• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Monolithic all- fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber?

    2019-06-18 05:42:24JinmeiYao姚金妹BinZhang張斌andJingHou侯靜
    Chinese Physics B 2019年6期
    關(guān)鍵詞:張斌

    Jinmei Yao(姚金妹),Bin Zhang(張斌),2,3,?,and Jing Hou(侯靜),2,3

    1College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    2State Key Laboratory of Pulsed Power Laser Technology,Changsha 410073,China

    3Hunan Provincial Key Laboratory of High Energy Laser Technology,Changsha 410073,China

    Keywords:supercontinuum generation,infrared lasers, fiber lasers,nonlinear.

    1.Introduction

    Mid-infrared(MIR)supercontinuum(SC)sources have attracted a signi ficant scientific interest in the past decade due to their wide range of potential applications in fields such as optical coherence tomography,[1]chemical sensing,[2]biomedical imaging and early cancer diagnostics.[3-5]Generally,the SC spectra generated in silica fibers struggle to exceed 2.4μm due to the limited optical transparency of silica glass.To create SC generation tailing to a longer wavelength region,GeO2-doped fibers with extended transmission window up to~3.6μm are used.[6]To further extend the spectra of SC laser sources beyond 4μm,soft-glass fibers,such as fluoride fibers,[7,8]tellurite fibers,[9]and chalcogenide fibers,are much more suitable.Speci fically,chalcogenide glass fibers facilitating broadband transmittance window and high nonlinear refractive index n2in the infrared region,[10,11]become the most promising medium for MIR SC generation towards far-infrared spectral range.However,typical chalcogenide fibers have large material zero dispersion wavelengths(ZDWs).The material ZDWs of As2S3glass and As2Se3glass are located at~4.8μm and 8μm,[10]respectively.These ZDWs are far away from the commercial laser sources.Therefore,in order to obtain MIR SC laser sources effectively,chalcogenide fibers with high numerical apertures(NAs)are needed to lower the ZDWs meanwhile con fine MIR light in the core of fibers.[12]But the risk is that higher-order modes(HOMs)tend to be excited in the near-infrared and shortwave-infrared spectral range.Such excitation of HOM is often neglected in previous chalcogenide fiber-based SC studies.Compared with the fundamental mode,HOMs exhibit different dispersion curves and nonlinear indices,which are the most important factors for SC generation.In addition,intermodal nonlinear effects taken place through cross-phase modulation,[13]four-wave mixing[14,15]and stimulated Raman scattering,[16]offeranadditionalpossibilityforspectralbroadening through new degrees of freedom.Hence,it is necessary to investigate HOM SC generation in few-mode chalcogenide fibers.Visible and near-infrared SC generation have been carried out in micro-structured multimode silica fibers[17-19]and graded-index multimode silica fibers,[20-22]while an MIR SC demonstration has been reported in a ZBLAN fiber with anomalous dispersion.[23]Numerical simulations related to multimode SC generation in chalcogenide fibers have been demonstrated,[12,24]yet there are still no explicit experimental validations.

    Fiber-based SC laser sources bene fit from their compact con figuration that are needed for robust commercial applications.Compared with lens coupling and butt-coupling,fusion splicing with permanent and robust connection is the best coupling method for fiber-based SC laser.However,it is dif ficult to achieve a real-all- fiber structured MIR SC laser source based on chalcogenide glass fibers.The glass transition temperature is 1215°C for silica glass,while it is 130°C~300°C for chalcogenide glasses.[5]The signi ficant difference in the two fibers’glass transition temperatures brings a great challenge for fusion splicing them together.The asymmetric heating con figuration has been proved as an ef ficient method for splicing fibers with discrepant transition temperatures.[25-27]In this method,the silica fiber is fusion spliced to the chalcogenide fiber with 0.5 dB of splice loss.[26]

    In this paper,we demonstrate MIR SC sources spanning from 1.8μm to 4.2μm using a step-index two-mode As2S3fiber.The asymmetric heating method is used for fusion splicing between the As2S3fiber and the pigtail of nearinfrared SC pump source with an ultra-low insertion loss of 0.125 dB,which enables a monolithic all- fiber structured SC laser.The measured beam pro file reveals that LP11mode is excited within a wide spectral range of 1.8μm-3.5μm.The mixed-mode cascaded stimulated Raman scattering with respect to the fundamental mode and the off-center-alignmentinduced LP11mode,mainly contribute to the spectral broadening.

    2.Experimental setup

    The experimental setup of the pump source is similar to the structure described in Ref.[25].The pump source is a nanosecond shortwave-infrared SC laser with a repetition rate of 100 kHz and a spectral range of 1.9μm-2.5μm(see Fig.1). Note that the majority power of the pump light is located within the spectral range of 2.1μm-2.2μm.The pigtail fiber of the pump source is an ultra-high numerical aperture(UHNA) fiber with a core/cladding diameter of 2.2μm/125μm and an NA of 0.35.The V-number of UHNA fiber is 1.1 at around 2.19μm,which ensures that the shortwave infrared region holds the single-mode property.A 3-m-long sul fide-based chalcogenide fiber is chosen as the nonlinear fiber due to its lower ZDW than that of selenide-based chalcogenide fibers.The core/cladding diameter of the stepindex As2S3fiber is 9μm/170μm with an NA of 0.3.Since the V-number of the As2S3fiber is 3.87 at around 2.19μm,the SC generation behaves at few-mode scheme,where LP11mode with cut-off wavelength of 3.5μm is the dominant HOM in MIR spectral range.The group-velocity dispersion of the fundamental mode and the LP11mode can be found in Ref.[28].The estimated ZDW for the fundamental mode reaches 6.7μm,while the LP11mode facilitates normal dispersion over the whole MIR spectral range.By using the commercial software(COMSOL Multiphysics),the mode field diameters of the UHNA fiber and the As2S3fiber,corresponding to the fundamental mode at 2.19μm,are estimated to be 7.77μm and 7.99μm,respectively.The mode pro file mismatch between the two fibers is less than 0.01%,indicating a great potential of low-loss fusion splicing of UHNA fiber to the As2S3fiber for integrated MIR SC laser source.

    During the fusion splicing,an electrode-based fiber fusion splicer is used to achieve the accurate control of the temperature field,while a continuous-wave fiber laser operating at 1960 nm is adopted to monitor the coupling efficiency.The end facet of the As2S3fiber is angle-cleaved to suppress the unwanted optical feedback from the Fresnel re flection.Figure 2(a)shows the transmission of the splicing point under 1960-nm continuous-wave laser,in which the inset shows the optical microscope image of the fusion splicing joint between the UHNA fiber and the As2S3fiber.Figure 2(a)shows that the coupling efficiency is enhanced along with the increase of continuous-wave power due to the thermal expansion of the core of As2S3fiber.An approximate transmission of 63%is measured at the end of the As2S3fiber.Since the Fresnel refl ection loss between UHNA fiber(n0=1.438 at 2μm)and As2S3fiber(n0=2.426 at 2μm)is about 0.3 dB.The Fresnel re flection loss on the output end facet of As2S3fiber is about 0.825 dB.Thus,the fusion splicing loss is estimated to be~0.125 dB,by taking the linear propagation loss at 2μm(0.25 dB/m)into account.Figures 2(b)and 2(c)show the end facet of As2S3fiber and UHNA fiber after pulling the joint apart,of which both end facets are well preserved during asymmetric heating and pushing processing.

    Fig.1.Shortwave-infrared SC pump spectrum.

    Fig.2.(a)Transmission of the splicing point under continues-wave laser at 1960 nm.Inset:optical microscope images of the fusion splicing joint.The end facet of(b)As2S3 fiber and(c)UHNA fiber after pulling the joint apart.

    3.Results and discussion

    Figure3(a)shows the spectral evolution in the As2S3fiber as a function of average pump power,where the energy distribution asymmetrically shifts to the MIR region with the increase of pump power.When the average pump power reaches around 200 mW,an SC extending to 4.2μm is obtained with an obvious dip at around 3.5μm.Figure 3(b)shows the power evolution of the MIR SC laser source,as well as the filtered SC power of wavelengths exceeding 2.4μm.The maximal output power reaches 133 mW,meanwhile more than 70%of the output power is converted to the MIR region beyond 2.4μm.

    Fig.3.(a)Spectral evolution of the SC as a function of average pump power(the corresponding launched pump powers are shown in the legend)and(b)output power versus average pump power in the 3-m-long As2S3 fiber with a core diameter of 9μm.

    TThe evolution of the beam profile of the SC source is characterized with a pyro-electric array camera(see Figs.4(a)-4(c)),which shows that the excitation of LP11mode is dominant in the primary stage(see Figs.4(a)and 4(b)).Along with the spectrum broadening beyond 3.5μm,the dominant state of LP11mode is weak,as shown in Fig.4(c).Since the V-number of the UHNA fiber is 1.1 at around 2.19μm,it is single mode operation in the UHNA fiber.Thus,the mode conversion is achieved in the few-mode As2S3fiber.

    According to the spectral characters observed in Fig.3(a)and the evolution of beam pro file in Fig.4,a possible explanation is given as follows.It is known that lateral misalignment and angular misalignment are easy to excite HOMs in a multimode fiber.[29]During the asymmetric heating process of pushing the UHNA fiber and the As2S3fiber together,a precise coupling condition is hard to be guaranteed.Thus,it is possible to excite amount of LP11mode in the input segment of the few-mode As2S3fiber.After that,the energy of the mixed modes(LP01and LP11)is progressively shifted toward MIR region through propagation in the 3-m-long As2S3fiber.According to 11-THz Stokes frequency shift of As2S3fibers,[30]the first five Stokes-shifted orders corresponding to a pump wavelength of~2.2μm are 2.4,2.6,2.9,3.2,3.7μm,respectively.Although the Stokes peaks are inconspicuous in the generated spectra due to the broadband spectrum of pump light,the peaks located at 2.4,2.6,3.2,3.7μm can be figured out in Fig.3(a)as well.Thus,stimulated Raman scattering is regarded as the dominant mechanism responsible for spectral broadening.With the output spectrum broadening beyond 3.5μm,a well confinement of LP11mode cannot be guaranteed in the core of As2S3fiber,as shown in Fig.4(c).Thus,there is a dip at around 3.5μm in the spectra of Fig.3(a)and a slight nonlinear dependence of the output power in Fig.3(b).After completing the MIR SC experiment,the output end facet of the As2S3fiber is checked under a microscope.There is no flaw or dust left on the output end facet of the As2S3fiber,which veri fied that the beam pro files are correct.

    Fig.4.Beam pro files of the SC source with the long wavelength region reach(a)3μm,(b)3.5μm,and(c)4.2μm.

    A further spectral broadening through pump power scaling up is prohibited in the system.By further increasing the pump power,the output spectrum shrinks unexpectedly to 2μm-2.5μm and an obvious temperature rise is observed in the As2S3fiber close to the splicing point with the use of a thermal camera.To make out the breakdown mechanism,the broken fusion-splicing joint is investigated under the optical microscope.The results are shown in Figs.5(a)-5(d).This shows that although the splicing point cannot work properly,the fibers are still parallel alignment without separation and displacement(see Fig.5(a)).While rotating the joint,a~90-μm-long short line is discovered in the center of the UHNA fiber,as shown in Figs.5(b)-5(d).

    The cross sections of the As2S3fiber and UHNA fiber are observed under microscope after pulling the splicing joint apart.The end facets are shown in Figs.6(a)and 6(b),which leave us some evidences of the breakdown mechanism.Figure 6(a)reveals that there is a distinct cavity like a ‘crater’on the surface of the As2S3fiber,which is approximately the same dimension as the core diameter(9μm)oftheAs2S3fiber.A mount of yellow gushing trace is observed on the end facet of UHNA fiber,as shown in Fig.6(b),indicating a rapid vaporization of As2S3glass has taken place.

    Fig.5.(a)Optical microscope images of the fusion-splicing joint after pumped by nanosecond pulses.Panels(b)-(d)are the detailed images of the fusion splicing joint while rotating the splicing joint.

    Fig.6.The cross sections of(a)the As2S3 fiber and(b)the UHNA fiber after studies with nanosecond pulses.

    Since the splicing joint works well under the continuous wave of about 900 mW but it breaks down pumped at 227 mW of the pulsed laser,a possible explanation is that the breakdown mechanism is related with the spectral broadening in the As2S3fiber.The refractive index n0of As2S3glass is around 2.42,[10]which leads to over 17%MIR light re flected on the output end facet of As2S3fiber.Since the core NA of As2S3fiber is 0.3,it is easy for the re flected MIR light back into the core and accumulates in the splicing joint.Hindered by the infrared absorption of UHNA glasses,energy of the re flected light is accumulated in the core of the splicing point.When the temperature rises to the transition temperature of As2S3glass(~185°C[31]),the core of the As2S3fiber tends to be unstable and then a rapid vaporization takes place.Consequently,an obvious temperature rise is observed in the As2S3fiber close to the splicing point and output spectrum shrunk to the spectrum of pump light.Thus,further damage mechanism such as fiber fuse[32]and effective methods to increase transmission at end facet of chalcogenide fiber such as antire flective surface structures[33]and anti-re flection coating[34]need to be explored to improve the steadiness of the all- fiber MIR SC source.

    4.Conclusion

    In conclusion,a 1.8-μm to 4.2-μm MIR SC is obtained in a two-mode As2S3fiber.The measured beam pro files demonstrate that LP11mode is excited within the wide spectral range between 1.8μm to 3.5μm.The dominant physical mechanism for spectral broadening in the two-mode As2S3fiber is mixed-mode cascaded stimulated Raman scattering.Mode decomposition is needed in the future to make out the proportion of LP11mode of the MIR SC source.In addition,an effective method to increase transmission at end facet of chalcogenide fiber is expected to improve the steadiness of the all- fiber MIR SC source.

    Acknowledgment

    We thank Dr.Tong Liu and Dr.Kai Guo for helpful discussions.

    猜你喜歡
    張斌
    夕陽(yáng)家園
    金秋(2022年10期)2022-11-25 16:28:12
    Design of three-dimensional imaging lidar optical system for large field of view scanning
    A scanning distortion correction method based ongalvanometer Lidar system?
    Lagrangian analysis of the formation and mass transport of compressible vortex rings generated by a shock tube?
    一路有你都是歌
    Dynamic measurement of beam divergence angle of different fields of view of scanning lidar?
    《花之戀》
    The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers?
    天水同映長(zhǎng)安塔
    金秋(2018年12期)2018-09-17 09:33:08
    Analysis and numerical study of a hybrid BGM-3DVAR data assimilation scheme using satellite radiance data for heavy rain forecasts*
    9色porny在线观看| 国产精品偷伦视频观看了| 亚洲欧美成人精品一区二区| 人妻一区二区av| 中文字幕人妻丝袜制服| 老鸭窝网址在线观看| 国产熟女午夜一区二区三区| www.精华液| 咕卡用的链子| 日韩一区二区三区影片| 一级爰片在线观看| av有码第一页| 精品人妻偷拍中文字幕| 日本wwww免费看| av网站在线播放免费| 9色porny在线观看| 性色avwww在线观看| 亚洲欧美精品综合一区二区三区 | 国产精品久久久久久av不卡| 国产在视频线精品| 自线自在国产av| 十八禁网站网址无遮挡| 最黄视频免费看| 在线观看美女被高潮喷水网站| 国产精品免费视频内射| 欧美激情 高清一区二区三区| 亚洲一区二区三区欧美精品| 日韩av免费高清视频| 亚洲欧美清纯卡通| 高清在线视频一区二区三区| 久久精品人人爽人人爽视色| 菩萨蛮人人尽说江南好唐韦庄| 亚洲,一卡二卡三卡| 超碰97精品在线观看| 欧美激情 高清一区二区三区| 婷婷色麻豆天堂久久| 欧美另类一区| 亚洲五月色婷婷综合| 久久精品熟女亚洲av麻豆精品| 免费高清在线观看日韩| 十分钟在线观看高清视频www| videossex国产| 久久精品国产a三级三级三级| 久久久国产精品麻豆| 欧美日韩精品成人综合77777| 校园人妻丝袜中文字幕| 国产成人欧美| 成人亚洲精品一区在线观看| 成人国语在线视频| 曰老女人黄片| 亚洲精品一二三| 国产成人精品在线电影| 久久久精品国产亚洲av高清涩受| 欧美日韩国产mv在线观看视频| 18禁观看日本| 大陆偷拍与自拍| 日本wwww免费看| 9191精品国产免费久久| 午夜影院在线不卡| 久久久久久久久久久久大奶| 伦理电影免费视频| av国产久精品久网站免费入址| 丰满饥渴人妻一区二区三| 99久久人妻综合| 久久亚洲国产成人精品v| 2022亚洲国产成人精品| 啦啦啦中文免费视频观看日本| 国产精品一二三区在线看| 亚洲第一青青草原| 最新中文字幕久久久久| 国产成人a∨麻豆精品| 天天躁夜夜躁狠狠躁躁| 中文字幕另类日韩欧美亚洲嫩草| 99久久中文字幕三级久久日本| 性色avwww在线观看| 一个人免费看片子| 日韩人妻精品一区2区三区| 97在线视频观看| 在线免费观看不下载黄p国产| 久久毛片免费看一区二区三区| 日韩av不卡免费在线播放| 激情五月婷婷亚洲| 如何舔出高潮| 国产精品一区二区在线观看99| 少妇人妻久久综合中文| www日本在线高清视频| 久久久久久久亚洲中文字幕| 日韩一本色道免费dvd| 欧美精品av麻豆av| 欧美 日韩 精品 国产| 亚洲国产日韩一区二区| 亚洲综合色惰| 国产精品99久久99久久久不卡 | 母亲3免费完整高清在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品无人区| 色哟哟·www| 久久久久国产精品人妻一区二区| 日韩,欧美,国产一区二区三区| 中文字幕人妻熟女乱码| av不卡在线播放| 日韩视频在线欧美| 久久99蜜桃精品久久| xxxhd国产人妻xxx| 91成人精品电影| 永久网站在线| 亚洲国产精品一区三区| www.自偷自拍.com| 午夜福利在线观看免费完整高清在| 啦啦啦在线观看免费高清www| 亚洲一区中文字幕在线| 人妻一区二区av| 精品国产乱码久久久久久小说| 99久久综合免费| 国产亚洲av片在线观看秒播厂| 你懂的网址亚洲精品在线观看| 又粗又硬又长又爽又黄的视频| 午夜激情av网站| 国产毛片在线视频| 美女国产视频在线观看| 亚洲精品第二区| 高清视频免费观看一区二区| 精品一区二区免费观看| a级毛片黄视频| 少妇的逼水好多| 国产 一区精品| 精品卡一卡二卡四卡免费| 精品亚洲成国产av| 日韩av在线免费看完整版不卡| 成人漫画全彩无遮挡| 如何舔出高潮| 男女下面插进去视频免费观看| 久久久精品94久久精品| 久久人人97超碰香蕉20202| 99国产综合亚洲精品| 国产男人的电影天堂91| 青春草国产在线视频| 亚洲国产日韩一区二区| 一边亲一边摸免费视频| 国产精品蜜桃在线观看| 日本免费在线观看一区| 两个人看的免费小视频| 国产日韩欧美亚洲二区| 久久99精品国语久久久| av电影中文网址| 久热这里只有精品99| 超色免费av| 精品少妇久久久久久888优播| 久久精品国产a三级三级三级| 寂寞人妻少妇视频99o| 亚洲欧洲精品一区二区精品久久久 | 免费久久久久久久精品成人欧美视频| 婷婷成人精品国产| 精品国产一区二区三区久久久樱花| 国产男人的电影天堂91| 纯流量卡能插随身wifi吗| 精品国产一区二区三区久久久樱花| 国产男女内射视频| 熟妇人妻不卡中文字幕| 欧美精品人与动牲交sv欧美| 国产综合精华液| 亚洲美女搞黄在线观看| 亚洲av国产av综合av卡| 久久影院123| 999久久久国产精品视频| 日本免费在线观看一区| 国产成人精品婷婷| 精品少妇内射三级| 麻豆精品久久久久久蜜桃| 精品亚洲乱码少妇综合久久| 国产成人午夜福利电影在线观看| 看免费成人av毛片| 国产在线视频一区二区| 麻豆av在线久日| 亚洲av福利一区| 免费观看无遮挡的男女| 欧美av亚洲av综合av国产av | 国产片内射在线| 中文字幕制服av| 你懂的网址亚洲精品在线观看| 伦理电影免费视频| 99久久人妻综合| 日韩一本色道免费dvd| 国精品久久久久久国模美| 欧美av亚洲av综合av国产av | 最新的欧美精品一区二区| 久久久久视频综合| 人人澡人人妻人| 老司机影院成人| 国产一区有黄有色的免费视频| 女性生殖器流出的白浆| 婷婷色麻豆天堂久久| 男女高潮啪啪啪动态图| 亚洲一区中文字幕在线| 久热这里只有精品99| 久久精品国产自在天天线| av不卡在线播放| 亚洲男人天堂网一区| 99久久中文字幕三级久久日本| 国产日韩欧美视频二区| 精品国产乱码久久久久久男人| 国产高清国产精品国产三级| 午夜影院在线不卡| 国产精品秋霞免费鲁丝片| av女优亚洲男人天堂| 欧美日本中文国产一区发布| 亚洲综合色惰| 久久久久久人人人人人| 亚洲精品自拍成人| av不卡在线播放| 日本黄色日本黄色录像| 国产精品 欧美亚洲| 国产爽快片一区二区三区| 日韩人妻精品一区2区三区| 国产成人a∨麻豆精品| 少妇被粗大的猛进出69影院| 亚洲国产av新网站| 少妇 在线观看| 午夜福利在线免费观看网站| 午夜免费鲁丝| 午夜福利一区二区在线看| 免费播放大片免费观看视频在线观看| 激情视频va一区二区三区| 精品国产一区二区三区久久久樱花| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品第二区| 欧美日韩综合久久久久久| 两个人看的免费小视频| 一区福利在线观看| 国产一区二区在线观看av| 国产精品嫩草影院av在线观看| 99国产精品免费福利视频| 在线观看三级黄色| 日日啪夜夜爽| 最新中文字幕久久久久| 亚洲精品中文字幕在线视频| 中文天堂在线官网| 美国免费a级毛片| 99re6热这里在线精品视频| av又黄又爽大尺度在线免费看| 丝袜在线中文字幕| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美清纯卡通| 免费大片黄手机在线观看| 久久久久人妻精品一区果冻| 少妇 在线观看| 国产免费现黄频在线看| 我的亚洲天堂| 国产午夜精品一二区理论片| 国产成人免费观看mmmm| 丝瓜视频免费看黄片| 亚洲精品久久久久久婷婷小说| 午夜福利影视在线免费观看| 黄色配什么色好看| 黑人欧美特级aaaaaa片| 国产xxxxx性猛交| 久久久久精品久久久久真实原创| 婷婷色av中文字幕| 18在线观看网站| 免费在线观看视频国产中文字幕亚洲 | 十分钟在线观看高清视频www| 美女视频免费永久观看网站| 超色免费av| 久久久久网色| 一级毛片黄色毛片免费观看视频| 国产免费一区二区三区四区乱码| av有码第一页| 亚洲色图综合在线观看| 精品少妇黑人巨大在线播放| 国产亚洲欧美精品永久| 国产在线一区二区三区精| 国产精品无大码| 曰老女人黄片| 满18在线观看网站| 欧美 亚洲 国产 日韩一| 成年人免费黄色播放视频| 免费av中文字幕在线| 亚洲av在线观看美女高潮| 亚洲美女黄色视频免费看| 亚洲欧美中文字幕日韩二区| 寂寞人妻少妇视频99o| 嫩草影院入口| 老汉色av国产亚洲站长工具| 伦理电影免费视频| 少妇被粗大的猛进出69影院| 多毛熟女@视频| 久久久a久久爽久久v久久| 五月伊人婷婷丁香| 成人二区视频| 制服诱惑二区| 成人二区视频| 国产精品一国产av| 久久 成人 亚洲| 国产伦理片在线播放av一区| 丰满乱子伦码专区| 久久久精品免费免费高清| 精品一区二区免费观看| 乱人伦中国视频| 波多野结衣一区麻豆| 在线免费观看不下载黄p国产| 大话2 男鬼变身卡| 嫩草影院入口| 波野结衣二区三区在线| 大片免费播放器 马上看| 精品少妇黑人巨大在线播放| 日韩成人av中文字幕在线观看| 成年动漫av网址| 日韩制服骚丝袜av| 亚洲美女搞黄在线观看| 亚洲av成人精品一二三区| 国产一级毛片在线| 欧美日韩视频精品一区| 亚洲精品在线美女| 成人手机av| 亚洲五月色婷婷综合| 交换朋友夫妻互换小说| 黄色视频在线播放观看不卡| 男的添女的下面高潮视频| 日韩免费高清中文字幕av| 色94色欧美一区二区| 久久久久久久精品精品| 久久精品国产亚洲av涩爱| 青春草亚洲视频在线观看| 亚洲图色成人| 又大又黄又爽视频免费| av线在线观看网站| 搡女人真爽免费视频火全软件| 美女视频免费永久观看网站| 欧美日韩视频精品一区| 另类精品久久| 波多野结衣一区麻豆| 黄网站色视频无遮挡免费观看| 日韩一本色道免费dvd| 亚洲欧美中文字幕日韩二区| 亚洲国产精品一区二区三区在线| 男人爽女人下面视频在线观看| 国产熟女欧美一区二区| av不卡在线播放| 欧美激情高清一区二区三区 | 一个人免费看片子| 久久久久国产一级毛片高清牌| 97在线人人人人妻| 美女国产视频在线观看| 久久精品国产鲁丝片午夜精品| 26uuu在线亚洲综合色| 欧美成人精品欧美一级黄| 欧美精品一区二区免费开放| 国产亚洲一区二区精品| 欧美精品一区二区免费开放| 香蕉精品网在线| 成人手机av| www.自偷自拍.com| 菩萨蛮人人尽说江南好唐韦庄| 亚洲图色成人| 成人国产av品久久久| 伦精品一区二区三区| 中文字幕最新亚洲高清| 18+在线观看网站| 欧美少妇被猛烈插入视频| 久久这里有精品视频免费| 久久久国产一区二区| 欧美在线黄色| 国产精品三级大全| 1024香蕉在线观看| 9色porny在线观看| 久久鲁丝午夜福利片| 一区二区三区四区激情视频| 久久久国产精品麻豆| av卡一久久| 伦理电影大哥的女人| 91精品伊人久久大香线蕉| 欧美激情极品国产一区二区三区| 亚洲婷婷狠狠爱综合网| 日本免费在线观看一区| 免费在线观看视频国产中文字幕亚洲 | av国产精品久久久久影院| 精品人妻熟女毛片av久久网站| 校园人妻丝袜中文字幕| 性高湖久久久久久久久免费观看| 午夜91福利影院| 精品国产一区二区三区久久久樱花| 一级毛片我不卡| 国产有黄有色有爽视频| 女性被躁到高潮视频| 成人毛片60女人毛片免费| 亚洲国产精品成人久久小说| 亚洲精品自拍成人| 超碰97精品在线观看| 亚洲天堂av无毛| 中文字幕亚洲精品专区| av片东京热男人的天堂| 亚洲第一av免费看| 激情五月婷婷亚洲| 99国产精品免费福利视频| 亚洲色图综合在线观看| 国产高清不卡午夜福利| 色婷婷久久久亚洲欧美| 婷婷色麻豆天堂久久| 韩国高清视频一区二区三区| 日韩伦理黄色片| 乱人伦中国视频| 女人精品久久久久毛片| 久久精品熟女亚洲av麻豆精品| 欧美另类一区| 亚洲精品美女久久久久99蜜臀 | 久久ye,这里只有精品| 1024香蕉在线观看| 亚洲,一卡二卡三卡| 亚洲经典国产精华液单| 亚洲四区av| 美女大奶头黄色视频| 狂野欧美激情性bbbbbb| 国产精品成人在线| 九九爱精品视频在线观看| 国产麻豆69| 新久久久久国产一级毛片| av又黄又爽大尺度在线免费看| 成年女人在线观看亚洲视频| 久久热在线av| 欧美激情极品国产一区二区三区| 一本久久精品| 久久免费观看电影| 亚洲精品中文字幕在线视频| 极品人妻少妇av视频| av在线老鸭窝| 男女国产视频网站| 国产一区二区三区综合在线观看| 咕卡用的链子| 国产精品 国内视频| 久久久精品区二区三区| 人人妻人人澡人人看| 新久久久久国产一级毛片| 精品午夜福利在线看| 考比视频在线观看| 久久精品久久精品一区二区三区| 人体艺术视频欧美日本| 水蜜桃什么品种好| 欧美日韩视频精品一区| 精品亚洲成a人片在线观看| 啦啦啦在线观看免费高清www| 另类亚洲欧美激情| 最近中文字幕高清免费大全6| 性高湖久久久久久久久免费观看| 日本欧美国产在线视频| 免费高清在线观看视频在线观看| 成年av动漫网址| 桃花免费在线播放| 80岁老熟妇乱子伦牲交| 啦啦啦中文免费视频观看日本| 老司机影院毛片| 欧美国产精品va在线观看不卡| 日韩一本色道免费dvd| 国产精品久久久久久精品古装| 国产在视频线精品| 永久免费av网站大全| 亚洲精品第二区| 亚洲美女黄色视频免费看| 丝瓜视频免费看黄片| 777米奇影视久久| 国产xxxxx性猛交| 国产精品亚洲av一区麻豆 | 国产精品一区二区在线观看99| 精品少妇久久久久久888优播| 国产伦理片在线播放av一区| 亚洲婷婷狠狠爱综合网| 母亲3免费完整高清在线观看 | 日韩一本色道免费dvd| 蜜桃国产av成人99| 最近最新中文字幕免费大全7| 午夜免费观看性视频| 青青草视频在线视频观看| 夫妻性生交免费视频一级片| 婷婷色综合www| 一级,二级,三级黄色视频| 国产精品久久久久久久久免| 免费不卡的大黄色大毛片视频在线观看| 一区二区日韩欧美中文字幕| av国产精品久久久久影院| 在线天堂最新版资源| 欧美精品亚洲一区二区| 久久精品国产自在天天线| 亚洲国产毛片av蜜桃av| 欧美精品国产亚洲| 亚洲精品美女久久久久99蜜臀 | 久久国产亚洲av麻豆专区| 成年美女黄网站色视频大全免费| 天堂俺去俺来也www色官网| 久久久精品国产亚洲av高清涩受| 在线观看免费视频网站a站| 国产综合精华液| 人体艺术视频欧美日本| 久久人人爽人人片av| 亚洲欧美成人综合另类久久久| 国产免费又黄又爽又色| 亚洲情色 制服丝袜| 岛国毛片在线播放| 国产精品熟女久久久久浪| 久久精品亚洲av国产电影网| 女人高潮潮喷娇喘18禁视频| 激情五月婷婷亚洲| 国产精品一区二区在线观看99| 丝袜脚勾引网站| 一区在线观看完整版| 少妇精品久久久久久久| 欧美另类一区| 欧美激情 高清一区二区三区| 青青草视频在线视频观看| 国产xxxxx性猛交| 97在线视频观看| 亚洲,欧美精品.| 天堂8中文在线网| 亚洲精品美女久久久久99蜜臀 | av卡一久久| 老鸭窝网址在线观看| 纯流量卡能插随身wifi吗| 啦啦啦在线观看免费高清www| 国产精品二区激情视频| 高清欧美精品videossex| 久久免费观看电影| 青春草国产在线视频| 国产精品一国产av| 美女视频免费永久观看网站| 欧美日韩一级在线毛片| 午夜精品国产一区二区电影| av在线观看视频网站免费| 下体分泌物呈黄色| 91午夜精品亚洲一区二区三区| 国产 精品1| 国产女主播在线喷水免费视频网站| 欧美 亚洲 国产 日韩一| av.在线天堂| 国产精品熟女久久久久浪| 最近最新中文字幕大全免费视频 | av免费观看日本| 国产一级毛片在线| 99热国产这里只有精品6| 永久免费av网站大全| 丝袜脚勾引网站| 视频在线观看一区二区三区| 99热全是精品| 香蕉国产在线看| 在线亚洲精品国产二区图片欧美| 精品国产一区二区久久| 精品第一国产精品| 宅男免费午夜| 午夜91福利影院| 欧美日韩成人在线一区二区| 国产精品蜜桃在线观看| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品高潮呻吟av久久| 国产综合精华液| 国产成人精品久久久久久| 青春草国产在线视频| 成人国产av品久久久| 久久久久久久亚洲中文字幕| 国产精品免费大片| 欧美激情 高清一区二区三区| 亚洲,一卡二卡三卡| 久久久久久久久久久久大奶| 亚洲图色成人| 丰满迷人的少妇在线观看| 美女脱内裤让男人舔精品视频| 建设人人有责人人尽责人人享有的| 日韩大片免费观看网站| 国产探花极品一区二区| 欧美国产精品va在线观看不卡| 欧美日韩精品成人综合77777| 午夜福利乱码中文字幕| 午夜日韩欧美国产| 免费高清在线观看视频在线观看| 波多野结衣av一区二区av| 国产综合精华液| 成人毛片60女人毛片免费| 成年av动漫网址| 亚洲欧洲精品一区二区精品久久久 | 国产毛片在线视频| 在现免费观看毛片| 日韩精品有码人妻一区| 另类亚洲欧美激情| 又黄又粗又硬又大视频| 最黄视频免费看| 午夜福利一区二区在线看| 午夜老司机福利剧场| 亚洲色图 男人天堂 中文字幕| 美女中出高潮动态图| 在线观看免费高清a一片| 日韩av不卡免费在线播放| 高清在线视频一区二区三区| 欧美日韩视频高清一区二区三区二| 久久99一区二区三区| 国产爽快片一区二区三区| 中文字幕最新亚洲高清| 成年美女黄网站色视频大全免费| 三上悠亚av全集在线观看| 成人影院久久| 黄频高清免费视频| 纯流量卡能插随身wifi吗| 国产亚洲最大av| 日本-黄色视频高清免费观看| 中文字幕亚洲精品专区| 亚洲欧洲精品一区二区精品久久久 | 日本黄色日本黄色录像| 最近2019中文字幕mv第一页| 99久久中文字幕三级久久日本| 日本黄色日本黄色录像| 久久精品夜色国产| 成年女人毛片免费观看观看9 | 久久精品国产鲁丝片午夜精品| 人人澡人人妻人| 老鸭窝网址在线观看| 日本91视频免费播放| 久久99热这里只频精品6学生| 日韩人妻精品一区2区三区| 久久久国产欧美日韩av| 亚洲,一卡二卡三卡|