• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thin-film growth behavior of non-planar vanadium oxidephthalocyanine?

    2019-08-16 01:20:48TianJiaoLiu劉天嬌HuaYanXia夏華艷BiaoLiu劉標(biāo)TimJonesMeiFang方梅andJunLiangYang陽軍亮
    Chinese Physics B 2019年8期

    Ti an-Jiao Liu(劉天嬌), Hua-Yan Xia(夏華艷), Biao Liu(劉標(biāo)),Tim S Jones, Mei Fang(方梅), and Jun-Liang Yang(陽軍亮),?

    1Hunan Key Laboratory for Super-microstructure and Ultrafast Process,School of Physics and Electronics,Central South University,Changsha 410083,China

    2Department of Chemistry,University of Warwick,Coventry,CV4 7AL,United Kingdom

    Keywords: organic semiconductor,thin film,vanadyl phthalocyanine(VOPc),growth behavior

    1. Introduction

    Organic semiconductor film plays an increasingly vital role in next generation thin film devices. Among them, metallophthalocyanines (MPcs) have been widely used as organic functional materials in photoconductive and electroluminescence devices,[1]nonlinear optical devices,[2,3]gas and humidity sensors,[4,5]solar cells,[6,7]organic field-effect transistors,[8,9]organic light emitting diodes,[10]etc. Due to the variety of van der Waals force, MPcs assemble in different stacking structures, inevitably leading to the polymorphs phenomenon.[11]The film morphology and structure greatly influence the device performance.[12,13]Thus,it is very important to grow high-quality MPc film with controllable properties.

    Unlike planar MPcs, non-planar vanadyl phthalocyanine(VOPc) presents a pyramidal molecular structure with a C4v symmetry due to the deviation of the center V=O from the molecular plane.[14]Normally, it is more difficult to obtain high-quality VOPc film than planar phthalocyanines. Several techniques have been employed to prepare VOPc film, such as organic molecular beam deposition (OMBD),[15]epitaxial growth,[16]spin-coating,[17]physical vapour deposition,[18]and Langmuir-Blodgett techniques.[19]OMBD is one of the most successful techniques for preparing highly ordered organic film, and the OMBD sublimated VOPc molecules on transparent conductive indium tin oxide (ITO) film, widely used silicon dioxide(SiO2),and flexible kapton substrates are very important for the development of rigid and flexible organic electronics. A deep understanding of VOPc film growth mechanism will provide vital information for fabricating highperformance devices.[20,21]

    In this paper, the film growth behavior of non-planar VOPc on the rigid substrates of ITO, SiO2, and the flexible substrate of kapton are systematically studied through atomic force microscope (AFM) and x-ray diffraction (XRD). The VOPc film growth is strongly influenced by the in situ substrate temperature or post-annealing treatment. Meanwhile,3, 4, 9, 10-perylene-tetracarboxylic dianhydride (PTCDA)molecule is used as the templating layer to induce the growth of high-quality VOPc film,and the stacking structure of VOPc coincidentally presents the phase I arrangement.

    2. Experimental section

    2.1. VOPc film deposition

    The polycrystalline VOPc films were prepared by OMBD in a high vacuum chamber(10-5Pa-10-6Pa)on the rigid substrate of ITO,SiO2,and the flexible substrate of kapton. Prior to the film deposition,the substrates were cleaned in an ultra-sonic bath using deionized water, acetone, and isopropyl alcohol for 10 minutes,respectively,and then blown dried with nitrogen. VOPc powder was bought from Aldrich Co. (USA)and used directly.The deposition rate of VOPc film monitored by a quartz oscillator was about 0.1 ?A/s-0.2 ?A/s. The ITO substrate was set at room-temperature, 180°C, and 250°C,respectively. The VOPc films deposited on room-temperature ITO substrate proceed to be annealed for 2 hours at 255°C and 275°C,respectively. The same process except that all of the substrates maintained at room-temperature was employed to grow VOPc film on SiO2or kapton substrate. The PTCDA was deposited via OMBD and used as the template layer for inducing the growth of VOPc.

    2.2. VOPc film characterization

    The morphologies and height profiles were characterized by AFM (Asylum Research MFP-3D, Santa Barbara, USA)with a tapping mode in air. Wide-angle x-ray diffraction was carried out by an X’Pert PRO (PANalytical, Netherlands) instrument with Cu Kα radiation(α =1.54056 ?A).[22]The rate was set as 0.4°/min to scan from 5°to 28°.

    3. Results and discussion

    3.1. VOPc film grown on ITO substrate

    ITO is well known for its usage as transparent conductive electrode in liquid crystal displays (LCD), organic light emitting diodes(OLED),solar cells,and touch panels.[23]The ITO film coated glass used in this experiment is commercially available, which consists of randomly oriented nanometersize crystal grains resulting from low-temperature(<200°C)of glass substrate in the magnetron sputtering process. In this part, we systematically investigated the growth behavior of vacuum evaporated VOPc films with different film thicknesses,in situ substrate temperature,and post-annealing temperature. Figure 1(a)-1(f) show the AFM morphologies of VOPc film grown on the ITO substrate. The corresponding height profile along the black line is shown below the morphology image.

    As shown in Figs. 1(a) and 1(b), the root-mean-square(RMS) roughness becomes larger as the film thickness increases. The RMS roughness of 80-nm-thick VOPc film is 4.99 nm, while for the 160-nm-thick film, the RMS roughness increases to 9.99 nm. In this case, VOPc exhibits an island growth mode since the VOPc molecules are randomly deposited on the disordered VOPc film which has been formed on the ITO substrate, resulting in an increased RMS roughness. It is also found that the 275°C post-annealed VOPc film has larger grains and smaller roughness than the film postannealed at 255°C(RMS is 7.60 nm at 275°C while 9.90 nm at 255°C, as shown in Figs. 1(c) and 1(d)). It is probably because VOPc film is recrystallized during high-temperature annealing to produce larger grain size.

    Fig. 1. AFM images showing the morphologies of VOPc thin films grown on the ITO substrate. (a) 80-nm VOPc with an RMS of 4.99 nm, (b)160-nm VOPc with an RMS of 9.99 nm, (c)160-nm VOPc with a post-treatment at 255 °C for 2 hours and with an RMS of 9.90 nm, (d)160-nm VOPc with a post-treatment at 275°C for 2 hours and with an RMS of 7.60 nm,(e)160-nm VOPc deposited at 180°C and with an RMS of 16.06 nm,and(f)160-nm VOPc deposited at 250°C and with an RMS of 37.26 nm.The height profile in each case corresponds to the black lines in the images.

    As discussed above, the substrate temperature during vacuum deposition has an important effect on the morphology and structure of the film. Therefore, the ITO substrate is maintained at 180°C and 250°C for comparison during film deposition. Although VOPc grains are arranged irregularly (Figs. 1(e) and 1(f)), the two VOPc films on hightemperature substrate feature larger crystal grains than the films on room-temperature substrate or high-temperature postannealing treatments. Similar to the cases in Figs. 1(c)and 1(d), the crystalline grains of 160-nm-thick VOPc film deposited at 180°C are closely packed, with an RMS of 16.06 nm, while the VOPc film with the same thickness deposited at 250°C exhibits a mixture of platelet-shaped and seed-shaped crystallites. This phenomenon may attribute to longer diffusing distance of VOPc molecules before their nucleation of a stable island, which correspondingly results in a lower island nucleation density and thus larger island sizes. In the present case,the interaction between the organic molecules and the substrate is smaller than that among the organic molecules themselves, thus forming three-dimensional islands (Fig. 1(f)). Pinholes appearing near the small disordered grains can be ascribed to the desorption of VOPc molecules on the high-temperature substrate. The morphologies of the VOPc films prepared by our method differ from that reported in the literature which was lamellae-shaped or step-shaped,[24]probably resulting from the relatively fast deposition rate. It has been reported that VOPc films demonstrate varied grain sizes at the identical substrate temperature by changing the deposition rate.[25]

    There are three modes in the crystal growth on a bulk substrate,i.e.,layer-by-layer mechanism(Frank-Vander Mercue), island mechanism (Volmer Weber), and layer-by-layer followed by island mechanism (Stranski-Karstanov).[26]Inspired by the growth theory of inorganic semiconductor,it can be speculated that the VOPc films grown on room-temperature rigid ITO, SiO2, and flexible kapton substrates (VOPc films grown on SiO2and kapton substrates will be discussed below) exhibit the island mechanism. When directly grown on high-temperature (160°C and 250°C) ITO substrate, VOPc film obeys the layer-by-layer followed by island growth. In the process of VOPc vacuum deposition, the gas molecules are physically absorbed on the substrate surface. As time goes on,many three-dimensional cores accumulate on the substrate.Until the condensed crystal nucleus reaches saturation,instead of forming a new nucleus, the newly vaporized molecules of the gas phase will condense onto the existing nucleus to form crystals. The VOPc nucleus grows to form islands. This threedimensional island structure usually has the crystal of VOPc,so ultimately it becomes microcrystalline. On the 160-°C and 250-°C ITO substrates,owing to the similar lattice constant between VOPc and ITO,the binding tendency of VOPc and ITO substrate is higher than that of VOPc molecules themselves.However,the VOPc film does not spread out on the ITO substrate thoroughly and accompanies with the formation of small crystalline grains because of the roughness of ITO surface.Therefore,the film from the nucleation stage takes only a partially two-dimensional expansion mode and conforms to the layer-by-layer followed by island mechanism. In general,the grain size of VOPc grown on ITO heavily relies on the treatment temperature. Below the critical evaporation temperature of VOPc film, higher temperature leads to longer molecules diffuse length on the substrate and larger domain size.

    Fig.2. XRD curves of VOPc thin films grown on the ITO substrate. Curve a: 80-nm VOPc pristine thin film,curve b: 160-nm pristine thin film,curve c:160-nm VOPc with a post-treatment at 255°C for 2 hours,curve d:VOPc thin film treated at 275 °C for 2 hours,curve e: VOPc deposited at the substrate with a temperature of 180 °C, and curve f: VOPc deposited at the substrate with a temperature of 250 °C.

    For understanding the molecular assembly in VOPc film,XRD measurements are performed. Figure 2 is XRD patterns of VOPc films grown on the ITO substrates under different conditions. Curve a in Fig. 2 shows XRD curve of 80-nm VOPc film deposited on room-temperature ITO. The diffraction peak located at 2θ =21.3°is assigned to the(221)plane of ITO, and it could be used as a diffraction peak for comparison. Another relatively weak diffraction peak located at 26.13°(d=0.34 nm)is indexed as(231)lattice plane of VOPc(phase I type,[27]monoclinic structure, space group P21/c,a=1.42 nm, b=1.31 nm, c=1.27 nm, β =103.2°, and γ = α = 90°). It is suggested that VOPc molecules prefer to grow in the crystalline structure of phase I on roomtemperature ITO.Meanwhile,the really weak diffraction peak indicates that the VOPc film grown on room-temperature ITO is poorly crystalline. As the thickness of VOPc increases to 160 nm,the VOPc film takes a similar crystalline structure for the characteristic diffraction peak is almost preserved (curve b). For the 160-nm-thick VOPc films post-annealed at 255°C on the ITO substrate, it appears a new peak at 7.48°in the XRD diagram,which shows the change of crystalline packing of VOPc (curve c). The 160 nm films show a new diffraction peak at 7.48°with d = 1.18 nm, indexed as (010) of VOPc (phase II type,[28-30]the triclinic structure belongs to space group Pˉ1, a = 1.20 nm, b = 1.25 nm, c = 8.69 nm,α =96.04°,β =94.8°,and γ =68.2°). It means that for the 160-nm-thick VOPc films post-annealed at 255°C, not only the distance of the molecular layer increases,but also another molecular structure (phase II type) emerges. Interestingly, a higher temperature (275°C) treatment can change the crystalline packing of VOPc as well. As shown in Fig.2(curve d),the disappearing diffraction peak of 26.1°indicates that VOPc film shows a single crystalline structure type of phase II at a higher post-annealing temperature, and it has totally changed the VOPc crystalline structure from phase I to phase II compared with the VOPc film deposited on room-temperature ITO.The curves e and f in Fig. 2 show the XRD diffraction patterns of 160-nm-thick VOPc films deposited on 180°C and 250°C ITO substrates, respectively. The only one diffraction peaks at 7.48°clearly indicates that the VOPc molecules are in phase II crystalline structure. It suggests that the VOPc film prepared on in situ 180°C and 250°C ITO substrates are dominated by phase II crystalline structure. In addition,the diffraction peak intensity at 7.48°is significantly enhanced as compared with the films deposited on room-temperature and postannealed, confirming the increased crystallinity in the VOPc films (Fig. 1). Thus, the VOPc films with phase I or phase II can be modulated by the post-annealing and in situ annealing temperature,which will enhance our understanding of the growth behavior of VOPc film on the ITO substrate.

    3.2. VOPc film grown on rigid SiO2 and flexible kapton substrate

    In order to investigate the effect of substrate material on the growth of VOPc film,we deposit the VOPc molecules on rigid SiO2and flexible kapton substrate by OMBD method.Figure 3 is their AFM morphologies and height profiles.The 80-nm-thick VOPc film grown on the SiO2substrate has an RMS roughness of 5.63 nm, while the RMS of 160-nm-thick film grown under the same condition is 11.06 nm(Figs. 3(a) and 3(b)), which indicates that at the same evaporation rate, the longer deposition time results in a thicker and slightly rougher film. Therefore, it complies with the island growth mode. Influenced by the amorphous state and non-directional property of kapton substrate,the 160-nm-thick VOPc film grown on the kapton features the maximum roughness with an RMS of 12.02 nm. Unlike metals that are provided with a close-packed structure, semiconductors have an open structure.[31]In this open structure, the gap between molecules is relatively greater. Additionally, the voidage of non-planar VOPc molecules after sublimated into film is increased,which is determined by the orientation and saturation of covalent bond. Thus,the increased surface fluctuation leads to a rougher film.

    Fig.3. AFM images showing the morphologies of VOPc thin films. (a)80-nm VOPc grown on the SiO2 substrate with an RMS of 5.63 nm,(b)160-nm VOPc grown on the SiO2 substrate with an RMS of 11.06 nm,(c)160-nm VOPc grown on the kapton substrate with an RMS of 12.02 nm,(d)80-nm VOPc grown by PTCDA templating on the SiO2 substrate with an RMS of 5.54 nm, (e) 160-nm VOPc grown by PTCDA templating on the SiO2 substrate with an RMS of 8.31 nm,and(f)160-nm VOPc grown by PTCDA templating on the kapton substrate with an RMS of 10.61 nm. The height profile in each case corresponds to the black lines in the images.

    Molecular templating method is widely used to grow high-quality organic semiconductor thin films.[32]Due to the high stability of inducing template layer and good interaction between narrow domains, the size and morphology of target molecules can be strictly controlled. Here, the PTCDA templating layer regarded as a model system in OMBD is used to grow VOPc thin films.[33]As shown in Fig. 3(d), the 80-nmthick VOPc film grown by PTCDA templating on SiO2substrate demonstrates uniformly small grain characteristics with an RMS of 5.54 nm. Then,thicker VOPc film of 160 nm has sublimated on the SiO2substrate by PTCDA templating. Its morphology can be seen from Fig. 3(e). The nano-crystals have grown up during the longer time evaporating process through molecular aggregates or merging neighbouring grains.Therefore, the 160-nm-thick VOPc film grown by PTCDA template has a larger RMS of 8.31 nm than the 80-nm-thick one. However, under the same growth condition, VOPc film grown on PTCDA template layer has a small roughness compared with the VOPc film directly grown on the SiO2substrate. Thus, the PTCDA templating inducing layer is beneficial to improve the film smoothness. The PTCDA templating method is also utilized to prepare VOPc films on flexible kapton substrate. In Fig. 3(f), the 160-nm VOPc film grown by PTCDA templating on the kapton substrate demonstrates enlarged grains than that on the SiO2substrate, and the RMS roughness increases to 10.61 nm. On the surface of unmodified SiO2, due to the interactions between VOPc and polar hydroxyl groups that originate from the oxidation of Si, the molecular diffusion length is shortened and the crystal size decreases. The situation is different for amorphous kapton substrate. Poor interaction between VOPc and kapton contributes to longer molecular diffusion length and facilitates the formation of larger crystals. Similarly, comparing Fig. 3(f)with Fig.3(c),it can be found that the PTCDA template layer is conducive to reduce the roughness of VOPc film.Therefore,on the flexible substrate,relatively uniform and large grain size VOPc film can be obtained, proving that VOPc film can be well applied to flexible devices.

    The XRD patterns from VOPc films on the SiO2and kapton substrates are plotted in Fig. 4. Four different peaks at 2θ =6.84°, 7.48°, 13.0°, and 26.13°are indexed as (100),(010),(002),and(231)plane,respectively.The corresponding interstack distances are 12.91 ?A, 11.84 ?A, 6.8 ?A, and 3.4 ?A.For the 80-nm VOPc film grown on the SiO2substrate, a strong diffraction peak located at 7.48°can be observed in Fig. 4(a) (curve 1), corresponding to the (010) lattice plane of phase II with a monlayer of 1.184 nm. Simultaneously,the exclusive appearance of (010) peak indicates that the VOPc molecules preferentially stand on the SiO2substrate,[18,32]and the orientation of the VOPc molecules is presented with the a axis parallel to the substrate surface plane (Fig. 5(a)). The curve 2 in Fig. 4(a) shows the representative XRD curve of 160-nm VOPc film.The main diffraction peaks show a change at 26.13°where this new peak emerges with the film thickness increased from 80 nm to 160 nm. The diffraction peak at 26.13°has d =0.34 nm, indexed as (231) lattice plane of phase I.[34]It means that as the thickness increases, phase II and phase I co-exist,[35]in which phase I is arranged along the geometrical(010)direction,while molecule clusters of phase II are arranged along the geometrical (231) direction. Since the diffraction peak at 7.48°is stronger than 26.13°, most of the VOPc molecular plane is parallel to the(010)direction and partly arranged in the(231)channel with the a axis inclined at 28°to the substrate surface plane,as shown in Fig.5(c). Generally,on the SiO2substrate,the crystalline phases and molecular orientations of the VOPc film are greatly affected by the thin film thickness,which is very different from the VOPc film grown on the ITO.

    Fig. 4. XRD results of VOPc thin films grown on the (a) SiO2 and (b)kapton substrates, respectively. Curve 1: 80-nm VOPc grown on the SiO2 substrate, curve 2: 160-nm VOPc grown on the SiO2 substrate, curve 3:80-nm VOPc grown by PTCDA templating on the SiO2 substrate,curve 4:160-nm VOPc grown by PTCDA templating on the SiO2 substrate,curve 5:160-nm VOPc grown on the kapton substrate, and curve 6: 160-nm VOPc grown by PTCDA templating on the kapton substrate.

    In contrast, the XRD pattern of the 80-nm-thick VOPc films grown on PTCDA template layer is shown by curve 3 in Fig. 4. The most intense peak located at 26.13°suggests that most of the VOPc molecules are arranged in phase I type along the geometrical(231)direction,in which the axis is inclined by 28°with respect to the substrate surface plane.Other VOPc molecules are arranged in the(100)channel with the c axis parallel to the substrate surface plane. The really weak signal of 13.0°diffraction peak indicates just a small part of the molecules lying down on the substrate with the(002)zone parallel to the substrate. As indicated by the molecular orientation in Fig. 5(b), the PTCDA template molecular layer can induce the growth of VOPc thin film with three orientations of phase I. This indicates that a pre-deposited PTCDA template layer can change the crystalline stacking behavior,[36]and tune the molecular orientation from phase II to phase I successfully.Besides,the VOPc films with thickness of 160 nm are formed by the same method. As shown by curve 4 in Fig. 4, the increase of the film thickness does not change the structure of phase I for the VOPc film on the PTCDA template molecular layer,and the peak of 26.1°is significantly enhanced.It means that the molecular orientation arranged along the geometrical channels(231)is enhanced as the thickness increases. Thus,a greater proportion of the VOPc molecules are arranged along the(231)orientations.

    Furthermore,the XRD patterns of VOPc films fabricated on the flexible kapton substrate are displayed in Fig.4(b).Owing to the amorphous state of kapton, its baseline is significantly higher than that of the SiO2substrate. On the flexible substrate,the PTCDA template molecular layer can also tune the growth behavior of the VOPc films to phase I structure,which is similar to the SiO2substrate (Figs. 5(c) and 5(d)).This obviously indicates that the structural templating effect exists in both SiO2and flexible kapton substrates, implying that the molecular structure of non-planar VOPc films can be modulated by PTCDA template growth.

    Fig. 5. Schematic of VOPc molecular orientations for: (a) and (b) 80-nm VOPc deposited on SiO2 substrate with and without the PTCDA template layer,(c)and(d)160-nm VOPc grown on SiO2 or kapton substrate with and without the PTCDA template layer.

    4. Conclusion

    In summary, the growth behaviors of VOPc films on rigid ITO, SiO2substrate, and flexible kapton substrate have been studied with AFM and XRD characterization. The effects on the growth of VOPc film are analyzed and generalized, including the material type of the substrate, in situ and post-annealing temperature, film thickness, and template layer PTCDA. Although the VOPc film deposited on hightemperature substrate or via high-temperature post-annealed treatment has larger grain size,the amorphous and rough ITO surface is not suitable for the formation of VOPc films with high crystallinity.Meanwhile,it is found that the PTCDA template molecule layer contributes to improving the film smoothness and tuning the molecular orientation from phase I to phase II.Furthermore,high-quality and large grain size VOPc films can be formed on flexible kapton substrate,which shows great application potential in flexible electronics. In a word,it is of great significance to realize the controllable and optimal growth of VOPc film because high-quality organic semiconductor film is an indispensable component of improving device performance.

    99国产精品一区二区蜜桃av | 久久久欧美国产精品| 国产精品久久久久成人av| 国产区一区二久久| 亚洲黑人精品在线| 国产精品九九99| 深夜精品福利| 乱人伦中国视频| 精品福利观看| 人妻人人澡人人爽人人| 亚洲国产精品一区三区| svipshipincom国产片| 精品国产一区二区久久| 91国产中文字幕| 黄频高清免费视频| 国产精品二区激情视频| 久久国产精品男人的天堂亚洲| 韩国精品一区二区三区| a 毛片基地| 亚洲专区国产一区二区| 午夜日韩欧美国产| 久久 成人 亚洲| 免费一级毛片在线播放高清视频 | 妹子高潮喷水视频| www日本在线高清视频| xxxhd国产人妻xxx| av天堂久久9| 国产高清国产精品国产三级| 久久ye,这里只有精品| 久久ye,这里只有精品| 淫妇啪啪啪对白视频 | 99久久99久久久精品蜜桃| 亚洲中文日韩欧美视频| 亚洲 欧美一区二区三区| www.精华液| 日韩制服骚丝袜av| av片东京热男人的天堂| 99热网站在线观看| 777米奇影视久久| 欧美另类亚洲清纯唯美| 欧美一级毛片孕妇| 精品欧美一区二区三区在线| 菩萨蛮人人尽说江南好唐韦庄| bbb黄色大片| 少妇人妻久久综合中文| 国产麻豆69| 夜夜夜夜夜久久久久| 十分钟在线观看高清视频www| 精品熟女少妇八av免费久了| 电影成人av| 国产精品 国内视频| 国产成人精品久久二区二区91| 肉色欧美久久久久久久蜜桃| 90打野战视频偷拍视频| 久久精品人人爽人人爽视色| 黄色视频不卡| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美日韩另类电影网站| 两性午夜刺激爽爽歪歪视频在线观看 | 丝瓜视频免费看黄片| 精品国产超薄肉色丝袜足j| 亚洲专区国产一区二区| 黑人巨大精品欧美一区二区mp4| 国产免费视频播放在线视频| 黑人猛操日本美女一级片| 国产区一区二久久| 男人操女人黄网站| 国产成人欧美| 亚洲国产欧美网| 亚洲色图综合在线观看| 亚洲综合色网址| 可以免费在线观看a视频的电影网站| 亚洲国产欧美在线一区| 日本猛色少妇xxxxx猛交久久| 三级毛片av免费| 久9热在线精品视频| 桃红色精品国产亚洲av| tocl精华| 精品国产乱码久久久久久小说| 国产成人免费观看mmmm| 免费人妻精品一区二区三区视频| 亚洲中文av在线| 国产一区二区三区在线臀色熟女 | 在线精品无人区一区二区三| 亚洲第一青青草原| 精品乱码久久久久久99久播| 国产伦理片在线播放av一区| 免费在线观看完整版高清| 国产免费av片在线观看野外av| 欧美97在线视频| 丝瓜视频免费看黄片| 欧美精品高潮呻吟av久久| 无遮挡黄片免费观看| 自线自在国产av| 黄色 视频免费看| 另类精品久久| 午夜视频精品福利| 亚洲成人免费电影在线观看| 亚洲熟女毛片儿| 久久久精品区二区三区| 999精品在线视频| 在线观看www视频免费| 国产精品一二三区在线看| 飞空精品影院首页| 国产精品久久久久久精品古装| 亚洲精品第二区| 性色av一级| 亚洲精品一区蜜桃| 午夜影院在线不卡| 99精品欧美一区二区三区四区| 免费高清在线观看日韩| 久久99一区二区三区| 精品久久久久久久毛片微露脸 | 91av网站免费观看| 亚洲欧美精品自产自拍| 啪啪无遮挡十八禁网站| 欧美精品人与动牲交sv欧美| 亚洲精品日韩在线中文字幕| 国产精品久久久久久人妻精品电影 | 乱人伦中国视频| 精品一品国产午夜福利视频| 国产精品国产av在线观看| 精品人妻在线不人妻| 啦啦啦 在线观看视频| 久久久国产精品麻豆| 国产精品自产拍在线观看55亚洲 | 丰满少妇做爰视频| 国产精品熟女久久久久浪| 秋霞在线观看毛片| 亚洲精品中文字幕在线视频| 欧美日韩亚洲高清精品| 国产亚洲av高清不卡| 在线观看www视频免费| 男女午夜视频在线观看| 亚洲精品久久成人aⅴ小说| 亚洲第一av免费看| 亚洲第一青青草原| 久久女婷五月综合色啪小说| 成人免费观看视频高清| 国产亚洲精品久久久久5区| 交换朋友夫妻互换小说| 麻豆国产av国片精品| 日韩制服骚丝袜av| 国产精品欧美亚洲77777| √禁漫天堂资源中文www| av天堂久久9| 国产免费视频播放在线视频| 岛国在线观看网站| 动漫黄色视频在线观看| av在线app专区| 日韩精品免费视频一区二区三区| 国产欧美日韩精品亚洲av| 90打野战视频偷拍视频| 最新的欧美精品一区二区| 如日韩欧美国产精品一区二区三区| 国产成人一区二区三区免费视频网站| 久久久久视频综合| 国产一区二区 视频在线| 日本av手机在线免费观看| 国产成人精品久久二区二区免费| 中文字幕精品免费在线观看视频| 麻豆乱淫一区二区| 国产精品影院久久| 国产免费av片在线观看野外av| 午夜成年电影在线免费观看| 丰满迷人的少妇在线观看| 日韩中文字幕欧美一区二区| 亚洲精品一二三| 成年人黄色毛片网站| 人人澡人人妻人| 欧美日韩黄片免| 亚洲久久久国产精品| 99香蕉大伊视频| 真人做人爱边吃奶动态| 日本五十路高清| 少妇裸体淫交视频免费看高清 | 99热全是精品| 亚洲 国产 在线| av在线app专区| 国产91精品成人一区二区三区 | 女人久久www免费人成看片| 免费高清在线观看日韩| 亚洲欧美一区二区三区黑人| 亚洲五月婷婷丁香| 欧美日韩福利视频一区二区| 国产激情久久老熟女| 人人澡人人妻人| 亚洲自偷自拍图片 自拍| 777久久人妻少妇嫩草av网站| 国产高清视频在线播放一区 | 成年女人毛片免费观看观看9 | 久久久久久人人人人人| 天天躁狠狠躁夜夜躁狠狠躁| 日本精品一区二区三区蜜桃| 美女脱内裤让男人舔精品视频| 永久免费av网站大全| 麻豆国产av国片精品| 成年女人毛片免费观看观看9 | 一区二区三区激情视频| 欧美av亚洲av综合av国产av| 天天影视国产精品| 黄片小视频在线播放| 亚洲av电影在线进入| 免费看十八禁软件| 99久久国产精品久久久| 黄色怎么调成土黄色| 欧美日韩精品网址| 三上悠亚av全集在线观看| avwww免费| 五月开心婷婷网| 中国美女看黄片| 亚洲免费av在线视频| 国产精品一区二区免费欧美 | 99精品欧美一区二区三区四区| 丝袜美腿诱惑在线| 一区二区三区精品91| 成人国语在线视频| 黄色怎么调成土黄色| 欧美性长视频在线观看| 女人被躁到高潮嗷嗷叫费观| 国产淫语在线视频| 国产一区二区三区综合在线观看| 国产成人精品无人区| 视频区图区小说| 久久午夜综合久久蜜桃| 一区二区三区激情视频| 欧美黄色片欧美黄色片| 久久精品亚洲av国产电影网| av天堂久久9| 欧美国产精品va在线观看不卡| 国产成人欧美| 人妻 亚洲 视频| 午夜福利免费观看在线| 欧美亚洲 丝袜 人妻 在线| 国产成人一区二区三区免费视频网站| 亚洲精品国产色婷婷电影| 欧美乱码精品一区二区三区| 丰满饥渴人妻一区二区三| 午夜影院在线不卡| 老汉色av国产亚洲站长工具| 久久免费观看电影| 一本色道久久久久久精品综合| 看免费av毛片| 人人妻,人人澡人人爽秒播| 少妇裸体淫交视频免费看高清 | 自线自在国产av| 成人亚洲精品一区在线观看| 一区在线观看完整版| 国产成人av激情在线播放| 亚洲精品国产av蜜桃| 最近中文字幕2019免费版| 久久久国产一区二区| 侵犯人妻中文字幕一二三四区| kizo精华| 午夜精品久久久久久毛片777| 黑人欧美特级aaaaaa片| 99国产极品粉嫩在线观看| 久久精品国产亚洲av高清一级| 国产一区二区在线观看av| 亚洲 欧美一区二区三区| 国产精品久久久久久精品古装| 亚洲久久久国产精品| 国产精品成人在线| 正在播放国产对白刺激| 狂野欧美激情性bbbbbb| 十八禁网站免费在线| 色精品久久人妻99蜜桃| 国产男女内射视频| 777久久人妻少妇嫩草av网站| 久久久久精品人妻al黑| 纵有疾风起免费观看全集完整版| 欧美国产精品一级二级三级| 久久人人97超碰香蕉20202| 狠狠婷婷综合久久久久久88av| 日本wwww免费看| 水蜜桃什么品种好| 99国产精品免费福利视频| 热99re8久久精品国产| 亚洲一区中文字幕在线| 搡老岳熟女国产| 老司机影院毛片| 操出白浆在线播放| 男男h啪啪无遮挡| 久久久久久久大尺度免费视频| 女性生殖器流出的白浆| 18禁观看日本| 亚洲精品一二三| 性色av乱码一区二区三区2| 男女边摸边吃奶| 99热国产这里只有精品6| 亚洲av国产av综合av卡| 日韩有码中文字幕| 在线av久久热| 欧美日韩国产mv在线观看视频| 极品少妇高潮喷水抽搐| 国产免费现黄频在线看| 日本撒尿小便嘘嘘汇集6| 国产成人a∨麻豆精品| 久久人人97超碰香蕉20202| 人人妻人人澡人人爽人人夜夜| 国产成人一区二区三区免费视频网站| 99久久99久久久精品蜜桃| 成人国产一区最新在线观看| 国产精品二区激情视频| 国产伦人伦偷精品视频| 国产精品亚洲av一区麻豆| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品二区激情视频| 各种免费的搞黄视频| 热re99久久精品国产66热6| 久久人妻福利社区极品人妻图片| 午夜成年电影在线免费观看| 亚洲欧美激情在线| 久久亚洲国产成人精品v| 国产精品成人在线| 午夜福利视频精品| 国产野战对白在线观看| 国产精品二区激情视频| 国产黄色免费在线视频| 亚洲avbb在线观看| 亚洲专区字幕在线| 国产真人三级小视频在线观看| 在线观看免费日韩欧美大片| 中国国产av一级| 亚洲精品第二区| 日韩精品免费视频一区二区三区| 免费观看人在逋| 大片电影免费在线观看免费| 手机成人av网站| 久久亚洲国产成人精品v| 大香蕉久久成人网| 亚洲自偷自拍图片 自拍| 欧美激情 高清一区二区三区| 超色免费av| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产欧美日韩在线播放| 性高湖久久久久久久久免费观看| 极品人妻少妇av视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久精品免费免费高清| 欧美xxⅹ黑人| 成人国语在线视频| 黑人操中国人逼视频| 天天影视国产精品| 香蕉丝袜av| 亚洲免费av在线视频| 午夜日韩欧美国产| 韩国精品一区二区三区| 女性生殖器流出的白浆| 欧美日韩一级在线毛片| 一级毛片女人18水好多| 飞空精品影院首页| 中文字幕人妻丝袜一区二区| 国产成人影院久久av| 精品一区在线观看国产| av免费在线观看网站| 午夜福利乱码中文字幕| 亚洲av欧美aⅴ国产| 搡老乐熟女国产| 欧美精品亚洲一区二区| 亚洲国产看品久久| 最近最新中文字幕大全免费视频| 中文字幕色久视频| 在线十欧美十亚洲十日本专区| 国产精品麻豆人妻色哟哟久久| 老鸭窝网址在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 免费日韩欧美在线观看| 国产日韩欧美在线精品| 天堂中文最新版在线下载| 亚洲免费av在线视频| 一本大道久久a久久精品| 精品一区二区三卡| 狠狠婷婷综合久久久久久88av| 成人国语在线视频| 热99国产精品久久久久久7| 国产日韩欧美在线精品| 亚洲av日韩在线播放| av网站在线播放免费| 老熟妇乱子伦视频在线观看 | 午夜福利在线免费观看网站| 少妇人妻久久综合中文| 午夜91福利影院| 久久精品国产a三级三级三级| 亚洲人成77777在线视频| 99久久精品国产亚洲精品| 久久久久国产精品人妻一区二区| 在线永久观看黄色视频| 1024视频免费在线观看| 国产日韩一区二区三区精品不卡| 国产精品久久久久久精品电影小说| 日韩制服丝袜自拍偷拍| 99国产综合亚洲精品| 亚洲精品乱久久久久久| 久久久久网色| 考比视频在线观看| 国产精品偷伦视频观看了| 50天的宝宝边吃奶边哭怎么回事| 欧美 日韩 精品 国产| 久久久国产精品麻豆| 夜夜夜夜夜久久久久| 日韩一区二区三区影片| 亚洲成人国产一区在线观看| 亚洲色图 男人天堂 中文字幕| 精品国内亚洲2022精品成人 | 久久久久精品人妻al黑| 亚洲成国产人片在线观看| 老熟妇乱子伦视频在线观看 | 日本a在线网址| 2018国产大陆天天弄谢| 亚洲精品第二区| 精品人妻熟女毛片av久久网站| 99久久国产精品久久久| a 毛片基地| 国产91精品成人一区二区三区 | 亚洲一区二区三区欧美精品| 亚洲情色 制服丝袜| 少妇粗大呻吟视频| 美女脱内裤让男人舔精品视频| 久久ye,这里只有精品| 不卡一级毛片| 黄色视频,在线免费观看| av网站在线播放免费| 一边摸一边做爽爽视频免费| 国产在线视频一区二区| 亚洲伊人久久精品综合| 色老头精品视频在线观看| 日韩,欧美,国产一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲一区中文字幕在线| 亚洲成人国产一区在线观看| 精品熟女少妇八av免费久了| 亚洲欧美清纯卡通| 欧美变态另类bdsm刘玥| 久9热在线精品视频| 又黄又粗又硬又大视频| 91麻豆精品激情在线观看国产 | av福利片在线| 无限看片的www在线观看| 久久毛片免费看一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 91国产中文字幕| 国产日韩一区二区三区精品不卡| 国产欧美日韩一区二区三区在线| 中文字幕另类日韩欧美亚洲嫩草| av国产精品久久久久影院| 97在线人人人人妻| 日韩人妻精品一区2区三区| 精品国内亚洲2022精品成人 | 亚洲中文av在线| av网站在线播放免费| 女人被躁到高潮嗷嗷叫费观| 肉色欧美久久久久久久蜜桃| 中文字幕最新亚洲高清| 亚洲av成人不卡在线观看播放网 | 99久久综合免费| 久久精品aⅴ一区二区三区四区| 欧美人与性动交α欧美精品济南到| 欧美乱码精品一区二区三区| 91麻豆精品激情在线观看国产 | 一进一出抽搐动态| 欧美激情久久久久久爽电影 | 色播在线永久视频| 一区福利在线观看| 69精品国产乱码久久久| 老司机亚洲免费影院| 久久亚洲国产成人精品v| 精品久久久久久电影网| 亚洲精品一卡2卡三卡4卡5卡 | 成人手机av| 亚洲精品国产av成人精品| 国产91精品成人一区二区三区 | 午夜精品久久久久久毛片777| 亚洲专区字幕在线| 亚洲国产精品999| 十分钟在线观看高清视频www| 亚洲精品成人av观看孕妇| 91成年电影在线观看| 欧美少妇被猛烈插入视频| 欧美+亚洲+日韩+国产| 色精品久久人妻99蜜桃| 国产免费一区二区三区四区乱码| 久久久欧美国产精品| 日本vs欧美在线观看视频| 国产精品一二三区在线看| 亚洲九九香蕉| 午夜日韩欧美国产| 天天添夜夜摸| 99九九在线精品视频| 美女脱内裤让男人舔精品视频| 午夜91福利影院| 久久中文字幕一级| 久久精品国产综合久久久| 国产在线免费精品| 亚洲情色 制服丝袜| 久久精品aⅴ一区二区三区四区| 亚洲精品乱久久久久久| 精品人妻一区二区三区麻豆| 亚洲欧美成人综合另类久久久| 久久久精品区二区三区| 交换朋友夫妻互换小说| 精品国产国语对白av| 极品少妇高潮喷水抽搐| 热99re8久久精品国产| 亚洲专区中文字幕在线| 国产av又大| 午夜两性在线视频| 日韩大码丰满熟妇| 狂野欧美激情性bbbbbb| 久久免费观看电影| 老司机在亚洲福利影院| 亚洲av日韩在线播放| 无限看片的www在线观看| 中文字幕人妻丝袜制服| 午夜福利影视在线免费观看| 国产成人精品在线电影| 亚洲成人手机| 90打野战视频偷拍视频| 精品少妇内射三级| 人人妻人人澡人人爽人人夜夜| 啦啦啦中文免费视频观看日本| 精品少妇黑人巨大在线播放| 天堂8中文在线网| 国产伦理片在线播放av一区| 搡老乐熟女国产| 欧美变态另类bdsm刘玥| 爱豆传媒免费全集在线观看| 午夜福利视频在线观看免费| 女人精品久久久久毛片| 涩涩av久久男人的天堂| 女人精品久久久久毛片| 天天躁狠狠躁夜夜躁狠狠躁| 99热网站在线观看| 男女午夜视频在线观看| 久久久久久亚洲精品国产蜜桃av| 精品亚洲乱码少妇综合久久| 日本撒尿小便嘘嘘汇集6| 新久久久久国产一级毛片| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂| 亚洲精品乱久久久久久| 丝袜喷水一区| 大码成人一级视频| 精品一区二区三卡| 国产男人的电影天堂91| 精品视频人人做人人爽| 午夜成年电影在线免费观看| 成年动漫av网址| 男女国产视频网站| 午夜福利,免费看| 精品少妇久久久久久888优播| 亚洲久久久国产精品| 淫妇啪啪啪对白视频 | 久久精品国产亚洲av高清一级| 国产亚洲精品一区二区www | 国产成+人综合+亚洲专区| 大陆偷拍与自拍| 咕卡用的链子| 丝袜美腿诱惑在线| 欧美人与性动交α欧美软件| 满18在线观看网站| 亚洲精品一卡2卡三卡4卡5卡 | 91大片在线观看| 久久久久精品人妻al黑| 啦啦啦中文免费视频观看日本| 国产三级黄色录像| 在线观看免费高清a一片| 国产男女超爽视频在线观看| 欧美国产精品va在线观看不卡| 天天操日日干夜夜撸| 亚洲五月色婷婷综合| 国产精品成人在线| 天堂俺去俺来也www色官网| 男人操女人黄网站| 婷婷成人精品国产| 久9热在线精品视频| 天堂俺去俺来也www色官网| 国产黄频视频在线观看| 亚洲精品成人av观看孕妇| 亚洲美女黄色视频免费看| 91字幕亚洲| 首页视频小说图片口味搜索| 亚洲欧美色中文字幕在线| 日韩一卡2卡3卡4卡2021年| 99国产极品粉嫩在线观看| 国产区一区二久久| 亚洲国产看品久久| 91大片在线观看| 国产亚洲欧美在线一区二区| 黑人操中国人逼视频| 亚洲精品中文字幕一二三四区 | 欧美乱码精品一区二区三区| 51午夜福利影视在线观看| 9热在线视频观看99| 久久精品成人免费网站| 又紧又爽又黄一区二区| 国产熟女午夜一区二区三区| 日韩制服丝袜自拍偷拍| 成年女人毛片免费观看观看9 | 成年人黄色毛片网站| 老熟妇仑乱视频hdxx| 免费不卡黄色视频| 欧美在线黄色| 两个人看的免费小视频| 日韩三级视频一区二区三区| 一本久久精品| 亚洲精品自拍成人| 飞空精品影院首页| 国产国语露脸激情在线看| 日本五十路高清| 国产亚洲欧美精品永久| 午夜福利,免费看| 国产1区2区3区精品| 69av精品久久久久久 | 精品福利观看|