• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Statistical Law of High-Energy Fullerene and Its Derivatives Passing Through Graphene?

    2016-05-14 12:51:07ZhiChengXu徐志成JiaLeWen溫家樂WeiRongZhong鐘偉榮andLiangWei魏亮
    Communications in Theoretical Physics 2016年3期
    關(guān)鍵詞:志成

    Zhi-Cheng Xu(徐志成),Jia-Le Wen(溫家樂),Wei-Rong Zhong(鐘偉榮), and Liang Wei(魏亮)

    Department of Physics and Siyuan Laboratory,College of Science and Engineering,Jinan University,Guangzhou 510632,China

    1 Introduction

    Graphene,as the thinnest material as well as the strongest material in the world,has many excellent performances in mechanical,electronic,thermal,and optical aspects.Recently,the potential applications of graphene with nanopores have aroused much attention,such as seawater desalination,biosensors,ionic sieves of high selectivity and transparency,single-molecule genomic screening devices and so on.[1?5]Simultaneously,a wide range of applications of functionalized graphene have become possible,such as polymer composites,optoelectronic materials and devices and biomedical applications.[6?10]Subnanometer pores can be produced in graphene by employing a focused electron beam.[11]However,it is not feasible to employ this method widely due to its low efficiency and high cost.Since more kinetic energy of heavy ions compared with electrons could be transferred to the target atoms,heavy ions are the most prospective candidate for modifying the morphology of graphene with high efficiency and low cost.In this regard,cluster ion beam is an aggregate of ions which has characteristic performances compared with single ion from the view of not only material science but also ion beam engineering.Both simulation and experiment express that large damage in graphene can be produced by cluster ion beam.[12?14]In the past twenty years,many clusters with special properties have been discovered,e.g.C240,C120,C70,C60,C20,C60@H,C60@He,C60@Ar,C60@Ne,C60@Li,et al.[15?17]Regrettably,the new clusters are only caused by few researchers’attention on the production of graphene nanopores.

    In previous works,the mechanisms of the nanopore formation still not be known clearly and the effect of the environmental temperature is always not considered in the process of creating nanopores in graphene.For these reasons,we show our systematic molecular dynamics investigation on the nanopore formation induced by high energy clusters through controlling the environmental temperature,the velocity of clusters and the species of clusters.To understand the process of producing graphene nanopores in fluctuating environment more precisely,we use the simple method of statistical analyses to get its new nature.The microscopic mechanisms of the nanopore formation are observed in details.The results suggest that the cluster ion beam is a good tool to produce graphene nanopores efficiently as well as with low cost.

    2 Simulation Methodology

    In our molecular dynamics simulations,the clusters contain C70,C60,C60@He,C60@Ar,C60@Ne and C60@Li.The structures of these derivatives of C60 are displayed in Fig.1.The square-shaped graphene is in the xy plane and the z axis is perpendicular to the graphene plane.In the perfect graphene,the length(along the x axis)and the width(along the y axis)of the graphene layer(containing 984 atoms)are 5.08 nm and 5.02 nm,respectively.For studying the effect of defect,we also build a defective graphene by removing a carbon atom in the center of perfect graphene.The outside layer carbon atoms in graphene are fixed during simulations.The center of different clusters is initially placed above the center of the graphene at a large distance(1.5 nm)where there is no interaction between different clusters and graphene.The average velocities of different clusters are perpendicular to the surface of graphene.Additionally,we only consider the energy loss originated from elastic collisions between the cluster and the graphene because nuclear stopping prevails during the ion-graphene interaction process.The electronic stopping,such as ionization and excitation,is not taken into consideration in the calculations since it is not important for the heat conductance of graphene.

    Fig.1 (Color online)The structure of C60@M;the red cage is C60,the blue ball in the cage is the atom of M,here M can be Ar,Ne,Li or He.Graphene is on xy plane.

    The empirical potential developed by Tersoff and Brenner[18]is a good method of describing the formation and the breaking of carbon-carbon bond in the system,so we employ Tersoff–Brenner potentials to simulate the interaction of carbon atoms in graphene and different clusters.The Lenard–Jones potentials[19]form

    are used for van der Waals interactions of gas-gas,gascarbon and metal-carbon interactions.This pair potential has distance and energy parameters obtained with semiempirical combining rules from the Lenard–Jones ε and σ parameters of the carbon atoms and the atoms in C60

    where “e”and “C”refer to the atoms in C60 and carbon atoms,respectively.We employ σCC=0.34 nm and εCC=28 K,while parameters of the atoms in C60 are given for some relevant systems in Table 1.[20?21]Bernshtein et al.[22]have used the Lenard–Jones potentials to successfully simulate the behavior of Li in C60,it can accurately describe the interaction between Li and the carbon atom of C60 in our simulations.

    Table 1 Parameters of Lenard–Jones potentials for different atoms.

    Langevin heat baths are employed to control the temperature of the system.After graphene reaches the state of thermal equilibrium,fullerene and its derivatives will begin to be heated and move to graphene with corresponding velocity.The shape of fullerene and its derivatives be still sphere before bombardment.We integrate the equations of motion by Verlet method.[23]The time step is 0.55 fs.

    We use the probability of passing through graphene(Pth)and the probability of the atom in C60 passing through graphene alone(Ped)to describe the bombardment.Here Pthis related to the production efficiency of nanopores.The equations are defined as

    respectively;where N is the frequency of total simulations,Nthand Nedare the frequency of at least one atom of a cluster passing through graphene and the frequency of the atom in C60 passing through graphene alone when all carbon atoms of C60 can not pass through graphene,respectively.

    3 Results and Discussion

    In our previous studies,[24?25]we have observed that the capability of destroying carbon-carbon bonds in graphene bombarded by C60 obviously increases with the environmental temperature.To analyze the process of passing through graphene when considering thermal fluctuations,we can get its new nature by using simple statistical analyses.

    In this paper,the transitional region is defined as the region where the probability of passing through graphene ranges from 0 to 1.For further demonstrating the phenomenon of passing through graphene in the transitional region,we try to control the following factors:the environmental temperature,the species of clusters and the structure of graphene.In our simulations,we will mimic bombardments between graphene and different clusters,which have the same kinetic energy(839.75 eV).Therefore,the corresponding velocity of C60,C60@He,C60@Ne,C60@Ar,C60@Li,and C70 are 15.00 km/s,14.92 km/s,14.59 km/s,14.21 km/s,14.86 km/s and 12.86 km/s,respectively.Usually,even if C60@M have the same temperature,the local thermal fl uctuation can be different.For avoiding the influence of thermal fluctuations,we do 1000 simulations repeatedly to get their average values.The differences between the 1000 simulations are the initial velocity of thermal fluctuation for every atom(carbon and M atom).As displayed in Figs.2(a),the passing probabilities of C60,C60@He,C60@Ne,C60@Ar,and C60@Li obviously increase with the environmental temperature.C60 can easily pass through the defective graphene at the same temperature.However,C70 passes through the graphene difficultly.One can also figure out that C60 implanted with Li can pass through the graphene more easily than C60 contained with Ar.

    Fig.2 (Color online)(a)and(b)the probability for passing through graphene(Pth)vs.the temperature and the maximum number of broken bonds in graphene,respectively;(c)and(d)the probability of the atom in C60 pass through graphene when all carbon atoms of C60 can not pass through graphene vs.the temperature and the maximum number of broken bonds(MNB),respectively;(e)the frequency vs.the maximum number of broken bonds in graphene;the length of broken carbon-carbon bond is longer than 0.21 nm[18]in simulations.

    The number of broken bonds in graphene was used to de fi ne the extent of damage in graphene.Since the extent of damage in graphene can evolve during bombardment,we can use the maximum number of broken bonds in graphene to measure the extent of damage during bombardment.This method of the maximum number of broken bonds is used for discovering the mechanism of passing through graphene in next simulations.At 500 K,we do 400 00 simulations repeatedly by using different clusters with 839.75 eV.The results are presented in Figs.2(b),2(d)and 2(e). As shown in Figs.2(b)and 2(d),the probability of He in C60 passing through graphene alone decreases with the maximum number of broken bonds quickly.It is illustrated that the behavior of He in C60 is slightly associated with the capability of passing through graphene and then we can consider that the capability of C60@He passing through graphene is almost consistent with C60’s.In Fig.2(b),probabilities of different clusters passing through graphene suddenly increase with the maximum number of broken bonds when the maximum number of broken bonds is larger than 8(as the red line shown in Fig.2(e)).It shows that the clusters need to create a big enough hole for passing through graphene.In Fig.2(e),we can see that all different distributions of the maximum number of broken bonds agree with the normal distribution and probabilities of different clusters passing through graphene strongly depend on their distributions of the maximum number of broken bonds.Therefore,we can understand that,even if the graphene is bombarded by different clusters,the probability of passing through graphene closely relates to the maximum number of broken bonds in graphene.

    For further knowing the mechanism of passing through graphene,we still apply the method of the maximum number of broken bonds to discuss it.We simulate C60 with 839.75 eV energy to bombard graphene at 500 K.The initial structure of breaking carbon-carbon bonds affects the next revolution of destroying bonds in graphene greatly.As shown in Figs.3(a)and 3(b),the initial structure of destroying bonds at 101.2 fs was displayed by two differ-ent perspectives.In this simulation,four different areas of breaking bonds near the deformed boundary are generated firstly in the process of bombardment.Simultaneously,the uncertainty of bond-breaking number and location closing to the boundary in the initial structure will lead to the uncertainty of generating nanopores in graphene.But the capability of breaking bonds depends on the velocity of clusters and the strength of carbon-carbon bonds in graphene significantly.As shown in Fig.3(c),the length of carbon-carbon bonds obviously increases with the temperature.High temperature means more energy transmission from C60@M to graphene in the collisions.Then the capability of destroying bonds is enhanced.

    Fig.3 (Color online)(a)The top view of C60(with energy 839.75 eV or the velocity of C60 is 15.0 km/s)bombarding graphene at 101.2 fs and the blue dash circle is the boundary of depression;(b)The oblique view of graphene at 101.2 fs after bombardment;the four pink arrows point to four different areas with broken bonds.The environmental temperature is 500 K in both figures.(c)The minimum,mean and maximum lengths of carboncarbon bond in thermal equilibrium vs.temperature.

    Based on the initial structure of graphene,the interaction between the graphene and the cluster also plays an important role in the behavior of breaking bonds for C60 passing through graphene.As shown in Figs.4(a),4(b),and 4(c).The three different maximum number of broken bonds are 3,10 and 17,respectively.We can find that the size of small holes created in the initial structure of graphene can constantly evolve under the pressure of C60.The area closing to the center of graphene can be generated small holes by C60 at some time.For this reason,the holes have a higher possibility to form a bigger hole with the adjacent holes for C60 passing through graphene.As displayed in Fig.2(b),the probability of C60 passing through graphene can justify that the possibility of forming a bigger hole increases with the maximum number of broken bonds.

    To discover the distribution of the maximum number of broken bonds in graphene bombarded by C60,we do 40000 simulations for more precise.In Figs.4(d)and 4(e),the normal distribution of the maximum number of broken bonds obviously moves from small to large number of broken bonds as the velocity of C60 increasing.All three different kinds of probabilities of passing through graphene depend on the maximum number of broken bonds strongly.However,when the maximum number of broken bonds is between 9 and 25,the probability of C60 with high energy is larger than the one of C60 with low energy clearly.

    Fig.4 (Color online)Three different maximum numbers of broken bonds selected from 1000 simulations at 500 K are 3(a),10(b)and 17(c),respectively.Three red arrows point to three different areas with broken bonds.The energy of C60 is 839.75 eV.The probability of passing through graphene(d)and the frequency(e)depend on the maximum number of broken bonds.The total frequency of simulations is 40 000 for every average velocity.The temperature is 500 K.

    According to the above research,our results not only o ff er insights for further understanding the mechanism of generating nanopore in graphene,but also lead to the potential applications about the functionalization of graphene and the production of nanopores,such as seawater desalination,biosensors,ionic sieves of high selectivity and transparency,single-molecule genomic screening devices,polymer composites,optoelectronic materials and devices,and so on.

    4 Conclusion

    In conclusion,we have studied the probability of passing through graphene bombarded by different clusters by controlling the environmental temperature,the species of clusters,the incident velocity of clusters and the defect of graphene.In the transitional region of passing through graphene,the temperature of heat baths can obviously influence the probability of passing through graphene significantly.The velocity of clusters changes the passing probability by influencing the energy of clusters.The species of clusters can affect the probability through the deformation of structure during bombardment.The defect of graphene also can obviously improve the probability of passing through graphene due to the instability of carboncarbon bonds near the boundary of defect.Thus,in order to obtain more efficient production of nanopores,we should select the contained atom properly and use right bombard velocity and temperature.Our results may not only offer additional insights for further understanding the mechanism of generating nanopores in graphene,but also lead to some potential applications in the functionalization of graphene and the production of nanopores at low cost and with high efficiency.

    Acknowledgments

    Our simulations were supported by the high performance computing platform of Jinan University and Siyuan clusters of the physics department.ZWR thanks Y.Xiao at City University of Hong Kong for his contribution in plotting.

    References

    [1]T.Humplik,J.Lee,S.C.O’Hern,et al.,Nanotechnology 22(2011)292001.

    [2]Z.S.Siwy and M.Davenport,Nature Nanotech.5(2010)697.

    [3]K.Sint,B.Wang,and P.J.Kr′al,Am.Chem.Soc.130(2008)16448.

    [4]S.Garaj,W.Hubbard,A.Reina,et al.,Nature(London)467(2010)190.

    [5]G.F.Schneider,S.W.Kowalczyk,V.E.Calado,et al.,Nano Lett.10(2010)3163.

    [6]T.Ramanathan,A.A.Abdala,S.Stankovich,et al.,Nature(London)3(2008)327.

    [7]S.Stankovich,D.A.Dikin,G.H.B.Dommett,et al.,Nature(London)442(2006)282.

    [8]Y.F.Xu,Z.B.Liu,X.L.Zhang,et al.,Adv.Mater 21(2009)1275.

    [9]Z.Liu,J.T.Robinson,X.M.Sun,and H.J.Dai,J.Am.Chem.Soc.130(2008)10876.

    [10]Y.N.Chan,T.Wong,F.Byrne,M.Kavallaris,and V.Bulmus,Biomacromolecules 9(2008)1826.

    [11]M.D.Fischbein and M.Drndi,Appl.Phys.Lett.93(2008)113107.

    [12]N.Inui,K.Mochiji,K.Moritani,and N.Nakashima,Appl.Phys.A:Mater.Sci.Process.98(2010)787.

    [13]Y.C.Cheng,H.T.Wang,Z.Y.Zhu,et al.,Phys.Rev.B 85(2012)073406.

    [14]S.J.Zhao,J.M.Xue,L.Liang,Y.G.Wang,and S.Yan,J.Phys.Chem.C 116(2012)11776.

    [15]M.Waiblinger,K.Lips,W.Harneit,A.Weidinger,E.Dietel,and A.Hirsch,Phys.Rev.B 64(2001)159901.

    [16]V.Bernshtein and I.Oref,Phys.Rev.A 62(2000)033201.

    [17]L.Pang and F.Brisse,J.Phys.Chem.97(1993)8562.

    [18]D.W.Brenner,Phys.Rev.B 42(1990)9458.

    [19]L.A.Girifalco,M.Hodak,and R.S.Lee,Phys.Rev.B 62(2000)13104.

    [20]G.Stan,M.J.Bojan,S.Curtarolo,S.M.Gatica,and M.W.Cole,Phys.Rev.B 62(2000)2173.

    [21]T.Halicioglu,G.M.Pound,Physica Status Solidi(a)30(1975)619.

    [22]V.Bernshtein and I.Oref,Phys.Rev.A 62(2000)033201.

    [23]W.C.Swope,H.C.Andersen,P.H.Berens,and K.R.Wilson,J.Chem.Phys.76(1982)637.

    [24]Z.C.Xu and W.R.Zhong,Acta Phys.Sin.8(2014)083401.

    [25]Z.C.Xu and W.R.Zhong,Appl.Phys.Lett.104(2014)261907.

    猜你喜歡
    志成
    百家齊爭(zhēng)鳴,文化共薈萃
    “雙減”背景下小學(xué)數(shù)學(xué)減負(fù)增效的實(shí)踐與思考
    眾志成誠迎戰(zhàn)特大暴雨
    《天·水》《時(shí)空》
    文化交流(2020年3期)2020-03-18 16:38:47
    胡釋中、劉虹、肖文莊、張志成作品
    Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions?
    連志成:一心向戰(zhàn)
    周志成:我們要從跟跑邁向領(lǐng)跑
    太空探索(2016年1期)2016-07-12 09:56:03
    天天都是感恩節(jié)
    Detached-eddy simulation of wing-tip vortex in the near field of NACA 0015 airfoil*
    亚洲av成人精品一区久久| www.av在线官网国产| 国产精品一区www在线观看| 啦啦啦视频在线资源免费观看| 一区在线观看完整版| 母亲3免费完整高清在线观看 | 欧美性感艳星| 女人精品久久久久毛片| 亚洲国产av新网站| 色婷婷av一区二区三区视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产欧美日韩综合在线一区二区| 欧美xxⅹ黑人| 精品99又大又爽又粗少妇毛片| xxxhd国产人妻xxx| 亚洲精品av麻豆狂野| 搡老乐熟女国产| 菩萨蛮人人尽说江南好唐韦庄| 我的老师免费观看完整版| 国产欧美亚洲国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲不卡免费看| 美女国产高潮福利片在线看| 亚洲人与动物交配视频| 秋霞在线观看毛片| 国产精品久久久久成人av| 老司机影院成人| 少妇熟女欧美另类| 久久国产亚洲av麻豆专区| 久久久久精品久久久久真实原创| 国产白丝娇喘喷水9色精品| 少妇被粗大的猛进出69影院 | 伊人亚洲综合成人网| 亚洲av不卡在线观看| 亚洲av福利一区| 久久久午夜欧美精品| 久久久久久人妻| 国产精品人妻久久久影院| 交换朋友夫妻互换小说| 午夜影院在线不卡| 亚洲精品国产av成人精品| 亚洲国产av影院在线观看| 不卡视频在线观看欧美| 亚洲av综合色区一区| 国产精品一国产av| 三级国产精品片| 久久ye,这里只有精品| 制服丝袜香蕉在线| tube8黄色片| 99久久综合免费| 99久久精品一区二区三区| 最近中文字幕高清免费大全6| 97超视频在线观看视频| 日韩av在线免费看完整版不卡| 熟妇人妻不卡中文字幕| 国产在线一区二区三区精| 亚州av有码| 人妻夜夜爽99麻豆av| 国产不卡av网站在线观看| 99热这里只有精品一区| 亚洲婷婷狠狠爱综合网| 亚洲激情五月婷婷啪啪| 日本黄色日本黄色录像| 97在线人人人人妻| 一本大道久久a久久精品| 91久久精品国产一区二区三区| 男人操女人黄网站| 国产白丝娇喘喷水9色精品| 欧美激情 高清一区二区三区| 一级黄片播放器| 久久韩国三级中文字幕| 18禁裸乳无遮挡动漫免费视频| 制服丝袜香蕉在线| 91久久精品电影网| 亚洲精华国产精华液的使用体验| 中文字幕久久专区| 另类精品久久| 精品国产乱码久久久久久小说| 91精品三级在线观看| 日韩视频在线欧美| 亚洲第一av免费看| av有码第一页| 人妻一区二区av| 高清在线视频一区二区三区| 亚洲国产色片| 黄片播放在线免费| 91精品国产国语对白视频| 中文欧美无线码| 亚洲精华国产精华液的使用体验| 国产高清三级在线| 亚洲精品第二区| 国产亚洲最大av| 亚洲精品日韩av片在线观看| 久久久久久久久久人人人人人人| 乱人伦中国视频| 性色avwww在线观看| 欧美少妇被猛烈插入视频| 亚洲国产av新网站| 亚洲av日韩在线播放| 亚洲人成网站在线观看播放| 一级黄片播放器| 最近中文字幕高清免费大全6| 桃花免费在线播放| 高清黄色对白视频在线免费看| 成人午夜精彩视频在线观看| 亚洲国产精品成人久久小说| 成人国语在线视频| 欧美日韩一区二区视频在线观看视频在线| 美女视频免费永久观看网站| 欧美 亚洲 国产 日韩一| 一本—道久久a久久精品蜜桃钙片| 波野结衣二区三区在线| 国产欧美日韩一区二区三区在线 | 国产精品久久久久久av不卡| 日本wwww免费看| 欧美激情 高清一区二区三区| 久久久精品区二区三区| 日日摸夜夜添夜夜爱| 如日韩欧美国产精品一区二区三区 | 国产一区二区三区av在线| 乱码一卡2卡4卡精品| 一本久久精品| 午夜激情久久久久久久| 69精品国产乱码久久久| 日本黄色日本黄色录像| 久久久国产欧美日韩av| 国产精品久久久久久久久免| 少妇猛男粗大的猛烈进出视频| 日韩强制内射视频| 男人操女人黄网站| 亚洲一区二区三区欧美精品| 人妻制服诱惑在线中文字幕| 97超碰精品成人国产| 亚洲av成人精品一区久久| 国产精品99久久99久久久不卡 | 色哟哟·www| 制服人妻中文乱码| 激情五月婷婷亚洲| 丰满乱子伦码专区| 精品久久蜜臀av无| 自拍欧美九色日韩亚洲蝌蚪91| 免费观看无遮挡的男女| 黄色毛片三级朝国网站| 啦啦啦中文免费视频观看日本| 久久精品久久精品一区二区三区| 午夜福利影视在线免费观看| 久久精品国产亚洲网站| 99热这里只有精品一区| 一个人免费看片子| 精品亚洲成国产av| 少妇被粗大的猛进出69影院 | 日韩大片免费观看网站| 中文精品一卡2卡3卡4更新| 中文精品一卡2卡3卡4更新| 日韩中文字幕视频在线看片| 青春草亚洲视频在线观看| 日产精品乱码卡一卡2卡三| 国产av精品麻豆| 国产成人一区二区在线| 免费看光身美女| 国产精品不卡视频一区二区| 国产一区有黄有色的免费视频| 午夜免费观看性视频| 久久av网站| 亚洲av日韩在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 日韩成人av中文字幕在线观看| 性色avwww在线观看| 三上悠亚av全集在线观看| 亚洲av成人精品一区久久| 大香蕉久久网| 熟女电影av网| 日韩av在线免费看完整版不卡| 精品国产一区二区久久| 亚洲欧洲日产国产| 日本欧美国产在线视频| 国产亚洲精品第一综合不卡 | 国产片内射在线| 欧美 亚洲 国产 日韩一| 欧美成人午夜免费资源| 午夜免费观看性视频| 精品人妻熟女毛片av久久网站| 亚洲精品美女久久av网站| 国产有黄有色有爽视频| 成人黄色视频免费在线看| 日韩大片免费观看网站| 国产亚洲午夜精品一区二区久久| 国产日韩一区二区三区精品不卡 | 国产精品久久久久久精品电影小说| 精品人妻熟女av久视频| 纯流量卡能插随身wifi吗| 在线观看免费视频网站a站| 成人午夜精彩视频在线观看| 80岁老熟妇乱子伦牲交| 久久亚洲国产成人精品v| 人妻一区二区av| 97在线人人人人妻| 国产精品一二三区在线看| 99久久综合免费| 18禁裸乳无遮挡动漫免费视频| 久久99一区二区三区| 天天影视国产精品| 国产精品一区www在线观看| 午夜免费鲁丝| 99热国产这里只有精品6| 美女脱内裤让男人舔精品视频| 午夜精品国产一区二区电影| 亚洲,一卡二卡三卡| 国产女主播在线喷水免费视频网站| 国产乱人偷精品视频| 一本久久精品| 啦啦啦在线观看免费高清www| 亚洲av日韩在线播放| 国产成人午夜福利电影在线观看| 下体分泌物呈黄色| 丰满迷人的少妇在线观看| av又黄又爽大尺度在线免费看| 国产成人精品婷婷| 国产精品欧美亚洲77777| 国产日韩一区二区三区精品不卡 | 午夜老司机福利剧场| 在现免费观看毛片| 最近2019中文字幕mv第一页| 国产亚洲一区二区精品| 欧美亚洲日本最大视频资源| 在线观看人妻少妇| 国产日韩欧美在线精品| 18+在线观看网站| 国产成人一区二区在线| 国产av精品麻豆| 亚洲激情五月婷婷啪啪| 日韩精品有码人妻一区| 十分钟在线观看高清视频www| 精品久久久久久久久av| 国产精品女同一区二区软件| 精品少妇内射三级| 曰老女人黄片| 99热全是精品| 国产亚洲av片在线观看秒播厂| 秋霞伦理黄片| 久久鲁丝午夜福利片| 国产精品久久久久久久电影| 国产女主播在线喷水免费视频网站| 欧美亚洲 丝袜 人妻 在线| 欧美日韩视频精品一区| 国产亚洲欧美精品永久| 在线观看国产h片| 国产成人a∨麻豆精品| 黄色视频在线播放观看不卡| 天美传媒精品一区二区| 国精品久久久久久国模美| 秋霞在线观看毛片| 乱人伦中国视频| 国产精品人妻久久久久久| 免费看光身美女| 国产熟女欧美一区二区| 亚洲美女黄色视频免费看| 亚洲国产欧美在线一区| 国产高清国产精品国产三级| 毛片一级片免费看久久久久| 午夜激情av网站| 婷婷色av中文字幕| 日韩精品免费视频一区二区三区 | 少妇人妻精品综合一区二区| 熟妇人妻不卡中文字幕| 日韩精品免费视频一区二区三区 | 能在线免费看毛片的网站| 亚洲综合精品二区| 亚洲精品国产av蜜桃| 欧美人与善性xxx| 制服丝袜香蕉在线| 五月伊人婷婷丁香| 国产成人免费观看mmmm| 大码成人一级视频| 欧美另类一区| 春色校园在线视频观看| 99热这里只有是精品在线观看| 国产乱人偷精品视频| 伦精品一区二区三区| 国产免费一级a男人的天堂| 制服诱惑二区| 国产精品免费大片| 一区二区三区四区激情视频| 熟女人妻精品中文字幕| 狠狠精品人妻久久久久久综合| 久久久a久久爽久久v久久| 看免费成人av毛片| 男女啪啪激烈高潮av片| 九九久久精品国产亚洲av麻豆| 黑人欧美特级aaaaaa片| 欧美日韩国产mv在线观看视频| 久久人人爽人人片av| 欧美精品高潮呻吟av久久| 不卡视频在线观看欧美| 亚洲激情五月婷婷啪啪| 久久精品久久久久久噜噜老黄| 成人漫画全彩无遮挡| 曰老女人黄片| 熟女人妻精品中文字幕| 高清毛片免费看| 国产精品国产av在线观看| 永久网站在线| 精品国产乱码久久久久久小说| xxx大片免费视频| 亚洲婷婷狠狠爱综合网| 超碰97精品在线观看| 日韩一区二区视频免费看| .国产精品久久| 男女啪啪激烈高潮av片| 中文精品一卡2卡3卡4更新| 男男h啪啪无遮挡| 麻豆乱淫一区二区| 日本91视频免费播放| 亚洲经典国产精华液单| 亚洲色图 男人天堂 中文字幕 | 国产精品一区二区在线观看99| 亚洲精品久久久久久婷婷小说| 我的女老师完整版在线观看| 亚洲,一卡二卡三卡| 激情五月婷婷亚洲| 欧美日韩精品成人综合77777| 99九九线精品视频在线观看视频| 亚洲四区av| 国产亚洲精品第一综合不卡 | 精品人妻在线不人妻| 99国产综合亚洲精品| 欧美人与性动交α欧美精品济南到 | 国产成人精品福利久久| 久久99一区二区三区| 亚洲精品日韩av片在线观看| 男女高潮啪啪啪动态图| 最后的刺客免费高清国语| 久久精品国产a三级三级三级| www.av在线官网国产| 欧美精品一区二区免费开放| 爱豆传媒免费全集在线观看| 少妇猛男粗大的猛烈进出视频| 成人二区视频| 亚洲无线观看免费| 日本黄色日本黄色录像| 国产伦理片在线播放av一区| 亚洲无线观看免费| 久久久国产精品麻豆| .国产精品久久| 寂寞人妻少妇视频99o| 亚洲第一区二区三区不卡| 少妇人妻久久综合中文| 亚洲av日韩在线播放| 极品人妻少妇av视频| 日本色播在线视频| 国产一区二区在线观看日韩| 街头女战士在线观看网站| 免费观看a级毛片全部| 免费高清在线观看视频在线观看| 亚洲国产精品专区欧美| 国产免费视频播放在线视频| 午夜激情福利司机影院| 97超碰精品成人国产| 亚洲精品,欧美精品| 观看美女的网站| 天堂俺去俺来也www色官网| 中国美白少妇内射xxxbb| 一区二区三区精品91| 亚洲欧洲精品一区二区精品久久久 | 亚洲性久久影院| 国产不卡av网站在线观看| 日韩制服骚丝袜av| 三级国产精品片| 欧美日韩一区二区视频在线观看视频在线| 午夜激情久久久久久久| 久久韩国三级中文字幕| 欧美日韩av久久| 97超碰精品成人国产| 国产黄频视频在线观看| 日本猛色少妇xxxxx猛交久久| 欧美精品亚洲一区二区| 美女中出高潮动态图| 国产av码专区亚洲av| 日韩中文字幕视频在线看片| 能在线免费看毛片的网站| 乱人伦中国视频| 国产成人精品在线电影| 欧美人与性动交α欧美精品济南到 | 人成视频在线观看免费观看| 亚洲欧洲日产国产| 国产亚洲一区二区精品| 熟女av电影| 制服诱惑二区| 国模一区二区三区四区视频| av在线app专区| 一级毛片黄色毛片免费观看视频| 极品人妻少妇av视频| 老司机亚洲免费影院| 国产一区有黄有色的免费视频| 美女大奶头黄色视频| 久久久久人妻精品一区果冻| 久久人人爽人人片av| 亚洲无线观看免费| 中文欧美无线码| 黄色怎么调成土黄色| av线在线观看网站| 中文字幕人妻丝袜制服| 亚洲精品色激情综合| 2021少妇久久久久久久久久久| 国产色爽女视频免费观看| 中文天堂在线官网| 校园人妻丝袜中文字幕| 国产精品久久久久久精品古装| 亚洲欧美成人精品一区二区| 男女边摸边吃奶| 国产精品女同一区二区软件| 久久久久久人妻| 看十八女毛片水多多多| 日韩制服骚丝袜av| 亚洲高清免费不卡视频| videos熟女内射| 亚洲av欧美aⅴ国产| 丰满乱子伦码专区| 久久人人爽人人片av| 午夜免费男女啪啪视频观看| 国产精品国产三级专区第一集| 国产高清国产精品国产三级| 欧美 日韩 精品 国产| 黑丝袜美女国产一区| 最近最新中文字幕免费大全7| 99热6这里只有精品| 最近中文字幕2019免费版| 2018国产大陆天天弄谢| 国产乱来视频区| 国产高清不卡午夜福利| 国产高清国产精品国产三级| 久久精品国产亚洲av天美| 亚洲精品aⅴ在线观看| 中文字幕最新亚洲高清| 国产色爽女视频免费观看| 亚洲一区二区三区欧美精品| 插阴视频在线观看视频| 欧美激情国产日韩精品一区| 一级片'在线观看视频| 熟妇人妻不卡中文字幕| 国产黄色免费在线视频| 午夜老司机福利剧场| 久久精品国产亚洲av涩爱| 大片电影免费在线观看免费| 香蕉精品网在线| 男女啪啪激烈高潮av片| 大片电影免费在线观看免费| 国产爽快片一区二区三区| 国产成人精品久久久久久| 99九九线精品视频在线观看视频| 午夜影院在线不卡| av福利片在线| 狂野欧美白嫩少妇大欣赏| 成人影院久久| 中国国产av一级| 久久久久久久亚洲中文字幕| 精品国产乱码久久久久久小说| 国产精品国产三级国产专区5o| 亚洲激情五月婷婷啪啪| 亚洲国产色片| 夜夜看夜夜爽夜夜摸| 亚洲综合精品二区| 国产成人精品在线电影| 国产成人免费无遮挡视频| 亚洲精华国产精华液的使用体验| 免费不卡的大黄色大毛片视频在线观看| 久久精品久久久久久久性| 日本与韩国留学比较| 性色av一级| 日本色播在线视频| 妹子高潮喷水视频| 亚洲精品久久久久久婷婷小说| 王馨瑶露胸无遮挡在线观看| videosex国产| 卡戴珊不雅视频在线播放| 国产毛片在线视频| 欧美精品国产亚洲| 久久久久久人妻| 制服丝袜香蕉在线| 国产黄片视频在线免费观看| 国产精品麻豆人妻色哟哟久久| 91午夜精品亚洲一区二区三区| 插阴视频在线观看视频| 18+在线观看网站| 欧美国产精品一级二级三级| 一级爰片在线观看| 精品久久久久久电影网| 午夜福利视频在线观看免费| 色吧在线观看| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 97在线人人人人妻| 亚洲国产av新网站| 高清毛片免费看| 又大又黄又爽视频免费| 蜜桃国产av成人99| 午夜av观看不卡| 超碰97精品在线观看| 亚洲精品久久久久久婷婷小说| 熟女人妻精品中文字幕| 我的老师免费观看完整版| 久久国内精品自在自线图片| 日本-黄色视频高清免费观看| 王馨瑶露胸无遮挡在线观看| 午夜视频国产福利| 国产片内射在线| 亚洲丝袜综合中文字幕| xxx大片免费视频| 国产欧美日韩一区二区三区在线 | 亚洲,一卡二卡三卡| 欧美激情极品国产一区二区三区 | 精品少妇久久久久久888优播| 热99久久久久精品小说推荐| 成人国语在线视频| 欧美日韩亚洲高清精品| 街头女战士在线观看网站| 免费观看的影片在线观看| 亚洲成人av在线免费| 国精品久久久久久国模美| 欧美变态另类bdsm刘玥| 国产精品国产三级国产av玫瑰| 国产日韩欧美亚洲二区| 亚洲欧美成人综合另类久久久| 特大巨黑吊av在线直播| 免费av不卡在线播放| 国产男人的电影天堂91| 免费黄频网站在线观看国产| 亚洲国产av影院在线观看| 久热久热在线精品观看| 日本与韩国留学比较| 97精品久久久久久久久久精品| 在线天堂最新版资源| 丝袜美足系列| www.av在线官网国产| 久久综合国产亚洲精品| 欧美老熟妇乱子伦牲交| 国产片内射在线| 亚洲精品久久成人aⅴ小说 | 亚洲国产最新在线播放| 日韩成人伦理影院| 一级毛片电影观看| 99久久精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 精品人妻一区二区三区麻豆| 国产成人免费观看mmmm| 亚洲美女搞黄在线观看| 精品国产乱码久久久久久小说| 久久久精品区二区三区| 亚洲一区二区三区欧美精品| 亚洲国产色片| 国产女主播在线喷水免费视频网站| 国产亚洲精品久久久com| 精品国产露脸久久av麻豆| 国精品久久久久久国模美| 91精品三级在线观看| 久久人人爽av亚洲精品天堂| 热99久久久久精品小说推荐| 97在线视频观看| 成人综合一区亚洲| 一级a做视频免费观看| 黄色欧美视频在线观看| 午夜久久久在线观看| 男女无遮挡免费网站观看| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品国产精品| 国产国语露脸激情在线看| 狠狠精品人妻久久久久久综合| 五月伊人婷婷丁香| 嘟嘟电影网在线观看| 欧美日韩视频精品一区| 青春草国产在线视频| 亚洲精品久久久久久婷婷小说| 最近的中文字幕免费完整| 欧美精品一区二区大全| 国产片特级美女逼逼视频| 亚洲精品乱码久久久久久按摩| 国产视频内射| 最新中文字幕久久久久| 久久久久久人妻| 人人妻人人澡人人看| 久久精品久久久久久久性| 在线观看免费日韩欧美大片 | 欧美三级亚洲精品| 国产精品久久久久成人av| 你懂的网址亚洲精品在线观看| 人妻人人澡人人爽人人| 高清视频免费观看一区二区| 青青草视频在线视频观看| 欧美激情 高清一区二区三区| 丰满迷人的少妇在线观看| 日日摸夜夜添夜夜添av毛片| 成人影院久久| 日日摸夜夜添夜夜添av毛片| 成人18禁高潮啪啪吃奶动态图 | 亚洲av日韩在线播放| 一本一本综合久久| 国产免费一级a男人的天堂| 男人爽女人下面视频在线观看| 高清黄色对白视频在线免费看| 欧美日韩av久久| 22中文网久久字幕| 精品人妻熟女av久视频| 日韩人妻高清精品专区| 亚洲精品第二区| 最新的欧美精品一区二区| 韩国高清视频一区二区三区| 成年美女黄网站色视频大全免费 | 国产精品.久久久| av卡一久久| 人体艺术视频欧美日本| 亚洲四区av| 成人毛片a级毛片在线播放| 51国产日韩欧美| 中文欧美无线码| 在线亚洲精品国产二区图片欧美 |