• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions?

    2019-08-16 01:20:46ZhiChengWang王志成ZhangZhangCui崔璋璋HuiXu徐琿XiaoFangZhai翟曉芳andYaLinLu陸亞林
    Chinese Physics B 2019年8期
    關(guān)鍵詞:志成

    Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐琿),Xiao-Fang Zhai(翟曉芳),3, and Ya-Lin Lu(陸亞林),2,3,?

    1Hefei National Laboratory for Physical Sciences at Microscale,University of Science and Technology of China,Hefei 230026,China

    2National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230026,China

    3Synergy Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: memristor,oxygen vacancy,Schottky barrier

    1. Introduction

    In recent years, the memristive switching devices have received intensive attention for the applications in the resistive random access memories(RRAM)because of their many superiorities such as the simple structure, outstanding performance, low power consumption, and fast switching.[1]The memory effect has been achieved by the switching between the high resistance state (HRS, OFF state) and the low resistance state (LRS, ON state), modulated by the electrically unipolar or bipolar bias. Great efforts have been made to discover the microscopic origins of resistive switching,which is important for understanding this physical phenomenon and is the key point for further enhancing the resistive switching performance. A variety of resistive switching devices have been fabricated while the mechanisms responsible for the memristive behaviors are heavily disputed. It can be concluded that the possible mechanisms include ion migration and thermochemical reaction, metal-insulator transition, charge trapping or detraping,etc.[2-6]These findings highlight the way such as ion doping and defect engineering to enhance the memristive performance, in which the oxygen vacancies are extensively studied because of the ideal investigating platform provided by the transition-metal oxides.

    Both of the binary and complex transition-metal perovskite oxides are widely used in the resistive switching devices due to the stable crystal structures and rich electronic properties.[7-16]Among them, SrRuO3(SRO) is a ferromagnetic metal with a high work function and Nb:SrTiO3(Nb:STO)is an n-type semiconductor.[17]The resistive switching behavior of SRO/Nb:STO heterostructures has been studied previously,[6]in which the Nb content was controlled and it was demonstrated that the dependence of electron charging in a self-trap on bias polarity leads to the resistive switching behavior, but how the oxygen vacancy concentration affects the resistive switching behavior has not been revealed. And the modulation of the Schottky barrier height to the memristive performance,which may determine the resistive switching behavior fundamentally,is still unclear.

    In this work, we systematically study the effects of oxygen vacancy concentration and Schottky barrier height on the resistive switching behavior of SRO/Nb:STO heterostructures prepared by pulsed laser deposition(PLD)technique assisted with reflective high-energy electron diffraction (RHEED).During the film growth, we control the oxygen partial pressure and laser fluence to tune the oxygen vacancy concentration in the SRO film. Besides, the Schottky barrier height can be modulated by both the oxygen vacancy concentration and the temperature. The resistance switching measure-ments of SRO/Nb:STO heterostructures demonstrate that all the films exhibit resistive switching behaviors that depend strongly on the concentration of oxygen vacancies and the temperature,and the heterostructures exhibit the best memristive performance at a smaller Schottky barrier height. These findings may be instructive to the future development of resistive switching devices with high performance.

    2. Experiments

    The SrRuO3thin films,each with a thickness of ~10 nm,were grown on (001)-oriented Nb:SrTiO3single-crystal substrates with Nb doping of 0.7 wt%by the PLD.A KrF excimer laser beam(λ =248 nm)was focused onto the SRO target at a repetition rate of 1 Hz,and the laser fluence was 1 J/cm2and 1.5 J/cm2separately. The substrate temperature was ~700°C in the whole deposition process. The oxygen pressures in the growth chamber were 0.1 Pa, 5 Pa, and 15 Pa respectively.After being deposited, the films were cooled down to room temperature under an oxygen pressure of 100 Pa. The x-ray diffraction(XRD)analysis was performed by using a Rigaku 4-circle diffractometer with a Cu Kα anode radiation (wavelength of 1.5406 ?A) to investigate the structural quality and lattice constants of SRO films. The temperature-dependent current-voltage (I-V) characteristics in a range from 300 K to 20 K were measured by a quantum design physical property measurement system(PPMS)and a Keithley 2400 Source Meter, in which the DC voltage was applied to the samples and the electric currents were measured. The films and substrates were connected by gold wires and silver paste.The Ru M-edge and O K-edge soft x-ray absorption spectrum(XAS)measurements were performed at beamline BL12B-a at the National Synchrotron Radiation Laboratory of China(NSRL).

    3. Results and discussion

    During the film growth,the ambient oxygen partial pressure and the laser fluence are varied to control the oxygen vacancy density in SRO films. Three groups of SRO thin films are grown under oxygen partial pressures of 0.1 Pa,5 Pa,and 15 Pa with a laser fluence of 1 J/cm2respectively and one group of SRO thin films were grown at 5 Pa with a laser fluence of 1.5 J/cm2. Figure 1(a) shows the XRD ω-2θ scans around the Nb:STO (001) and (002) Bragg reflections of the SRO films. All the samples are aligned well on the XRD instrument platform, the acquired patterns have strong comparability. As figure 1(a) shows, all the thin films exhibit the expected a (001)-oriented structure. The out-of-plane lattice constant c values of the SRO films are obtained from the positions of (001) and (002) Bragg reflections and the results are summarized in Fig. 1(b), where the red point represents the c value of SRO film grown at 5 Pa with a laser fluence of 1.5 J/cm2. We consider ±0.02°(the step we used during the XRD test) as the error, and the peak positions are indeed within this range. As can be seen, the c value decreases with oxygen partial pressure and laser fluence increasing. This is consistent with previous reports on SRO films,and the reason is ascribed to the variation of oxygen vacancies under different growth conditions that the perovskite-oxide lattice will expand when there are more oxygen vacancies.[18,19]

    Fig.1. (a)XRD ω-2θ scans of SRO/Nb:STO heterostructures,and(b)outof-plane lattice constants of SRO films calculated from the XRD SRO(001)and(002)peaks. The red point represents the SRO film grown at 5 Pa and 1.5 J/cm2.

    Figure 2 shows the I-V characteristics of the SRO/Nb:STO samples measured in a temperature range from 300 K to 20 K. The positive bias is defined as the electric current flowing from the Nb:STO substrate to the SRO layer(see the device geometry in Fig. 2(a)). The electric currents are measured at each temperature,following a voltage sweep from 0 V→-5 V→0 V→5 V →0 V.As seen in Figs.2(b)-2(e),the IV characteristics of all the heterostructures especially for the SRO films grown at 5 Pa and 15 Pa, clearly show a rectifying effect that arises from the Schottky barrier between the SRO film and Nb:STO substrate. In the forward bias(negative voltage), upon increasing the voltage, the width of the depletion region and the built-in electric field in Nb:STO decrease.While in the reverse bias (positive voltage), upon increasing the voltage, the width of the depletion region and the built-in electric field increase. Furthermore,each of the I-V curves of all the samples in the reverse bias region shows a clear hysteretic response to the resistance,which is the evidence of the colossal electroresistance (CER) effect. The heterostructures can be electrically switched between the low resistance state(with voltage sweeping from 0 V to 5 V) and the high resistance state(with voltage sweeping from 5 V to 0 V).

    Figure 2(f) summarizes the resistance ratios of HRS to LRS (ROFF/RONor ILRS/IHRS) at 20 K of the SRO/Nb:STO heterostructures under different conditions. It can be seen that the I-V characteristics of the four samples are very different. For the films grown at 5 Pa and 15 Pa, the largest resistance ratio of HRS to LRS (ILRS/IHRS) at the same bias voltage range between 0 V and 5 V increases significantly with temperature decreasing.At the lowest measuring temperature of 20 K,ILRS/IHRSof the film grown at 5 Pa and 1 J/cm2reaches to the largest value of ~10 at ~2.4 V.While for the SRO films grown at 0.1 Pa and 15 Pa, the largest ILRS/IHRSvalues decrease to about 1.3 and 2.1, respectively. Besides,the I-V curves of the SRO films grown at 0.1 Pa are twisted,which indicates that the excessive oxygen vacancies may disturb the resistive switching behavior. This phenomenon is probably caused by the degenerated interfacial epitaxial quality and microstructural disorders in SRO films at such a low oxygen pressure.[20,21]Furthermore, as the laser fluence increases from 1 J/cm2to 1.5 J/cm2,a similar effect is observed that the largest ILRS/IHRSvalues of SRO films grown at 5 Pa and 1.5 J/cm2are about 2.4. These results indicate that the appropriate control of oxygen vacancy concentration is important for enhancing the resistive switching performance of SRO/Nb:STO heterostructures. It should be noted that we prepare a series of samples under different fabrication condition and perform repeated measurements on each sample, and the results are highly repeatable.

    Fig.2. (a)Device geometry of SRO/Nb:STO heterostructure. A DC voltage is applied across the film and substrate. (b)-(e)Temperature-dependent current(I)-volatge (V) characteristics of the SRO/Nb:STO heterostructures measured at temperatures ranging from 300 K to 20 K. Up arrow and down arrow indicate voltage sweep direction. (f)Ratios of HRS current to LRS current(ILRS/IHRS)at 20 K calculated from panels(b)-(e).

    To verify the change of oxygen vacancy concentration in the SRO films prepared at different oxygen pressures and laser fluence, we perform the Ru M-edge and O K-edge x-ray absorption spectrum measurement. Figure 3(a)shows the Ru M-edge x-ray absorption spectra. The two main peaks at 460 eV(indicated by dashed line)and 482 eV originate from the transitions from spin-orbit splitted Ru 3p3/2and 3p1/2to the Ru 4d.[22]The spectral profiles of the SRO films are very similar and the peak positions do not show notable shift, indicating that the valence states of Ru ions do not change in these samples. Figure 3(b)shows the O K-edge x-ray absorption spectra of the SRO films. The absorption peaks around 529 eV(indicated by dashed line)are due to the transitions from O 1s to the hybridized state of O 2p and Ru 4d t2gorbitals,and the group of peaks in a range from 531 eV to 544 eV are due to the transitions to Ru 4d eg,Sr 4d,and Ru 5sp states.[23-26]Though the peak positions of Ru 4d t2gstates of different SRO films have no distinguishable change, it can be clearly seen that the intensity of this peak increases with oxygen partial pressure and laser fluence increasing (see Fig. 3(c)). It is well known that the x-ray absorption spectrum peak intensity is closely related to the density of unoccupied states.[27]The decrease of oxygen vacancy concentration in the SRO film can increase the density of electron holes in the O 2p and Ru 4d hybridized state,leading to higher intensity of the Ru 4d t2gabsorption peak. It should be noted that though the valance of Ru does not change,the Sr 4d absorption peak shifts monotonically to lower energy with oxygen vacancy concentration decreasing. It has been reported previously that the valence of Ru is more stable than that of Sr in different chemical environment.[28]So it is possible that the Sr valence changes while the Ru valence remains unchanged in the SRO films with different oxygen vacancy concentrations. Thus, the O K-edge x-ray absorption spectrum gives the clear evidence that the concentration of oxygen vacancies in the SRO film decreases with the increase of oxygen pressure and laser fluence, which is consistent with the x-ray diffraction result. It indicates that the distinct memristive characteristics of the SRO/Nb:STO heterostructures at the same temperature are due to the change of the oxygen vacancies in the SRO films.

    Fig.3. (a)Ru M-edge and(b)O K-edge XAS spectra of SRO films. (c)Magnified Ru 4d t2g absorption peaks in the O K-edge XAS spectra of SRO films. All the XAS spectra are normalized to the incoming photon flux and the post-edge intensity.

    To check whether the Schottky barrier height(illustrated in Fig. 4(a)) of the SRO/Nb:STO heterostructures is changed by oxygen vacancy and temperature, the standard semiconductor Schottky barrier model is used to calculate the Schottky barrier height.[17,18]This model is expressed as the following relationship between I and V under forward bias(negative voltage)

    Here,q is the electron charge,kBis the Boltzmann’s constant,V is the applied bias, T is the temperature, S is the junction area,A?is the Richardson’s constant,ΦBis the Schottky barrier height at zero bias,and n is an ideality factor. According to Eq. (1), the ΦBvalue can be obtained by fitting the I-V curves through using the thermionic emission theory. Figure 4(b) shows the fitting of I-V curves measured at 20 K under forward bias. In the low V region prior to the saturation of I because of series resistance such as electrode/SRO and electrode/Nb:STO resistance, the logI-V characteristics fit well with the straight lines. It can be clearly seen that the intersection of I at V =0 is the largest for the sample grown at 5 Pa and 1 J/cm2,which means the smallest ΦBvalue. The derived ΦBvalues from 300 K to 20 K are illustrated in Fig.4(c).As can be seen,the Schottky barrier height can be changed by both the oxygen vacancies and the temperature. At temperatures below 140 K,the ΦBvalues of the SRO/Nb:STO grown at 5 Pa and 1 J/cm2are the smallest,accompanied by the notable enhancement of memristive performance of this sample.Besides,for each sample,ΦBdecreases significantly with temperature lowing.We show that for the SRO films grown at 5 Pa and 15 Pa, the memristive performances are significantly improved at lower temperatures. This can be attributed to the reduced Schottky barrier height of the SRO/Nb:STO junction.

    Fig.4. (a)Sketch of Schottky barrier height of SRO/Nb:STO system. (b)Fitting of|I|-V data measured at 20 K to thermionic emission equation for SRO/Nb:STO heterostructures. (c)Temperature dependence of Schottky barrier heights of the SRO/Nb:STO heterostructures.

    4. Conclusions

    In this work, we systematically study the effects of the oxygen vacancy concentration and Schottky barrier height on the resistive switching behavior of SRO/Nb:STO heterostructures. The XRD and XAS measurements demonstrate that the oxygen vacancy concentrations in the SRO films are reduced by increasing the growth oxygen partial pressure and laser fluence. The fitting of the rectifying I-V characteristics of the films by using the thermionic emission theory shows that the Schottky barrier height decreases with temperature lowering.The temperature dependent resistive switching measurements demonstrate the performance of the SRO/Nb:STO junctions can be enhanced by modulating the oxygen vacancy concentration and temperature. The resistive switching behavior of the SRO/Nb:STO junctions can be driven by the migration of oxygen ions or the charging effect at the Schottky interface.Both mechanisms are closely related to the oxygen vacancy concentration and Schottky barrier height. Our results could be instructive to future develop the high-performance resistive switching metal-oxide/semiconductor devices.

    猜你喜歡
    志成
    百家齊爭鳴,文化共薈萃
    “雙減”背景下小學(xué)數(shù)學(xué)減負(fù)增效的實踐與思考
    眾志成誠迎戰(zhàn)特大暴雨
    《天·水》《時空》
    文化交流(2020年3期)2020-03-18 16:38:47
    胡釋中、劉虹、肖文莊、張志成作品
    連志成:一心向戰(zhàn)
    周志成:我們要從跟跑邁向領(lǐng)跑
    太空探索(2016年1期)2016-07-12 09:56:03
    Statistical Law of High-Energy Fullerene and Its Derivatives Passing Through Graphene?
    天天都是感恩節(jié)
    Detached-eddy simulation of wing-tip vortex in the near field of NACA 0015 airfoil*
    999精品在线视频| 狠狠狠狠99中文字幕| 国产精品一区二区三区四区免费观看 | 久久久久久大精品| 听说在线观看完整版免费高清| 天堂动漫精品| 久久精品aⅴ一区二区三区四区| 老司机靠b影院| 免费在线观看视频国产中文字幕亚洲| 中文字幕av在线有码专区| 欧美大码av| 欧美高清成人免费视频www| 精品国产亚洲在线| 成人三级黄色视频| 亚洲国产精品sss在线观看| 人妻夜夜爽99麻豆av| 欧美性长视频在线观看| 免费观看精品视频网站| 久久热在线av| 黄色a级毛片大全视频| 好看av亚洲va欧美ⅴa在| 999久久久国产精品视频| 在线永久观看黄色视频| 亚洲av成人av| 日韩欧美三级三区| 2021天堂中文幕一二区在线观| 国产精品99久久99久久久不卡| 欧美乱色亚洲激情| 一本大道久久a久久精品| 在线十欧美十亚洲十日本专区| 此物有八面人人有两片| 天天添夜夜摸| 久9热在线精品视频| 午夜激情福利司机影院| tocl精华| 制服丝袜大香蕉在线| 亚洲国产欧洲综合997久久,| 在线永久观看黄色视频| 五月玫瑰六月丁香| 国产一区二区激情短视频| 久久久国产精品麻豆| 亚洲九九香蕉| av视频在线观看入口| e午夜精品久久久久久久| 50天的宝宝边吃奶边哭怎么回事| 免费一级毛片在线播放高清视频| 欧美日本视频| 精品第一国产精品| 欧美3d第一页| 嫁个100分男人电影在线观看| 给我免费播放毛片高清在线观看| 亚洲欧美日韩高清专用| tocl精华| 色尼玛亚洲综合影院| 曰老女人黄片| 两个人免费观看高清视频| 99国产精品一区二区蜜桃av| 国产精品永久免费网站| 国产一区二区三区视频了| 日本精品一区二区三区蜜桃| 非洲黑人性xxxx精品又粗又长| 免费一级毛片在线播放高清视频| 91字幕亚洲| 免费高清视频大片| 国产高清有码在线观看视频 | 中亚洲国语对白在线视频| 欧美日韩中文字幕国产精品一区二区三区| 国产精品一及| 在线永久观看黄色视频| 亚洲,欧美精品.| 亚洲人成77777在线视频| 日本一二三区视频观看| 久久国产精品人妻蜜桃| 超碰成人久久| 精品一区二区三区视频在线观看免费| 变态另类成人亚洲欧美熟女| 欧美激情久久久久久爽电影| 欧美精品啪啪一区二区三区| 天天一区二区日本电影三级| 熟妇人妻久久中文字幕3abv| 一a级毛片在线观看| 日韩成人在线观看一区二区三区| 美女免费视频网站| 五月伊人婷婷丁香| 欧美av亚洲av综合av国产av| 午夜福利18| 99re在线观看精品视频| 国产精品,欧美在线| 一个人免费在线观看的高清视频| 亚洲国产欧美一区二区综合| 精品国内亚洲2022精品成人| 亚洲精品在线观看二区| 十八禁网站免费在线| 51午夜福利影视在线观看| 欧美在线一区亚洲| 久久久久久大精品| 精品国产乱码久久久久久男人| 色综合站精品国产| 国产亚洲精品久久久久5区| 18禁裸乳无遮挡免费网站照片| 精品欧美一区二区三区在线| 女同久久另类99精品国产91| 国产不卡一卡二| 久久香蕉国产精品| 国产精品九九99| 日韩欧美一区二区三区在线观看| 久久这里只有精品中国| 日韩欧美精品v在线| 1024香蕉在线观看| 亚洲精品国产精品久久久不卡| cao死你这个sao货| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区精品视频观看| 国产精品影院久久| 久久99热这里只有精品18| 啦啦啦免费观看视频1| 男女午夜视频在线观看| 午夜影院日韩av| 在线免费观看的www视频| 99在线人妻在线中文字幕| 亚洲五月天丁香| 桃色一区二区三区在线观看| 国产视频一区二区在线看| 天堂√8在线中文| 亚洲人与动物交配视频| 亚洲色图av天堂| 国产精品,欧美在线| 欧美日韩一级在线毛片| 又黄又爽又免费观看的视频| 亚洲精品美女久久av网站| 一进一出抽搐动态| 曰老女人黄片| 国产一区二区在线av高清观看| 一本久久中文字幕| 久久久国产成人精品二区| 正在播放国产对白刺激| 成人18禁高潮啪啪吃奶动态图| 精品国内亚洲2022精品成人| 黄频高清免费视频| 精品免费久久久久久久清纯| 国产精品美女特级片免费视频播放器 | 国产在线精品亚洲第一网站| 精品电影一区二区在线| 黄频高清免费视频| 精品国内亚洲2022精品成人| 亚洲自拍偷在线| 99久久无色码亚洲精品果冻| 男女那种视频在线观看| 亚洲乱码一区二区免费版| 少妇裸体淫交视频免费看高清 | xxx96com| 国产熟女xx| 麻豆久久精品国产亚洲av| 久久久国产欧美日韩av| 日韩精品免费视频一区二区三区| 国产一区在线观看成人免费| 一二三四社区在线视频社区8| 亚洲无线在线观看| 人成视频在线观看免费观看| 三级毛片av免费| 国产探花在线观看一区二区| 午夜a级毛片| 久久午夜亚洲精品久久| 在线十欧美十亚洲十日本专区| 亚洲美女视频黄频| 在线国产一区二区在线| 色av中文字幕| 国产伦在线观看视频一区| 亚洲精品在线美女| 99re在线观看精品视频| 久久人妻福利社区极品人妻图片| 美女黄网站色视频| 别揉我奶头~嗯~啊~动态视频| 国产熟女xx| 欧美在线黄色| 久久亚洲真实| 欧美日韩一级在线毛片| 国产精品九九99| 丝袜人妻中文字幕| 久99久视频精品免费| 成熟少妇高潮喷水视频| 天堂av国产一区二区熟女人妻 | 日韩欧美在线乱码| 老司机福利观看| 天堂av国产一区二区熟女人妻 | 在线观看www视频免费| 丁香欧美五月| 视频区欧美日本亚洲| 亚洲黑人精品在线| 国产单亲对白刺激| 国产成人av激情在线播放| 麻豆成人av在线观看| 美女大奶头视频| 最近最新中文字幕大全免费视频| 国产成人av激情在线播放| 亚洲美女黄片视频| 1024手机看黄色片| 亚洲色图av天堂| 久久久久久国产a免费观看| 熟女少妇亚洲综合色aaa.| 国产一区二区三区视频了| 岛国视频午夜一区免费看| 日韩大码丰满熟妇| 中文字幕精品亚洲无线码一区| www.精华液| 淫妇啪啪啪对白视频| 白带黄色成豆腐渣| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久av网站| 青草久久国产| 日本三级黄在线观看| 亚洲一区中文字幕在线| 19禁男女啪啪无遮挡网站| 成人亚洲精品av一区二区| 午夜福利高清视频| www.www免费av| 亚洲成av人片在线播放无| 亚洲欧美日韩无卡精品| 久久中文字幕人妻熟女| 1024手机看黄色片| 日韩欧美国产在线观看| 欧美高清成人免费视频www| 999久久久国产精品视频| 久久精品国产清高在天天线| 久久精品成人免费网站| 日本在线视频免费播放| 亚洲专区国产一区二区| 国产欧美日韩一区二区三| 欧美日韩一级在线毛片| 国产黄片美女视频| 制服丝袜大香蕉在线| 怎么达到女性高潮| 精品国产美女av久久久久小说| 久久久精品国产亚洲av高清涩受| 久久国产精品影院| 岛国在线免费视频观看| 日韩欧美在线乱码| 日韩三级视频一区二区三区| 中文字幕最新亚洲高清| 亚洲中文字幕一区二区三区有码在线看 | 日本在线视频免费播放| 丁香六月欧美| 国产精品综合久久久久久久免费| 欧美黄色片欧美黄色片| a在线观看视频网站| 老司机福利观看| 色老头精品视频在线观看| avwww免费| 国产精品久久视频播放| 亚洲,欧美精品.| 亚洲人成伊人成综合网2020| 黄色 视频免费看| 久久亚洲真实| 757午夜福利合集在线观看| 国产精品久久久人人做人人爽| 又大又爽又粗| 最近最新中文字幕大全电影3| 在线观看免费视频日本深夜| 久久99热这里只有精品18| 久久精品国产亚洲av高清一级| 国产真实乱freesex| 男女那种视频在线观看| 色哟哟哟哟哟哟| 日韩欧美三级三区| 1024手机看黄色片| 真人做人爱边吃奶动态| 婷婷精品国产亚洲av在线| 亚洲国产欧美人成| 久9热在线精品视频| 亚洲av片天天在线观看| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美在线二视频| 日韩欧美在线乱码| 日韩欧美国产一区二区入口| 欧美黄色片欧美黄色片| 在线观看免费午夜福利视频| 精品国产乱子伦一区二区三区| 少妇粗大呻吟视频| 亚洲av日韩精品久久久久久密| 国产成人欧美在线观看| 国产av在哪里看| 麻豆成人午夜福利视频| 午夜两性在线视频| a级毛片在线看网站| 国产熟女xx| 黄色视频不卡| 欧美一级a爱片免费观看看 | 亚洲成a人片在线一区二区| 又黄又爽又免费观看的视频| 色噜噜av男人的天堂激情| 69av精品久久久久久| aaaaa片日本免费| 男男h啪啪无遮挡| 午夜视频精品福利| 波多野结衣高清作品| 亚洲人成伊人成综合网2020| 国产伦一二天堂av在线观看| 午夜福利在线在线| 日韩av在线大香蕉| 9191精品国产免费久久| 亚洲人成77777在线视频| 免费在线观看日本一区| 中文字幕人妻丝袜一区二区| xxx96com| 91麻豆精品激情在线观看国产| 精品午夜福利视频在线观看一区| 岛国在线免费视频观看| 熟妇人妻久久中文字幕3abv| 91av网站免费观看| 国产1区2区3区精品| 成人三级黄色视频| 母亲3免费完整高清在线观看| 午夜福利成人在线免费观看| av福利片在线观看| 五月伊人婷婷丁香| 啪啪无遮挡十八禁网站| 亚洲人成网站高清观看| 日日爽夜夜爽网站| 十八禁网站免费在线| 欧美大码av| 欧美黑人精品巨大| 成人18禁在线播放| 草草在线视频免费看| 欧美成人免费av一区二区三区| 又粗又爽又猛毛片免费看| 国产精品久久久久久人妻精品电影| 黄色丝袜av网址大全| 欧美日韩精品网址| 免费av毛片视频| 老鸭窝网址在线观看| 一本精品99久久精品77| 我的老师免费观看完整版| 黄色视频不卡| 成年免费大片在线观看| 国产免费男女视频| 婷婷六月久久综合丁香| 亚洲成人久久爱视频| 欧美三级亚洲精品| 精品免费久久久久久久清纯| 中文字幕久久专区| 在线视频色国产色| 国产精品 国内视频| 午夜久久久久精精品| 国产午夜福利久久久久久| 国产一区二区在线av高清观看| 午夜老司机福利片| 搡老熟女国产l中国老女人| 99re在线观看精品视频| 亚洲五月天丁香| 观看免费一级毛片| 欧美黑人精品巨大| 伦理电影免费视频| 欧美av亚洲av综合av国产av| 1024手机看黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机靠b影院| 国产精品爽爽va在线观看网站| 91国产中文字幕| 一区二区三区国产精品乱码| 色在线成人网| 日韩大码丰满熟妇| 国产熟女xx| 亚洲av电影在线进入| 亚洲av中文字字幕乱码综合| 亚洲av成人av| 精品午夜福利视频在线观看一区| 免费在线观看影片大全网站| www.999成人在线观看| 黄色片一级片一级黄色片| 免费一级毛片在线播放高清视频| 亚洲精品在线观看二区| 我要搜黄色片| xxx96com| 亚洲成人精品中文字幕电影| 男女视频在线观看网站免费 | 国产精品,欧美在线| 久久久久精品国产欧美久久久| 日韩欧美一区二区三区在线观看| 两个人看的免费小视频| 五月玫瑰六月丁香| 国产1区2区3区精品| 欧美一区二区国产精品久久精品 | 日韩欧美三级三区| 免费在线观看日本一区| 久久久国产精品麻豆| 亚洲国产欧美网| 听说在线观看完整版免费高清| 亚洲国产日韩欧美精品在线观看 | 亚洲精品粉嫩美女一区| 精品久久久久久久人妻蜜臀av| 欧美性猛交黑人性爽| 看黄色毛片网站| 九九热线精品视视频播放| 精品高清国产在线一区| 黄色视频,在线免费观看| 久久精品亚洲精品国产色婷小说| 亚洲人成77777在线视频| 国产成人av激情在线播放| 亚洲国产精品sss在线观看| 18禁美女被吸乳视频| 伦理电影免费视频| 99久久久亚洲精品蜜臀av| 男女之事视频高清在线观看| www.熟女人妻精品国产| 亚洲精品一区av在线观看| 高清毛片免费观看视频网站| 免费在线观看视频国产中文字幕亚洲| 18禁国产床啪视频网站| 免费高清视频大片| 90打野战视频偷拍视频| 欧美3d第一页| √禁漫天堂资源中文www| 亚洲中文日韩欧美视频| 美女免费视频网站| 亚洲欧美一区二区三区黑人| 女警被强在线播放| 999久久久精品免费观看国产| 欧美黄色片欧美黄色片| 亚洲精品久久国产高清桃花| 丰满人妻熟妇乱又伦精品不卡| 日韩精品青青久久久久久| 国产高清视频在线观看网站| 久久久久国内视频| 亚洲av成人一区二区三| 久久天堂一区二区三区四区| 久9热在线精品视频| 啦啦啦观看免费观看视频高清| 国产黄片美女视频| 村上凉子中文字幕在线| 久久久精品欧美日韩精品| 精品欧美一区二区三区在线| 人妻丰满熟妇av一区二区三区| 全区人妻精品视频| 岛国视频午夜一区免费看| 三级毛片av免费| 国产精品乱码一区二三区的特点| 两个人视频免费观看高清| 婷婷亚洲欧美| 高清毛片免费观看视频网站| ponron亚洲| 精品无人区乱码1区二区| 国产三级在线视频| 成熟少妇高潮喷水视频| 国产私拍福利视频在线观看| 亚洲 欧美一区二区三区| or卡值多少钱| 在线十欧美十亚洲十日本专区| 亚洲av熟女| av福利片在线观看| 亚洲色图 男人天堂 中文字幕| 日韩欧美 国产精品| 热99re8久久精品国产| 亚洲成人精品中文字幕电影| 国产精品永久免费网站| АⅤ资源中文在线天堂| 国产精品野战在线观看| 我要搜黄色片| 国产乱人伦免费视频| 日本一二三区视频观看| 日韩欧美 国产精品| 精品高清国产在线一区| 九九热线精品视视频播放| 国产精品亚洲美女久久久| 成人午夜高清在线视频| 国产亚洲精品久久久久久毛片| 嫩草影院精品99| 亚洲男人的天堂狠狠| 婷婷精品国产亚洲av| 在线观看一区二区三区| 禁无遮挡网站| av福利片在线观看| a级毛片在线看网站| 久久久久国产精品人妻aⅴ院| 露出奶头的视频| 一级毛片精品| 变态另类丝袜制服| 国产区一区二久久| 手机成人av网站| а√天堂www在线а√下载| 中文资源天堂在线| 亚洲av日韩精品久久久久久密| 怎么达到女性高潮| 亚洲,欧美精品.| 黑人欧美特级aaaaaa片| 日韩精品免费视频一区二区三区| 可以在线观看的亚洲视频| 婷婷亚洲欧美| 淫秽高清视频在线观看| 99精品在免费线老司机午夜| 国产精品一区二区三区四区久久| 亚洲avbb在线观看| 日韩欧美精品v在线| 国产成人一区二区三区免费视频网站| 亚洲精品中文字幕在线视频| 嫁个100分男人电影在线观看| 国产精品综合久久久久久久免费| 欧美一级毛片孕妇| 亚洲av美国av| 久久精品国产综合久久久| 一级片免费观看大全| 一区二区三区高清视频在线| xxxwww97欧美| 宅男免费午夜| 亚洲av片天天在线观看| 麻豆av在线久日| ponron亚洲| 成人三级做爰电影| 99精品欧美一区二区三区四区| 色综合婷婷激情| 久久亚洲真实| 午夜a级毛片| 男女那种视频在线观看| 欧美日韩亚洲综合一区二区三区_| 一级黄色大片毛片| 午夜老司机福利片| 国产蜜桃级精品一区二区三区| 国产激情偷乱视频一区二区| 欧美成人性av电影在线观看| 悠悠久久av| 精品午夜福利视频在线观看一区| 一二三四社区在线视频社区8| 熟妇人妻久久中文字幕3abv| 国产精华一区二区三区| 免费看a级黄色片| 级片在线观看| 天天添夜夜摸| 国产精品久久久久久久电影 | 国产高清视频在线播放一区| videosex国产| 婷婷精品国产亚洲av| 亚洲人与动物交配视频| 国内揄拍国产精品人妻在线| 天堂av国产一区二区熟女人妻 | 欧美高清成人免费视频www| 男女视频在线观看网站免费 | 可以免费在线观看a视频的电影网站| 亚洲,欧美精品.| 欧美乱色亚洲激情| 青草久久国产| 美女免费视频网站| 日日夜夜操网爽| 国产精品久久久久久人妻精品电影| 国产爱豆传媒在线观看 | 黄色视频不卡| 日韩精品中文字幕看吧| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜a级毛片| 波多野结衣巨乳人妻| 欧美黑人巨大hd| 此物有八面人人有两片| 久久久久精品国产欧美久久久| 精品久久久久久久毛片微露脸| 亚洲专区国产一区二区| 免费在线观看亚洲国产| 国产精品免费一区二区三区在线| 一本大道久久a久久精品| 亚洲色图 男人天堂 中文字幕| 啦啦啦免费观看视频1| 看免费av毛片| 母亲3免费完整高清在线观看| 亚洲av成人不卡在线观看播放网| 精品久久久久久久久久久久久| av在线天堂中文字幕| 国产视频一区二区在线看| av片东京热男人的天堂| 久久中文看片网| 亚洲av中文字字幕乱码综合| 日韩av在线大香蕉| 男人舔奶头视频| 精品久久久久久久久久久久久| 国产精品av久久久久免费| 日韩中文字幕欧美一区二区| 中文亚洲av片在线观看爽| 中文字幕精品亚洲无线码一区| 黄色女人牲交| 国产伦一二天堂av在线观看| 国产欧美日韩一区二区精品| 亚洲精品久久成人aⅴ小说| 亚洲av电影在线进入| 日本成人三级电影网站| 久久久国产成人精品二区| 一二三四社区在线视频社区8| 亚洲av五月六月丁香网| 免费在线观看成人毛片| 免费电影在线观看免费观看| 欧美性长视频在线观看| 国产麻豆成人av免费视频| 亚洲成人国产一区在线观看| 欧美性长视频在线观看| 女警被强在线播放| 1024香蕉在线观看| 搞女人的毛片| 女警被强在线播放| 精品乱码久久久久久99久播| 国内精品一区二区在线观看| 99热6这里只有精品| 国产私拍福利视频在线观看| 国产精品乱码一区二三区的特点| 国产麻豆成人av免费视频| 黄片小视频在线播放| 少妇熟女aⅴ在线视频| 午夜激情福利司机影院| 亚洲精品色激情综合| 白带黄色成豆腐渣| 日本撒尿小便嘘嘘汇集6| 黄片小视频在线播放| 婷婷亚洲欧美| 夜夜夜夜夜久久久久| 亚洲av成人av| 一级黄色大片毛片| 久久久久国产一级毛片高清牌| 国产精品日韩av在线免费观看| 亚洲国产高清在线一区二区三| 老司机福利观看| 黄色视频,在线免费观看|