate dependence of the water contact angle for N-DLC.

    To investigate how the plasma affects the film growth,the film-forming particles and radical species in the plasma were diagnosed by OES.The types of excited species can be determined by the wavelength position of the OES.The relative concentration of the corresponding species can be inferred from the signal strength of the spectral line.As shown in figure 8,there is a typical spectrogram of pure argon(50 sccm),Ar:CH4(50:50 sccm) and Ar:CH4:N2(50:25:25 sccm).As can be seen from figure 8,under pure argon conditions,the emission peak corresponds to the ion and excitation state of argon.The radio frequency power excites the argon ionization process through the electromagnetic field excited by the helical antenna.In this process,the plasma is rich in argon ions,excited argon atoms and electrons.Under the condition of Ar:CH4(50:50 sccm),in addition to the peak of argon,CH (431 nm,A2Δ → X2Π),C+2(468.02 nm,3Π → 3Π),Hα(656 nm,3d2D → 2p2p0),and Hβ(486 nm,4d2D → 2p2p0) also appear in the spectral line [33,34].The possible formation process of excited species is shown in formulae (1)-(3) [33].When nitrogen was fed into the discharge chamber,CN (388,420 nm,B2Σ → X2Σ),N2,N2+and N+(315.9,337.1,357,380,427,501.06 nm,C3Πu→ B3Πg,B2Σ+u→ X2Σ+g) [33,34]peaks appeared in the emission spectrum,and the main formation process is shown in formula(4)-(7)[33].Particles in the plasma collide with CH4and N2molecules by excitation,ionization,and dissociation to form film-forming groups and active species.According to the diagnostic results of OES,the main species composition in the N-DLC film deposition process changes with fN2in the system.As shown in figure 8(b),the results can well explain the decrease in film thickness and growth rate.

    OES can only diagnose information about part of the excited species.To fully understand the composition of plasma,the mass spectrometer was used to determine the plasma particle information by detecting species with different mass and charge ratios.As shown in figure 9,it is a typical positive ion spectrum with a plasma parameter of Ar:CH4:N2(50:25:25 sccm).CH4and N2molecules are enough dissociated and combined under the action of Ar-HWP.The main species components include atomic hydrogen (H+,m/z=1),molecular hydrogen (H+2,m/z=2) and carbonaceous species (CH+,CH+2,CH+3,CH+4,CH+5,C2H+2,C2H+4,m/z=13,14,15,16,17,26,28)from CH4molecular activated dissociation.N atomic ions and N molecular ions are formed by excitation and ionization of nitrogen molecules (N+,m/z=14;N,2+m/z=24).Carbon nitride particles a nd nitrogen hydride particles (NH+,NH+2,NH+3,NH+4,CN+,HCN+,m/z=15,16,17,18,26,27) are formed by the cracking of methane molecules and the cracking of nitrogen molecules.In addition,there are argon ions and argon hydrogen ions (Ar+,ArH+,m/z=40,41).This provides evidence for analyzing the changes in element content and bond state content in the film.

    The species information of OES and EQP diagnosis complement each other and provide important support for the analysis of film deposition.

    The complex interaction relationship between plasma process parameters and species composition has an important impact on the hardness and elastic modulus of N-DLC.As shown in figure 10(a),both the hardness and elastic modulus of the N-DLC films increase with the proportion of fN2in the discharge system,because the proportion of nitrogen flow rate in the plasma increases the content ratio of N+toN2+ions.As shown in figure 10(b),the ion density is directly proportional to the ion generation rate and inversely proportional to the ion loss rate [35].Nitrogen atoms can more easily replace the positions of carbon and hydrogen atoms to form sp3 CN bond structure compared with nitrogen molecular ions.Therefore,the increase in the proportion of N+promotes an increase in N-sp3 content in N-DLC films.Therefore,the optimization of the bond structure in N-DLC films can effectively improve the hardness and elastic modulus of N-DLC.

    The wettability of N-DLC was researched by measuring the contact angle between the film surface and water.Figure 11 shows the effect of increasing nitrogen content in the discharge system on the water contact angle of the film.A charge-coupled device camera picture of the water contact angle test is shown in figure 11.As the nitrogen content increased in the film,the water contact angle gradually increased to 111.2°.This is mainly because the change in the ratio of sp3 CC and sp2 CC bonding on the film surface affects the hydrophilic/hydrophobic properties.sp2 CC rich surfaces have higher water contact angles than those rich in sp3 CC[36-38].The enhancement of hydrophobicity reflects the decrease in surface energy of N-DLC.

    4.Conclusion

    The effects of increased nitrogen content in plasma on the structure and properties of N-DLC films were investigated by using a self-built HWP-CVD system.The results show that an increase in nitrogen flow in the plasma improves the concentration ratio of nitrogen atomic ions to nitrogen molecular ions.Under the action of argon HWP,methane molecules and nitrogen molecules are sufficiently dissociated to form filmforming particles and active radicals.The combination of carbon-containing radicals and nitrogen ions has become the main species basis for the growth of N-DLC films.Changes in the proportion of species components in plasma affect the content of bond structures and elements in N-DLC films.The CN sp3 bond increases significantly in the film with increasing nitrogen content,which is also the main reason for increasing the film hardness and elastic modulus.Analysis of the water contact angle of the N-DLC film shows that wetting is sensitive to the change of bond structure composition on the surface of the film,and the increase in nitrogen atom doping makes the film more hydrophobic.The work provides new preparation methods and paths for N-DLC in medical and mechanical areas.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.11975163,12175160) and Shenzhen Clean Energy Research Institute.

    猜你喜歡
    楊燕建軍
    Orientation determination of nitrogen-vacancy center in diamond using a static magnetic field
    慶祝建軍95周年
    Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode
    無(wú)論等多久
    Success
    Discussion on the Application of Multi—media In English Teaching
    下藥“阻”妻散了家
    Remote positioning system based on GPS/GPRS*
    超級(jí)賽亞人
    Totally laparoscopic Billroth Ⅱ gastrectomy without intracorporeal hand-sewn sutures
    亚洲高清免费不卡视频| 久热久热在线精品观看| 日本爱情动作片www.在线观看| 久久久午夜欧美精品| 欧美成人a在线观看| 丰满人妻一区二区三区视频av| av在线观看视频网站免费| 免费av不卡在线播放| 国产毛片在线视频| 亚洲久久久久久中文字幕| 禁无遮挡网站| 欧美激情在线99| 18禁在线播放成人免费| 国产伦精品一区二区三区视频9| 国产高清不卡午夜福利| 国产探花在线观看一区二区| 精品人妻一区二区三区麻豆| 在线观看人妻少妇| 日本黄色片子视频| 狂野欧美激情性bbbbbb| 最近2019中文字幕mv第一页| 麻豆乱淫一区二区| 在线免费十八禁| 一级二级三级毛片免费看| 成人国产麻豆网| av网站免费在线观看视频| 人妻制服诱惑在线中文字幕| 精品久久久噜噜| 亚洲精品456在线播放app| 亚洲四区av| 超碰av人人做人人爽久久| 国产精品一及| 亚洲av国产av综合av卡| 国产白丝娇喘喷水9色精品| 联通29元200g的流量卡| 尤物成人国产欧美一区二区三区| 热99国产精品久久久久久7| 观看美女的网站| 欧美另类一区| 高清av免费在线| 日韩伦理黄色片| 日本-黄色视频高清免费观看| 亚洲人成网站在线观看播放| 18禁动态无遮挡网站| 国产美女午夜福利| 一区二区三区乱码不卡18| 一级二级三级毛片免费看| 大码成人一级视频| 少妇人妻一区二区三区视频| 久久热精品热| 男的添女的下面高潮视频| 两个人的视频大全免费| 欧美老熟妇乱子伦牲交| 涩涩av久久男人的天堂| 日韩一区二区三区影片| 午夜老司机福利剧场| 舔av片在线| 五月玫瑰六月丁香| 精品一区二区免费观看| 国产午夜福利久久久久久| 日韩,欧美,国产一区二区三区| 国产午夜精品一二区理论片| 国产大屁股一区二区在线视频| 简卡轻食公司| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲91精品色在线| eeuss影院久久| 亚洲av中文av极速乱| 三级国产精品欧美在线观看| 国产伦理片在线播放av一区| 欧美97在线视频| 联通29元200g的流量卡| 欧美丝袜亚洲另类| 亚洲av国产av综合av卡| 久久久久久久久久久免费av| 久久精品国产a三级三级三级| 乱系列少妇在线播放| 国产亚洲精品久久久com| 综合色丁香网| 免费大片18禁| 久久99热这里只频精品6学生| 最近中文字幕高清免费大全6| av在线播放精品| 国产av国产精品国产| 欧美国产精品一级二级三级 | 久久99热这里只有精品18| 国产一区二区三区av在线| 只有这里有精品99| av免费观看日本| 亚洲欧美一区二区三区黑人 | 国产伦精品一区二区三区四那| 99久久人妻综合| 熟妇人妻不卡中文字幕| 男人爽女人下面视频在线观看| 男插女下体视频免费在线播放| 日本一二三区视频观看| 69人妻影院| 精品少妇久久久久久888优播| 国产黄片视频在线免费观看| 大片电影免费在线观看免费| 国产成人91sexporn| 国内揄拍国产精品人妻在线| 自拍偷自拍亚洲精品老妇| 日日啪夜夜撸| 亚洲精品亚洲一区二区| 男女啪啪激烈高潮av片| 成年版毛片免费区| 国产高清不卡午夜福利| 国产伦理片在线播放av一区| 精品一区二区三卡| 99热这里只有是精品50| 别揉我奶头 嗯啊视频| 18禁动态无遮挡网站| 日本黄色片子视频| 亚洲欧美一区二区三区国产| 毛片女人毛片| 亚洲高清免费不卡视频| 国产av国产精品国产| 日韩国内少妇激情av| 久久99热6这里只有精品| 精品一区二区免费观看| 国产在线男女| 少妇丰满av| 亚洲av不卡在线观看| 狂野欧美激情性xxxx在线观看| 亚洲欧美成人综合另类久久久| 久久久久久久精品精品| 亚洲精品亚洲一区二区| 一级毛片aaaaaa免费看小| 欧美3d第一页| 亚洲最大成人手机在线| 日韩亚洲欧美综合| 精品久久久久久久末码| 国产精品女同一区二区软件| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久国产av精品国产电影| 插阴视频在线观看视频| 国产人妻一区二区三区在| 亚洲欧美一区二区三区国产| 麻豆乱淫一区二区| 午夜激情福利司机影院| 欧美成人一区二区免费高清观看| 嫩草影院入口| 天天躁日日操中文字幕| 久久6这里有精品| 成人漫画全彩无遮挡| 成人特级av手机在线观看| 99热这里只有是精品在线观看| 国产av不卡久久| 少妇人妻 视频| 91aial.com中文字幕在线观看| 99久久九九国产精品国产免费| 成人亚洲精品av一区二区| 久久久久精品性色| 高清欧美精品videossex| 精品人妻一区二区三区麻豆| 亚洲精品乱码久久久久久按摩| 一级毛片电影观看| 最近手机中文字幕大全| 亚洲av成人精品一区久久| av在线蜜桃| 精品一区在线观看国产| 日韩在线高清观看一区二区三区| 日韩,欧美,国产一区二区三区| 亚洲色图av天堂| 你懂的网址亚洲精品在线观看| 2022亚洲国产成人精品| 看非洲黑人一级黄片| 国产精品人妻久久久影院| 中国国产av一级| 久久精品久久精品一区二区三区| 日韩强制内射视频| 夫妻午夜视频| 成人国产av品久久久| 免费看av在线观看网站| 人体艺术视频欧美日本| 又爽又黄无遮挡网站| 国产片特级美女逼逼视频| 欧美一区二区亚洲| av卡一久久| 偷拍熟女少妇极品色| 热re99久久精品国产66热6| 黄色配什么色好看| 高清日韩中文字幕在线| 少妇人妻精品综合一区二区| 免费大片黄手机在线观看| 菩萨蛮人人尽说江南好唐韦庄| 老司机影院成人| 免费看不卡的av| 亚洲天堂av无毛| 丝袜美腿在线中文| 一级毛片aaaaaa免费看小| 亚洲欧美精品专区久久| 久久久久九九精品影院| 亚洲国产精品999| 视频区图区小说| 男人和女人高潮做爰伦理| 亚洲人成网站在线观看播放| 美女国产视频在线观看| 久久久久性生活片| 人体艺术视频欧美日本| 视频中文字幕在线观看| 免费少妇av软件| 国产黄频视频在线观看| 久久久色成人| 三级经典国产精品| 久久影院123| 成年av动漫网址| 天堂中文最新版在线下载 | av女优亚洲男人天堂| 欧美日本视频| 18禁裸乳无遮挡动漫免费视频 | av国产免费在线观看| 能在线免费看毛片的网站| 美女被艹到高潮喷水动态| av免费观看日本| 亚洲最大成人手机在线| 女人久久www免费人成看片| 五月玫瑰六月丁香| 久久久久久久国产电影| 欧美亚洲 丝袜 人妻 在线| videossex国产| 日韩欧美一区视频在线观看 | 午夜福利高清视频| 午夜老司机福利剧场| 欧美97在线视频| 国产一区二区三区av在线| 婷婷色综合www| 亚洲精华国产精华液的使用体验| 高清日韩中文字幕在线| 18禁动态无遮挡网站| 日本-黄色视频高清免费观看| 成人黄色视频免费在线看| 中国国产av一级| 狂野欧美白嫩少妇大欣赏| 免费看光身美女| 精品人妻视频免费看| 日本av手机在线免费观看| 免费黄频网站在线观看国产| 97人妻精品一区二区三区麻豆| 久久国内精品自在自线图片| 岛国毛片在线播放| 成人漫画全彩无遮挡| av在线老鸭窝| 久久久久久伊人网av| 久久精品久久久久久久性| 肉色欧美久久久久久久蜜桃 | 熟女电影av网| 美女内射精品一级片tv| 中国美白少妇内射xxxbb| 国产成人91sexporn| 99热这里只有是精品在线观看| 亚洲第一区二区三区不卡| 久久久久久久精品精品| 亚洲欧美成人精品一区二区| 久久人人爽人人爽人人片va| 又黄又爽又刺激的免费视频.| 婷婷色综合大香蕉| 久久久久国产精品人妻一区二区| 国产有黄有色有爽视频| 卡戴珊不雅视频在线播放| 国产又色又爽无遮挡免| 一级片'在线观看视频| 国产91av在线免费观看| 亚洲自拍偷在线| 五月天丁香电影| 国产精品.久久久| 国产亚洲最大av| tube8黄色片| 免费观看a级毛片全部| 丝袜脚勾引网站| 国产高清不卡午夜福利| av卡一久久| 国产精品99久久久久久久久| 激情五月婷婷亚洲| 又粗又硬又长又爽又黄的视频| 特大巨黑吊av在线直播| 亚洲欧美精品专区久久| 人妻系列 视频| 永久网站在线| 最后的刺客免费高清国语| 亚洲欧美日韩东京热| 国产一区二区亚洲精品在线观看| 免费人成在线观看视频色| 亚洲怡红院男人天堂| 又爽又黄无遮挡网站| 天天躁夜夜躁狠狠久久av| 精品久久久久久久末码| 亚洲经典国产精华液单| 亚洲欧美日韩卡通动漫| 人妻一区二区av| 一边亲一边摸免费视频| 国产精品麻豆人妻色哟哟久久| 亚洲欧美成人综合另类久久久| 欧美3d第一页| 街头女战士在线观看网站| 国产老妇伦熟女老妇高清| 人人妻人人澡人人爽人人夜夜| av在线天堂中文字幕| 夜夜爽夜夜爽视频| 亚洲精品乱久久久久久| av黄色大香蕉| 国产成人91sexporn| 18禁动态无遮挡网站| 自拍偷自拍亚洲精品老妇| 久久久久精品性色| 91久久精品电影网| 在现免费观看毛片| 国产熟女欧美一区二区| 国模一区二区三区四区视频| h日本视频在线播放| 少妇裸体淫交视频免费看高清| 看黄色毛片网站| xxx大片免费视频| 亚洲图色成人| 亚洲美女视频黄频| 亚洲av在线观看美女高潮| 黄片wwwwww| 久久99热6这里只有精品| 男女啪啪激烈高潮av片| 亚洲成人久久爱视频| 成年女人看的毛片在线观看| 久久久久九九精品影院| 亚洲电影在线观看av| 六月丁香七月| 免费大片黄手机在线观看| 超碰av人人做人人爽久久| a级一级毛片免费在线观看| 亚州av有码| 久久精品国产a三级三级三级| 日本黄大片高清| 一级二级三级毛片免费看| 成人鲁丝片一二三区免费| 青春草视频在线免费观看| 日韩人妻高清精品专区| 国产男女内射视频| 性色av一级| 成人免费观看视频高清| 亚洲综合色惰| 插阴视频在线观看视频| 免费看不卡的av| 国产伦精品一区二区三区视频9| 在现免费观看毛片| 欧美+日韩+精品| 中国三级夫妇交换| 国产精品一二三区在线看| 欧美激情久久久久久爽电影| 97超视频在线观看视频| 99热这里只有是精品在线观看| 免费av不卡在线播放| 国产亚洲午夜精品一区二区久久 | av免费观看日本| 成年人午夜在线观看视频| 大香蕉久久网| 久久久国产一区二区| 国产一级毛片在线| 综合色丁香网| 嘟嘟电影网在线观看| 色综合色国产| 国产高清国产精品国产三级 | 能在线免费看毛片的网站| 可以在线观看毛片的网站| 蜜臀久久99精品久久宅男| 校园人妻丝袜中文字幕| 国产成人精品一,二区| 欧美日韩在线观看h| 一本久久精品| 欧美老熟妇乱子伦牲交| 免费av毛片视频| 午夜激情福利司机影院| 亚洲成人av在线免费| 国产精品精品国产色婷婷| 又爽又黄a免费视频| 免费高清在线观看视频在线观看| 六月丁香七月| 国产成人午夜福利电影在线观看| 少妇人妻 视频| 免费黄色在线免费观看| 黄色日韩在线| 亚洲av免费在线观看| 亚洲人成网站在线播| 亚洲欧美成人综合另类久久久| 亚洲不卡免费看| 亚洲欧洲国产日韩| 又爽又黄a免费视频| 成人国产av品久久久| 亚洲自偷自拍三级| 男人添女人高潮全过程视频| 丰满乱子伦码专区| 久久亚洲国产成人精品v| 中国国产av一级| 欧美+日韩+精品| 日本爱情动作片www.在线观看| 国产欧美亚洲国产| 国产av国产精品国产| 国产白丝娇喘喷水9色精品| 91久久精品国产一区二区成人| 岛国毛片在线播放| 日韩欧美精品免费久久| 国产有黄有色有爽视频| 在线免费十八禁| av网站免费在线观看视频| 精品人妻熟女av久视频| 日产精品乱码卡一卡2卡三| 女人被狂操c到高潮| 精品人妻视频免费看| 中文字幕制服av| 亚洲国产av新网站| 老女人水多毛片| 爱豆传媒免费全集在线观看| 日韩欧美一区视频在线观看 | 日韩av免费高清视频| 可以在线观看毛片的网站| 男女国产视频网站| 免费看光身美女| 男男h啪啪无遮挡| 国产精品一区二区在线观看99| 18禁裸乳无遮挡免费网站照片| 国产精品久久久久久久电影| 男人爽女人下面视频在线观看| 交换朋友夫妻互换小说| 一级黄片播放器| 一区二区三区精品91| 超碰97精品在线观看| 日本午夜av视频| 日本三级黄在线观看| 久久久久久伊人网av| 日韩视频在线欧美| 青春草亚洲视频在线观看| 亚洲,欧美,日韩| 久久97久久精品| 成人亚洲欧美一区二区av| 亚洲av免费高清在线观看| 22中文网久久字幕| 女人被狂操c到高潮| 又大又黄又爽视频免费| 国产成人a区在线观看| 久久久久久久午夜电影| 天天一区二区日本电影三级| 一本久久精品| 男女边摸边吃奶| 麻豆精品久久久久久蜜桃| 欧美日韩视频精品一区| 尤物成人国产欧美一区二区三区| 国产成人福利小说| 99re6热这里在线精品视频| 女人十人毛片免费观看3o分钟| 精品人妻一区二区三区麻豆| 一本色道久久久久久精品综合| 99热这里只有是精品50| 久久久精品94久久精品| 搞女人的毛片| 性色avwww在线观看| 中文天堂在线官网| 国产精品久久久久久精品古装| 搡女人真爽免费视频火全软件| 亚洲天堂国产精品一区在线| 国产男女内射视频| 国产精品99久久久久久久久| 成人无遮挡网站| 亚洲欧美一区二区三区黑人 | 麻豆成人午夜福利视频| 中文欧美无线码| 丝瓜视频免费看黄片| 国产男人的电影天堂91| kizo精华| 免费观看无遮挡的男女| 大话2 男鬼变身卡| 韩国高清视频一区二区三区| 精品一区二区免费观看| 新久久久久国产一级毛片| 国产亚洲91精品色在线| 国产精品人妻久久久久久| 嫩草影院新地址| 国产有黄有色有爽视频| 久久人人爽人人片av| 免费观看a级毛片全部| 久久韩国三级中文字幕| 黄色一级大片看看| 男插女下体视频免费在线播放| 久久久久久九九精品二区国产| 亚洲欧美日韩另类电影网站 | av免费在线看不卡| 日韩欧美一区视频在线观看 | 国产一区二区亚洲精品在线观看| 欧美激情国产日韩精品一区| 少妇猛男粗大的猛烈进出视频 | 亚洲最大成人手机在线| 天天躁夜夜躁狠狠久久av| 国产v大片淫在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 成人美女网站在线观看视频| 日韩av免费高清视频| 国产伦理片在线播放av一区| 午夜老司机福利剧场| 日韩,欧美,国产一区二区三区| 久久人人爽av亚洲精品天堂 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲在线观看片| 国产精品av视频在线免费观看| 香蕉精品网在线| av国产免费在线观看| 超碰97精品在线观看| 国产黄频视频在线观看| 韩国高清视频一区二区三区| 自拍偷自拍亚洲精品老妇| 欧美xxxx性猛交bbbb| 1000部很黄的大片| 欧美成人a在线观看| 色综合色国产| 亚洲av一区综合| 熟女av电影| 亚洲精品色激情综合| 成年av动漫网址| 日产精品乱码卡一卡2卡三| 国产乱来视频区| 2021天堂中文幕一二区在线观| 成人二区视频| 亚洲精品色激情综合| 高清视频免费观看一区二区| 精品久久久精品久久久| 国产黄色免费在线视频| 精品人妻一区二区三区麻豆| 搡老乐熟女国产| 亚洲av二区三区四区| 亚洲欧美中文字幕日韩二区| 日本午夜av视频| 中文字幕久久专区| 女人十人毛片免费观看3o分钟| 我的老师免费观看完整版| 超碰97精品在线观看| 亚洲精品色激情综合| 久久精品国产亚洲av涩爱| 最近手机中文字幕大全| 日韩欧美精品v在线| 观看免费一级毛片| 色视频在线一区二区三区| 日本-黄色视频高清免费观看| 免费看av在线观看网站| 国产精品人妻久久久影院| 久久精品国产亚洲av涩爱| 亚洲av免费高清在线观看| 哪个播放器可以免费观看大片| 夜夜爽夜夜爽视频| 欧美激情在线99| 精品人妻偷拍中文字幕| 成年av动漫网址| a级毛片免费高清观看在线播放| 伦理电影大哥的女人| 最近2019中文字幕mv第一页| 亚洲国产精品专区欧美| 尾随美女入室| 日本欧美国产在线视频| 少妇人妻一区二区三区视频| 亚洲在线观看片| 女人十人毛片免费观看3o分钟| 国产爱豆传媒在线观看| 国产爽快片一区二区三区| 久久久精品94久久精品| 国产老妇女一区| 干丝袜人妻中文字幕| 国产男人的电影天堂91| 伦理电影大哥的女人| 免费黄色在线免费观看| 色吧在线观看| 麻豆成人av视频| 久久国内精品自在自线图片| 3wmmmm亚洲av在线观看| av专区在线播放| 一区二区三区免费毛片| 街头女战士在线观看网站| 夜夜爽夜夜爽视频| 91精品伊人久久大香线蕉| 2022亚洲国产成人精品| 国产精品麻豆人妻色哟哟久久| 最近中文字幕高清免费大全6| 亚洲av欧美aⅴ国产| 99热这里只有精品一区| 一级毛片电影观看| 精品国产露脸久久av麻豆| 国产精品伦人一区二区| 久久久国产一区二区| 亚洲成色77777| 成年免费大片在线观看| 大片电影免费在线观看免费| 久久女婷五月综合色啪小说 | 亚洲av日韩在线播放| 极品教师在线视频| 国产成人福利小说| 色网站视频免费| 免费看日本二区| 一边亲一边摸免费视频| 国产精品一区二区在线观看99| 国产亚洲一区二区精品| 国产av不卡久久| 国产男女超爽视频在线观看| 国产精品国产三级国产专区5o| 亚洲av福利一区| h日本视频在线播放| 成年免费大片在线观看| 日韩av免费高清视频| 久久久久久久久久人人人人人人| 久久99热6这里只有精品| 国产av不卡久久| 在线a可以看的网站| 美女高潮的动态| 麻豆国产97在线/欧美| 美女脱内裤让男人舔精品视频| 欧美 日韩 精品 国产| 狂野欧美激情性xxxx在线观看| 国产成人精品久久久久久| 欧美极品一区二区三区四区| 久久久精品欧美日韩精品| 欧美三级亚洲精品| 国产欧美日韩一区二区三区在线 |