• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers?

    2019-08-16 01:20:38JinmeiYao姚金妹BinZhang張斌KeYin殷科andJingHou侯靜
    Chinese Physics B 2019年8期
    關(guān)鍵詞:張斌

    Jinmei Yao(姚金妹), Bin Zhang(張斌),2,3,?, Ke Yin(殷科), and Jing Hou(侯靜),2,3,?

    1Colle ge of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    2State Key Laboratory of Pulsed Power Laser Technology,Changsha 410073,China

    3Hunan Provincial Key Laboratory of High Energy Laser Technology,Changsha 410073,China

    4National Innovation Institute of Defense Technology,Academy of Military Sciences PLA,Beijing 100010,China

    Keywords: supercontinuum generation,infrared lasers,fiber lasers,nonlinear

    1. Introduction

    The fiber-based supercontinuum (SC) sources offer both a broad bandwidth and a good beam quality. Particularly,SC sources in the mid-infrared (MIR) region attract enormous interest due to its potential applications in many fields,such as spectroscopic imaging,[1]trace gas detection,[2]and early-cancer diagnosis.[3]Consequently, there have been a growing number of experiments aiming at generating MIR SC using a wide variety of nonlinear fibers. Traditionally,hindered by infrared absorption of silica glass, the longwavelength edge of SC generated in silica fibers is limited at~2.7 μm.[4]Germania-core fibers have a lower phonon energy compared with silica fibers, which could further extend the long-wavelength edge of SC to about 3.6 μm.[5]For further broadening the SC spectrum, soft-glass fibers, such as fluoride fibers, tellurite fibers, and chalcogenide fibers, are much more suitable. The most common fluoride glasses are fluorozirconate glass ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN)and fluoroindate glass (InF3). The ZBLAN glass is a mixture of ZrF4(53 mol.%), BaF2(20 mol.%), LaF3(4 mol.%),AlF3(3 mol.%), and NaF (20 mol.%).[6]To date, >10 W MIR SCs have been reported in ZBLAN glass fibers,[7-9]but the long-wavelength edge is limited at around 4.2 μm due to multiphonon absorption edge when using long fibers.The InF3glasses own lower phonon energy compared with ZBLAN glasses,thus the long-wavelength edge of SC generated in InF3fibers has been extended up to 5μm with the output power reaching watt level.[10-12]To further boost output power and increase long term stability of fluorite fiber-based SC sources, protective methods like an AlF3endcap[13]need to be applied for preventing OH diffusion. Tellurite-based(TeO2)glasses yield a higher resistance to moisture exposure than fluorides glass and it has a similar transmission band with fluorozirconate glass.[6]A watt-level MIR SC source covering 1 μm to 4.5 μm is obtained in a dispersion-zero shifted tellurite fiber with an output power of 1.2 W.[14]Recently, to improve the stability of fluoride glass fiber,a kind of fluorotellurite glass (TeO2-BaF2-Y2O3) fiber with improved chemical and thermal properties has been reported.[15]Pumped by a homemade 1980-nm chirped pulse amplification, a 10.4-W SC spanning from 947 nm to 3934 nm was obtained without obvious damage observed on the end surface of the fluorotellurite fiber for more than 10 h. Chalcogenide fibers are a kind of MIR fiber,which is based on the chalcogen elements S,Se,and Te with transmission windows of 0.8 μm-7 μm, 1 μm-10μm,and 2μm-12μm,respectively. These fibers naturally yield a wide transmission window in the MIR region and a stable chemical property.[16-19]

    Chalcogenide fibers usually have high zero-dispersion wavelengths (ZDWs)[16]which are far away from general fiber laser. Due to the lack of mature and reliable MIR fiber lasers, free-space pump lasers like optical parametric am-plifiers with ultra-short MIR pulses are widely employed in the chalcogenide fiber-based SC systems[20-25]and great progresses have been achieved using this method. The broadest MIR SC generated in a nonlinear fiber is achieved in a piece of low-loss chalcogenide fiber,which covers 2.0μm-16.0μm at the-40-dB level.[20]Practical applications require portable and stable SC sources which can work beyond the laboratory environment. Thus,the fiber laser with robust construction is the ideal pump source for SC generation. Cascaded SC generation in the chalcogenide fiber was proposed in 2014[26]and realized in 2016.[27]In this method,MIR soliton pulses generated in the ZBLAN fiber can further broaden toward the longwavelength region in the chalcogenide fiber. This method can meet the need of MIR pump pulse for chalcogenide fibers and it naturally has the potential to develop an all-fiber MIR SC system. Adopting this method, an all-fiber SC laser covering 2μm to 5μm was obtained in an As2S3step index fiber with an output power of 97.1 mW.[28]And an MIR SC up to 7μm was obtained in a micro-structured As2Se3fiber with an output power of about 6.5 mW.[27]

    In this paper, an SC spanning from 2 μm to 6 μm is demonstrated in cascaded ZBLAN and As2Se3step-index fibers.The ZBLAN fiber is used to build an MIR SC laser with abundant high-peak-power soliton pulses between 3000 nm and 4200 nm. By coupling solitons generated in ZBLAN fiber into the following step-index As2Se3fiber, MIR pulses further broaden toward long-wavelength region in the normal dispersion region of As2Se3fiber. The spectral behavior of the cascaded SC generation is investigated by changing the pump power and pump repetition rate, which shows that the long-wavelength power generated in the ZBLAN fiber plays a critical role for further spectral broadening in the As2Se3fiber.

    2. Experimental setup

    The experimental setup for SC generation is shown in Fig. 1(a). The 1550-nm seed with 1-ns pulse duration and 10-kHz repetition rate is amplified in an erbium/ytterbiumcodoped fiber amplifier (EYDFA) first and then injected into a 15-m-long single-mode fiber (SMF). An effective spectral broadening covering 1.5 μm to 2.3 μm is obtained during propagating in the SMF. Then spectral components from 1.5μm to 1.9μm are absorbed in a large-mode-area thuliumdoped fiber (LMA-TDF) with a core/cladding diameter of 25 μm/250 μm and numerical aperture (NA) of 0.11/0.46,while the spectral components above 1.9 μm are amplified.Two mode field adapters(MFAs)are adopted in the thuliumdoped fiber amplifier(TDFA)stage. The pigtail of the MFA2 has a core/cladding diameter of 7μm/125μm and a core NA of 0.2. The amplified pulses generated in LMA-TDF are sequentially shifted towards long wavelength region in the MFA and eventually lead to a 1.9μm-2.7μm SC laser.

    Fig.1. (a)Experimental set-up for SC generation in cascaded ZBLAN and As2Se3 step-index fibers. LMA-TDF:Large mode area thulium-doped fiber;SM:Single-mode;MFA:mode field adapter. (b)Microscope and(c)photograph of fusion splicing between silica fiber and ZBLAN fiber.

    To effectively broaden the MIR spectrum, a 12-m-long ZBLAN fiber with a core/cladding diameter of 9/125μm and an NA of 0.27 is used. Low-loss fusion splice is achieved between the ZBLAN fiber and the pigtail of MFA2 by asymmetric heating method.[29]Figures 1(b) and 1(c) depict the microscope and photograph of fusion splicing between silica fiber and ZBLAN fiber,respectively.This shows that the silica fiber is wrapped by the melted ZBLAN fiber, which forms a robust fusion splicing between silica fiber and ZBLAN fiber.For protecting the fusion-spliced joint,it was mounted into an aluminum V-groove and fixed with ultraviolet curing adhesive,as shown in the inset of Fig.1(a). The fusion splicing loss is estimated to be less than 0.1 dB after considering the linear propagation loss at around 2 μm (0.06 dB/m) and the mode mismatch loss between the pigtail of MFA2 and the ZBLAN fiber of about 0.024 dB. Based on the commercial finite element method software COMSOL Multiphysics and Sellmeier equation with the same coefficients as in Ref.[30],the calculated group velocity dispersion of the ZBLAN fiber is depicted in Fig.2(a),which shows that it exhibits anomalous dispersion from around 1.5 μm to its multiphonon absorption edge near 4.3μm.

    To effectively confine MIR wavelengths in the core of As2Se3fiber and achieve a sufficient nonlinear interaction length, a 5-m-long As2Se3fiber with large core diameter of 12μm and NA of 0.46 is used. Based on the Sellmeier equation with the same coefficients as in Ref. [31], the ZDW of the As2Se3fiber is calculated at above 8 μm, as shown in Fig.2(a). Selenium glass fibers own high refractive indices in the MIR region(n=2.77 at 4μm),thus there is about 22%optical feedback resulting from Fresnel reflection at the end facet of As2Se3fiber. Angle-cleaved As2Se3fiber end can prevent backward propagated light to some extent. Figure 2(b)depicts the relationship between the cutting angle of the As2Se3fiber and the proportion of optical feedback that meets the total reflection condition in the core of the As2Se3fiber. Due to the large NA of the As2Se3fiber,a large cutting angle is required at the end facet of As2Se3fiber.A cutting angle of about 12°is obtained in the experiment,which means that about 0.4%SC feedback propagates backwards in the core of As2Se3fiber.The As2Se3fiber is placed on an aluminum plate without applying any active cooling method. Both end facets of As2Se3fiber are placed in a pair of parallel V-grooves and indiumgallium alloy is applied to strip possible cladding light.

    Fig. 2. (a) Calculated group velocity dispersions of the ZBLAN fiber and As2Se3 fiber. (b) The relationship between the cutting angle of the As2Se3 fiber and Fresnel reflection proportion that meets the total reflection condition in the core of the As2Se3 fiber. Rp,Rs,and Rn represents reflection of P-light,S-light,and total light,respectively.

    To flexibly control the light spot incident into the As2Se3fiber, a pair of Ge28Sb12Se60aspheric lenses with antireflection coating covering 3 μm-5 μm is adopted to achieve light coupling between the ZBLAN fiber and the As2Se3fiber. The focal lengths of the lenses are 6 mm and 4 mm,respectively.A monochromator with liquid-nitrogen-cooled InSb detector and a thermal power meter are used for the measurement of spectrum and power, respectively. With the aid of a pyro-electric array camera, fundamental mode operation is ensured during the coupling alignment.

    3. Results and discussion

    The measured spectral evolution in the ZBLAN fiber pumped at 10-kHz repetition rate is depicted in Fig. 3(a) and the legend represents the corresponding output power. As TDFA pump power increases, the spectra of short subpulses generated in the LMA-TDF further broaden in the anomalous dispersion region of ZBLAN fiber and gradually reach~4.3 μm. Abundant high-peak-power soliton pulses located between 3000 nm and 4200 nm are the dominant components of SC generated in ZBLAN fiber. Then, the output MIR SC generated in the ZBLAN fiber is coupled into the following As2Se3fiber with the pair of aspheric lenses. Due to the antireflection coating covering 3 μm-5 μm, the coupling efficiency is only ~50% before the pump spectrum reaches beyond 3μm.With the pump spectrum generated in the ZBLAN fiber reaching 4.2 μm, the coupling efficiency gradually increases to about 80%.

    The spectral evolution in the following As2Se3fiber is depicted in Fig. 3(b) and the legend represents output power corresponding to the pump power in Fig. 3(a). For a clear visibility, each spectrum is shifted upward by 4 dB. This shows that at the beginning, the output solitons generated in the ZBLAN fiber are too weak to induce continue SC extension in As2Se3fiber. Until the output power of ZBLAN fiber is about 2.49 mW, a significant spectral broadening is observed in the As2Se3fiber. As the pump power is further increased, a cascaded spectral broadening of ~1000 nm is achieved in the As2Se3fiber and finally an MIR SC spanning from 2 μm-6 μm is obtained with corresponding -10-dBm points from 2.2 μm to 5.5 μm. Self-phase modulation and Raman-induced frequency red-shift in the normal dispersion regime of the As2Se3fiber are regarded as the dominant mechanisms responsible for cascaded spectral broadening. Obvious Stokes peaks are hard to be distinguished in the output spectra of As2Se3fiber due to pump soliton pulses with different center wavelengths.Two spectral dips beyond 4μm can be observed in the output spectrum of As2Se3fiber.The spectral dip at 4.2 μm is caused by the CO2absorption during free space propagation of spectral measurement. The Se-H bond in the fiber causes the dip at around 4.6μm.Near-field beam profiles detected at the output end of ZBLAN fiber and As2Se3fiber are shown in the inset of Fig. 3. Although the single-mode cutoff wavelength of As2Se3fiber is calculated as 7.4μm,the fundamental mode can be excited by proper alignment.

    Fig. 3. Measured spectral evolution of SC generated in the (a) 12-mlong ZBLAN fiber and (b) 5-m-long As2Se3 fiber pumped at 10-kHz repetition rate. The legend represents output power and the insets show the corresponded SC beam profiles.

    The spectral behaviors of MIR SC are investigated by changing the pump repetition rate.Figures 4(a)and 4(b)depict the comparison of SC spectra generated in ZBLAN fiber and As2Se3fiber pumped at 10 kHz,25 kHz,and 50 kHz,respectively. It shows that although 2μm-4.2μm SCs are obtained in the ZBLAN fiber at all pump repetition rates, the broadest cascading SC is generated in the As2Se3fiber when pumped at 10 kHz. A possible explanation for this comes from the fact that solitons cannot propagate undistorted in the normal dispersion region of the As2Se3fiber for a long distance. When solitons are incident into the As2Se3fiber, self-phase modulation along with Raman-induced frequency red-shift leads to spectral broadening of SC. Meanwhile, time domain broadening of solitons occurs due to group dispersion. Along with the decrease of temporal intensity of pump pulse, self-phase modulation and Raman-induced frequency red-shift gradually stop in the As2Se3fiber. Consequently, long-wavelength solitons with low group velocity dispersions indices in the As2Se3fiber are beneficial for continuing SC broadening.Since most intense MIR solitons are obtained in the ZBLAN fiber at a repetition rate of 10 kHz, the broadest SC is generated in the As2Se3fiber at 10 kHz. For effective obtaining MIR SC extension in As2Se3fiber, the energy of long wavelength solitons generated in ZBLAN fiber needs to be boosted.For example, InF3 fibers with lower phonon energy in MIR region can be used to replace the ZBLAN fiber in the cascading configuration.[32]Or a piece of As2S3fiber can be added as an intermediate fiber between the ZBLAN fiber and the As2Se3fiber for further bridging the matching-gap between the pump wavelength and ZDW of the As2Se3fiber, which contributes to a 1.6 μm-11 μm SC laser source in a recent report.[33]

    Fig.4.Comparison of the SC spectra generated in(a)ZBLAN fiber and(b)As2Se3 fiber pumped at 10 kHz,25 kHz,and 50 kHz,respectively.The legend represents the output power of the ZBLAN fiber and As2Se3 fiber,respectively.

    Fig.5. (a)Damaged vertical incident facet of As2Se3 fiber pumped at 50-kHz repetition rate with maximum pump power of 263 mW;(b)optical microscope image of the longitudinal input segment of damaged As2Se3 fiber.

    Further SC extension is prohibited in As2Se3fiber at a repetition rate of 50-kHz through raising the pump power.When the pump power is increased above 263 mW, the output power of As2Se3fiber suddenly decreases unexpectedly.The optical microscope image of the incident facet of As2Se3fiber shows that there is a distinct cavity like a ‘crater’ with a similar dimension as the core diameter of As2Se3fiber, as shown in Fig.5(a). Figure 5(b)depicts the optical microscope image of longitudinal input segment of the As2Se3fiber. A~200-μm-long deformation and an intra-core hollow are detected in the As2Se3fiber,which indicates that an eruption of the core of As2Se3fiber has occurred. According to Ref.[34],a core material blast from the input facet is one of the distinct features of fiber fuse,in contrast with other fiber damage mechanisms. It is inferred that fiber fuse has occurred in the As2Se3fiber.4. Conclusion

    In this paper, an MIR SC spanning from 2 μm to 6 μm is achieved in cascaded ZBLAN and As2Se3step-index fibers with an output power of 9.28 mW. The spectral behaviors of the SC source are investigated by changing the pump repetition rate and the pump power, which shows that the longwavelength power generated in ZBLAN fiber plays a critical role for further spectral broadening in As2Se3fiber. A damaged cross section is observed on the incident end facet of As2Se3fiber while increasing the laser repetition rate, which suggests that in order to acquire a high-power MIR SC, improved fabrication of chalcogenide fiber along with a better understanding of the damage mechanism is needed.

    猜你喜歡
    張斌
    夕陽家園
    金秋(2022年10期)2022-11-25 16:28:12
    Design of three-dimensional imaging lidar optical system for large field of view scanning
    A scanning distortion correction method based ongalvanometer Lidar system?
    Lagrangian analysis of the formation and mass transport of compressible vortex rings generated by a shock tube?
    一路有你都是歌
    當代音樂(2021年2期)2021-03-18 09:39:08
    Dynamic measurement of beam divergence angle of different fields of view of scanning lidar?
    《花之戀》
    Monolithic all- fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber?
    天水同映長安塔
    金秋(2018年12期)2018-09-17 09:33:08
    Analysis and numerical study of a hybrid BGM-3DVAR data assimilation scheme using satellite radiance data for heavy rain forecasts*
    麻豆久久精品国产亚洲av| 黄色丝袜av网址大全| a级毛片免费高清观看在线播放| 国产爱豆传媒在线观看| 国内精品久久久久精免费| 在线观看午夜福利视频| 国产亚洲91精品色在线| 精品人妻偷拍中文字幕| 日韩一区二区视频免费看| 给我免费播放毛片高清在线观看| 国产一区二区激情短视频| 日本色播在线视频| 亚洲经典国产精华液单| 日日夜夜操网爽| 亚洲av不卡在线观看| 午夜精品在线福利| 欧美性猛交╳xxx乱大交人| 色综合亚洲欧美另类图片| 大型黄色视频在线免费观看| 国产精品国产高清国产av| 日本三级黄在线观看| 99精品久久久久人妻精品| 91久久精品国产一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 动漫黄色视频在线观看| 一个人看的www免费观看视频| 午夜日韩欧美国产| 欧美一级a爱片免费观看看| 久久精品影院6| 久久精品影院6| 国产伦精品一区二区三区视频9| 美女 人体艺术 gogo| 午夜免费激情av| 亚洲av熟女| 最近视频中文字幕2019在线8| 少妇丰满av| 深夜a级毛片| 纵有疾风起免费观看全集完整版| 久久毛片免费看一区二区三区| 大又大粗又爽又黄少妇毛片口| 成年av动漫网址| 中文字幕亚洲精品专区| 男人爽女人下面视频在线观看| 美女福利国产在线 | 亚洲欧美一区二区三区黑人 | 黄色怎么调成土黄色| 在线观看三级黄色| 国内揄拍国产精品人妻在线| 狠狠精品人妻久久久久久综合| 精品午夜福利在线看| 2021少妇久久久久久久久久久| 亚洲国产日韩一区二区| 亚洲精品国产av蜜桃| 国产老妇伦熟女老妇高清| 亚洲aⅴ乱码一区二区在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 91精品一卡2卡3卡4卡| 国产成人精品一,二区| 香蕉精品网在线| 国产老妇伦熟女老妇高清| 国产精品久久久久久av不卡| 激情五月婷婷亚洲| 爱豆传媒免费全集在线观看| 欧美日韩视频精品一区| 纵有疾风起免费观看全集完整版| 免费av不卡在线播放| 欧美日本视频| 在线观看一区二区三区激情| 亚洲人成网站在线播| 99热全是精品| 亚洲国产精品成人久久小说| 国模一区二区三区四区视频| videossex国产| 夫妻午夜视频| 777米奇影视久久| www.色视频.com| av国产免费在线观看| 91午夜精品亚洲一区二区三区| 欧美最新免费一区二区三区| 亚洲在久久综合| 免费少妇av软件| 久热久热在线精品观看| 中文乱码字字幕精品一区二区三区| 视频中文字幕在线观看| 亚洲内射少妇av| 日本色播在线视频| 亚洲精品乱码久久久久久按摩| av在线观看视频网站免费| 亚洲国产成人一精品久久久| 成人漫画全彩无遮挡| a级毛片免费高清观看在线播放| 观看av在线不卡| 午夜福利高清视频| 成年美女黄网站色视频大全免费 | 99久久中文字幕三级久久日本| 亚洲欧洲国产日韩| 国产精品国产三级专区第一集| 99视频精品全部免费 在线| 九草在线视频观看| 免费看不卡的av| 成人综合一区亚洲| 亚洲人成网站在线播| 99热这里只有精品一区| 国产精品一二三区在线看| 国产精品一区www在线观看| 日韩亚洲欧美综合| 最近手机中文字幕大全| 51国产日韩欧美| 男人狂女人下面高潮的视频| 性色av一级| 91精品国产九色| 免费少妇av软件| 日韩一区二区视频免费看| 精品人妻一区二区三区麻豆| 久久久久久久久久久丰满| 国产 一区 欧美 日韩| 亚洲三级黄色毛片| 午夜免费男女啪啪视频观看| 日韩国内少妇激情av| 亚洲国产精品999| av视频免费观看在线观看| 黄色欧美视频在线观看| 秋霞伦理黄片| 久久婷婷青草| 久久毛片免费看一区二区三区| 欧美人与善性xxx| 伊人久久精品亚洲午夜| 老司机影院毛片| 国产精品一区二区在线观看99| 国产有黄有色有爽视频| 插逼视频在线观看| 国产欧美日韩精品一区二区| 久久毛片免费看一区二区三区| 91精品一卡2卡3卡4卡| 国产黄片美女视频| 亚洲精品aⅴ在线观看| 免费高清在线观看视频在线观看| 黄片wwwwww| 国内少妇人妻偷人精品xxx网站| 欧美成人午夜免费资源| 精品一区二区三卡| 成人亚洲精品一区在线观看 | 久久 成人 亚洲| 国产精品久久久久久av不卡| 国产成人a∨麻豆精品| 午夜福利影视在线免费观看| 国语对白做爰xxxⅹ性视频网站| 韩国av在线不卡| 极品少妇高潮喷水抽搐| 国产一区有黄有色的免费视频| 精品视频人人做人人爽| 在线观看免费视频网站a站| 国产成人a区在线观看| 中文字幕久久专区| 午夜视频国产福利| 亚洲国产精品999| 国产精品不卡视频一区二区| 人人妻人人爽人人添夜夜欢视频 | 久久韩国三级中文字幕| 国产精品嫩草影院av在线观看| 在现免费观看毛片| 秋霞在线观看毛片| 99热这里只有是精品在线观看| 国产精品蜜桃在线观看| 中文在线观看免费www的网站| 精品亚洲成国产av| 日韩视频在线欧美| 人人妻人人看人人澡| 国产精品人妻久久久久久| 麻豆成人av视频| 亚洲欧美日韩东京热| 岛国毛片在线播放| 老司机影院毛片| 久久久久久久久久人人人人人人| 岛国毛片在线播放| 大陆偷拍与自拍| 国产乱人视频| 免费高清在线观看视频在线观看| 国内揄拍国产精品人妻在线| av免费在线看不卡| 一边亲一边摸免费视频| 少妇的逼水好多| 久久久久国产精品人妻一区二区| 色视频www国产| 又爽又黄a免费视频| 国产成人午夜福利电影在线观看| 黄色一级大片看看| 日韩欧美 国产精品| 国产一区二区三区av在线| 草草在线视频免费看| 日韩大片免费观看网站| 精品一区在线观看国产| 男男h啪啪无遮挡| 成年人午夜在线观看视频| 丝袜脚勾引网站| 一级av片app| 男人添女人高潮全过程视频| 欧美老熟妇乱子伦牲交| 日韩国内少妇激情av| 91狼人影院| 黄色一级大片看看| 国产成人精品久久久久久| 日韩人妻高清精品专区| 我的女老师完整版在线观看| 我要看日韩黄色一级片| 日日摸夜夜添夜夜爱| 18禁裸乳无遮挡免费网站照片| 国产老妇伦熟女老妇高清| 亚洲精品456在线播放app| 狠狠精品人妻久久久久久综合| 老女人水多毛片| 成人一区二区视频在线观看| 亚洲精品一二三| 成人亚洲精品一区在线观看 | 亚洲欧美精品专区久久| 亚洲成人中文字幕在线播放| 国产成人91sexporn| 中国国产av一级| 亚洲欧美清纯卡通| 久热久热在线精品观看| 成人美女网站在线观看视频| 国产又色又爽无遮挡免| 国产高清不卡午夜福利| 亚洲精品自拍成人| 日韩精品有码人妻一区| 男女下面进入的视频免费午夜| 国产成人免费观看mmmm| 国产精品女同一区二区软件| 性色avwww在线观看| 久久99热6这里只有精品| av在线老鸭窝| 在线播放无遮挡| 亚洲电影在线观看av| 欧美日韩在线观看h| 国产一区亚洲一区在线观看| 观看美女的网站| 久久久久网色| 99热这里只有精品一区| 亚洲精品一二三| 亚洲精品日韩av片在线观看| 高清日韩中文字幕在线| 天堂8中文在线网| 97超视频在线观看视频| 一级二级三级毛片免费看| 国产亚洲一区二区精品| 日韩在线高清观看一区二区三区| 亚洲精品日韩在线中文字幕| 哪个播放器可以免费观看大片| 亚洲av中文av极速乱| 十分钟在线观看高清视频www | 在线天堂最新版资源| 亚洲欧洲国产日韩| 久久99热这里只频精品6学生| 久久精品国产亚洲网站| 国产午夜精品一二区理论片| 久久久久久九九精品二区国产| 久久影院123| 麻豆精品久久久久久蜜桃| 99re6热这里在线精品视频| 亚洲精品日韩av片在线观看| 亚洲精品国产色婷婷电影| 最近手机中文字幕大全| 国产 一区 欧美 日韩| 欧美人与善性xxx| av在线蜜桃| 九九久久精品国产亚洲av麻豆| 伦理电影免费视频| 在线免费观看不下载黄p国产| 少妇的逼水好多| 亚洲美女黄色视频免费看| 有码 亚洲区| 久久精品夜色国产| 欧美 日韩 精品 国产| 国产av一区二区精品久久 | 久久久午夜欧美精品| 97超视频在线观看视频| 精品少妇久久久久久888优播| 欧美xxxx黑人xx丫x性爽| 韩国高清视频一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 80岁老熟妇乱子伦牲交| 久久久久国产网址| 22中文网久久字幕| 99久久精品热视频| 国产精品精品国产色婷婷| 色婷婷久久久亚洲欧美| 中文字幕制服av| 午夜免费男女啪啪视频观看| 国产男女超爽视频在线观看| 久久99蜜桃精品久久| 99热网站在线观看| 一区二区三区乱码不卡18| 男人狂女人下面高潮的视频| 精品久久久久久电影网| 色哟哟·www| 91精品国产国语对白视频| 亚洲欧美一区二区三区国产| 高清毛片免费看| 91狼人影院| 永久免费av网站大全| 看非洲黑人一级黄片| 九色成人免费人妻av| 精品久久久久久久末码| 超碰97精品在线观看| 久久久久久久亚洲中文字幕| www.av在线官网国产| 亚洲精品,欧美精品| 2018国产大陆天天弄谢| 精品久久久精品久久久| 香蕉精品网在线| 亚洲欧美成人精品一区二区| 亚洲av日韩在线播放| 我的女老师完整版在线观看| 免费观看性生交大片5| 在线免费观看不下载黄p国产| 男女无遮挡免费网站观看| 网址你懂的国产日韩在线| 久久99蜜桃精品久久| 亚洲欧洲日产国产| 插阴视频在线观看视频| 中文字幕亚洲精品专区| 亚洲,欧美,日韩| av网站免费在线观看视频| 一级毛片 在线播放| 亚洲高清免费不卡视频| 国产精品伦人一区二区| 尾随美女入室| 中文欧美无线码| 久久97久久精品| 成年av动漫网址| 免费大片黄手机在线观看| 欧美日韩视频精品一区| 亚洲av电影在线观看一区二区三区| 国产在视频线精品| 亚洲图色成人| 国产精品一区二区三区四区免费观看| 亚洲熟女精品中文字幕| 激情五月婷婷亚洲| 99久国产av精品国产电影| 成人美女网站在线观看视频| 欧美日韩综合久久久久久| 久久精品国产自在天天线| 噜噜噜噜噜久久久久久91| 黄色视频在线播放观看不卡| 亚洲无线观看免费| 国产亚洲5aaaaa淫片| 高清av免费在线| 高清欧美精品videossex| 青春草国产在线视频| 小蜜桃在线观看免费完整版高清| 欧美精品一区二区大全| 最近最新中文字幕免费大全7| 能在线免费看毛片的网站| 欧美成人午夜免费资源| 成人免费观看视频高清| 亚洲av成人精品一二三区| 王馨瑶露胸无遮挡在线观看| 精品99又大又爽又粗少妇毛片| 99re6热这里在线精品视频| 少妇人妻 视频| 在现免费观看毛片| 亚洲人成网站在线观看播放| 亚洲欧洲国产日韩| 久久久久国产精品人妻一区二区| 色网站视频免费| 美女国产视频在线观看| 国语对白做爰xxxⅹ性视频网站| 日韩视频在线欧美| 国产高潮美女av| 黑人猛操日本美女一级片| a 毛片基地| 亚洲性久久影院| 亚洲成人中文字幕在线播放| 国精品久久久久久国模美| 成年av动漫网址| 国产av码专区亚洲av| 国产精品人妻久久久影院| 男人和女人高潮做爰伦理| 国产色爽女视频免费观看| 午夜日本视频在线| 少妇猛男粗大的猛烈进出视频| 日日啪夜夜爽| 午夜福利在线观看免费完整高清在| 免费久久久久久久精品成人欧美视频 | 97热精品久久久久久| 免费黄频网站在线观看国产| av天堂中文字幕网| 久久久成人免费电影| 91精品伊人久久大香线蕉| tube8黄色片| 男女啪啪激烈高潮av片| 国产综合精华液| 成年av动漫网址| 亚洲精品乱码久久久久久按摩| 亚洲成人手机| 欧美成人精品欧美一级黄| 女人久久www免费人成看片| 各种免费的搞黄视频| 久久久色成人| 国产午夜精品一二区理论片| 国产爱豆传媒在线观看| 麻豆国产97在线/欧美| 国产精品伦人一区二区| 欧美激情极品国产一区二区三区 | 久久久久久久亚洲中文字幕| 国内少妇人妻偷人精品xxx网站| 欧美另类一区| 麻豆乱淫一区二区| 久久精品国产亚洲av天美| 亚洲久久久国产精品| 国产精品av视频在线免费观看| 婷婷色综合www| 国产日韩欧美在线精品| 国产免费一级a男人的天堂| 校园人妻丝袜中文字幕| 99热这里只有精品一区| 边亲边吃奶的免费视频| 国产免费视频播放在线视频| av又黄又爽大尺度在线免费看| 超碰97精品在线观看| 国产高潮美女av| 成人无遮挡网站| 人人妻人人看人人澡| 草草在线视频免费看| 狂野欧美激情性bbbbbb| 成人亚洲精品一区在线观看 | 亚洲婷婷狠狠爱综合网| 人妻 亚洲 视频| 日韩不卡一区二区三区视频在线| 国产美女午夜福利| 欧美日韩一区二区视频在线观看视频在线| 日日摸夜夜添夜夜爱| 国产精品麻豆人妻色哟哟久久| 少妇被粗大猛烈的视频| 国产人妻一区二区三区在| 精品国产露脸久久av麻豆| 91在线精品国自产拍蜜月| 久久久精品免费免费高清| 国产成人91sexporn| 韩国av在线不卡| 国产有黄有色有爽视频| 啦啦啦视频在线资源免费观看| 亚洲国产精品999| 国产精品国产三级国产av玫瑰| 国产精品久久久久久久久免| 午夜福利高清视频| 亚洲国产最新在线播放| 另类亚洲欧美激情| 亚洲精品乱久久久久久| 99久久人妻综合| 26uuu在线亚洲综合色| 如何舔出高潮| 婷婷色综合www| 丰满迷人的少妇在线观看| 亚洲av中文字字幕乱码综合| 各种免费的搞黄视频| 91精品国产九色| 2022亚洲国产成人精品| 欧美精品亚洲一区二区| 国产精品一区二区性色av| 王馨瑶露胸无遮挡在线观看| 久久av网站| 欧美少妇被猛烈插入视频| 国产成人a区在线观看| 五月伊人婷婷丁香| 亚洲人与动物交配视频| 日本免费在线观看一区| 99久久综合免费| 十八禁网站网址无遮挡 | 亚洲精品色激情综合| 直男gayav资源| 日本午夜av视频| 男人狂女人下面高潮的视频| 汤姆久久久久久久影院中文字幕| 一本一本综合久久| 日本-黄色视频高清免费观看| av国产久精品久网站免费入址| 久久久久久久久久人人人人人人| 国产成人a∨麻豆精品| 日韩,欧美,国产一区二区三区| 嫩草影院新地址| 一个人看视频在线观看www免费| 国国产精品蜜臀av免费| 一级毛片aaaaaa免费看小| 日韩av免费高清视频| 成年av动漫网址| 国产黄色免费在线视频| 中文乱码字字幕精品一区二区三区| 最近中文字幕2019免费版| 丰满迷人的少妇在线观看| 国产在线一区二区三区精| 亚洲精品aⅴ在线观看| 中文字幕精品免费在线观看视频 | 黄色日韩在线| 美女xxoo啪啪120秒动态图| 欧美 日韩 精品 国产| 纵有疾风起免费观看全集完整版| 久久 成人 亚洲| 赤兔流量卡办理| 国产精品免费大片| 秋霞伦理黄片| 免费人妻精品一区二区三区视频| 韩国av在线不卡| 看十八女毛片水多多多| 人人妻人人添人人爽欧美一区卜 | 亚洲av日韩在线播放| 高清不卡的av网站| 日韩在线高清观看一区二区三区| 国产国拍精品亚洲av在线观看| 国产日韩欧美在线精品| www.色视频.com| 亚洲国产成人一精品久久久| 亚洲精品日韩在线中文字幕| 大香蕉97超碰在线| 一个人看的www免费观看视频| 成人漫画全彩无遮挡| 国产又色又爽无遮挡免| 国产视频首页在线观看| 在线观看免费视频网站a站| 草草在线视频免费看| 女的被弄到高潮叫床怎么办| 亚洲精品久久久久久婷婷小说| 在线 av 中文字幕| 日本免费在线观看一区| 国产精品三级大全| 精品一区二区三卡| 美女国产视频在线观看| 久久久久久人妻| 国产一区二区在线观看日韩| 国产视频内射| 亚洲av日韩在线播放| 国产精品久久久久久av不卡| 色5月婷婷丁香| 国国产精品蜜臀av免费| 亚洲精品一区蜜桃| 亚洲精品,欧美精品| 亚洲国产最新在线播放| 不卡视频在线观看欧美| 在线观看三级黄色| 亚洲av在线观看美女高潮| 久久久久精品久久久久真实原创| 韩国av在线不卡| 在线看a的网站| 一二三四中文在线观看免费高清| 久久毛片免费看一区二区三区| 国产精品免费大片| 97在线人人人人妻| 3wmmmm亚洲av在线观看| 国产亚洲精品久久久com| 天堂中文最新版在线下载| 一本一本综合久久| 1000部很黄的大片| 亚洲va在线va天堂va国产| 一级毛片黄色毛片免费观看视频| 中文字幕精品免费在线观看视频 | 岛国毛片在线播放| 久久鲁丝午夜福利片| 丰满迷人的少妇在线观看| 国产又色又爽无遮挡免| 多毛熟女@视频| h视频一区二区三区| 国产精品免费大片| 日韩一区二区视频免费看| 国产亚洲午夜精品一区二区久久| 秋霞伦理黄片| 国产精品三级大全| 国产亚洲av片在线观看秒播厂| 男人舔奶头视频| 丝袜脚勾引网站| 男女边摸边吃奶| 熟女人妻精品中文字幕| 成人毛片60女人毛片免费| 亚洲综合精品二区| 高清视频免费观看一区二区| 一本—道久久a久久精品蜜桃钙片| 极品少妇高潮喷水抽搐| 最新中文字幕久久久久| 国产片特级美女逼逼视频| 久久人妻熟女aⅴ| 99久久精品国产国产毛片| 国产免费福利视频在线观看| 日本欧美国产在线视频| 1000部很黄的大片| 51国产日韩欧美| 午夜福利在线在线| 日韩一区二区三区影片| 日韩av在线免费看完整版不卡| 久久久色成人| 一个人看的www免费观看视频| 嫩草影院入口| 亚洲国产高清在线一区二区三| 国产在视频线精品| 国产免费福利视频在线观看| 国产淫片久久久久久久久| 永久免费av网站大全| 黄色视频在线播放观看不卡| 男人舔奶头视频| 亚洲av综合色区一区| av免费观看日本| 99热这里只有精品一区| 日本vs欧美在线观看视频 | 久热久热在线精品观看| 日韩精品有码人妻一区| 国产深夜福利视频在线观看| 日日撸夜夜添| 大又大粗又爽又黄少妇毛片口| 亚洲国产欧美人成| 国产精品人妻久久久久久| 一级二级三级毛片免费看| 人妻制服诱惑在线中文字幕| 少妇猛男粗大的猛烈进出视频| 人体艺术视频欧美日本| 老司机影院成人| 天天躁夜夜躁狠狠久久av| 妹子高潮喷水视频|