• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Statistical Law of High-Energy Fullerene and Its Derivatives Passing Through Graphene?

    2016-05-14 12:51:07ZhiChengXu徐志成JiaLeWen溫家樂WeiRongZhong鐘偉榮andLiangWei魏亮
    Communications in Theoretical Physics 2016年3期
    關(guān)鍵詞:志成

    Zhi-Cheng Xu(徐志成),Jia-Le Wen(溫家樂),Wei-Rong Zhong(鐘偉榮), and Liang Wei(魏亮)

    Department of Physics and Siyuan Laboratory,College of Science and Engineering,Jinan University,Guangzhou 510632,China

    1 Introduction

    Graphene,as the thinnest material as well as the strongest material in the world,has many excellent performances in mechanical,electronic,thermal,and optical aspects.Recently,the potential applications of graphene with nanopores have aroused much attention,such as seawater desalination,biosensors,ionic sieves of high selectivity and transparency,single-molecule genomic screening devices and so on.[1?5]Simultaneously,a wide range of applications of functionalized graphene have become possible,such as polymer composites,optoelectronic materials and devices and biomedical applications.[6?10]Subnanometer pores can be produced in graphene by employing a focused electron beam.[11]However,it is not feasible to employ this method widely due to its low efficiency and high cost.Since more kinetic energy of heavy ions compared with electrons could be transferred to the target atoms,heavy ions are the most prospective candidate for modifying the morphology of graphene with high efficiency and low cost.In this regard,cluster ion beam is an aggregate of ions which has characteristic performances compared with single ion from the view of not only material science but also ion beam engineering.Both simulation and experiment express that large damage in graphene can be produced by cluster ion beam.[12?14]In the past twenty years,many clusters with special properties have been discovered,e.g.C240,C120,C70,C60,C20,C60@H,C60@He,C60@Ar,C60@Ne,C60@Li,et al.[15?17]Regrettably,the new clusters are only caused by few researchers’attention on the production of graphene nanopores.

    In previous works,the mechanisms of the nanopore formation still not be known clearly and the effect of the environmental temperature is always not considered in the process of creating nanopores in graphene.For these reasons,we show our systematic molecular dynamics investigation on the nanopore formation induced by high energy clusters through controlling the environmental temperature,the velocity of clusters and the species of clusters.To understand the process of producing graphene nanopores in fluctuating environment more precisely,we use the simple method of statistical analyses to get its new nature.The microscopic mechanisms of the nanopore formation are observed in details.The results suggest that the cluster ion beam is a good tool to produce graphene nanopores efficiently as well as with low cost.

    2 Simulation Methodology

    In our molecular dynamics simulations,the clusters contain C70,C60,C60@He,C60@Ar,C60@Ne and C60@Li.The structures of these derivatives of C60 are displayed in Fig.1.The square-shaped graphene is in the xy plane and the z axis is perpendicular to the graphene plane.In the perfect graphene,the length(along the x axis)and the width(along the y axis)of the graphene layer(containing 984 atoms)are 5.08 nm and 5.02 nm,respectively.For studying the effect of defect,we also build a defective graphene by removing a carbon atom in the center of perfect graphene.The outside layer carbon atoms in graphene are fixed during simulations.The center of different clusters is initially placed above the center of the graphene at a large distance(1.5 nm)where there is no interaction between different clusters and graphene.The average velocities of different clusters are perpendicular to the surface of graphene.Additionally,we only consider the energy loss originated from elastic collisions between the cluster and the graphene because nuclear stopping prevails during the ion-graphene interaction process.The electronic stopping,such as ionization and excitation,is not taken into consideration in the calculations since it is not important for the heat conductance of graphene.

    Fig.1 (Color online)The structure of C60@M;the red cage is C60,the blue ball in the cage is the atom of M,here M can be Ar,Ne,Li or He.Graphene is on xy plane.

    The empirical potential developed by Tersoff and Brenner[18]is a good method of describing the formation and the breaking of carbon-carbon bond in the system,so we employ Tersoff–Brenner potentials to simulate the interaction of carbon atoms in graphene and different clusters.The Lenard–Jones potentials[19]form

    are used for van der Waals interactions of gas-gas,gascarbon and metal-carbon interactions.This pair potential has distance and energy parameters obtained with semiempirical combining rules from the Lenard–Jones ε and σ parameters of the carbon atoms and the atoms in C60

    where “e”and “C”refer to the atoms in C60 and carbon atoms,respectively.We employ σCC=0.34 nm and εCC=28 K,while parameters of the atoms in C60 are given for some relevant systems in Table 1.[20?21]Bernshtein et al.[22]have used the Lenard–Jones potentials to successfully simulate the behavior of Li in C60,it can accurately describe the interaction between Li and the carbon atom of C60 in our simulations.

    Table 1 Parameters of Lenard–Jones potentials for different atoms.

    Langevin heat baths are employed to control the temperature of the system.After graphene reaches the state of thermal equilibrium,fullerene and its derivatives will begin to be heated and move to graphene with corresponding velocity.The shape of fullerene and its derivatives be still sphere before bombardment.We integrate the equations of motion by Verlet method.[23]The time step is 0.55 fs.

    We use the probability of passing through graphene(Pth)and the probability of the atom in C60 passing through graphene alone(Ped)to describe the bombardment.Here Pthis related to the production efficiency of nanopores.The equations are defined as

    respectively;where N is the frequency of total simulations,Nthand Nedare the frequency of at least one atom of a cluster passing through graphene and the frequency of the atom in C60 passing through graphene alone when all carbon atoms of C60 can not pass through graphene,respectively.

    3 Results and Discussion

    In our previous studies,[24?25]we have observed that the capability of destroying carbon-carbon bonds in graphene bombarded by C60 obviously increases with the environmental temperature.To analyze the process of passing through graphene when considering thermal fluctuations,we can get its new nature by using simple statistical analyses.

    In this paper,the transitional region is defined as the region where the probability of passing through graphene ranges from 0 to 1.For further demonstrating the phenomenon of passing through graphene in the transitional region,we try to control the following factors:the environmental temperature,the species of clusters and the structure of graphene.In our simulations,we will mimic bombardments between graphene and different clusters,which have the same kinetic energy(839.75 eV).Therefore,the corresponding velocity of C60,C60@He,C60@Ne,C60@Ar,C60@Li,and C70 are 15.00 km/s,14.92 km/s,14.59 km/s,14.21 km/s,14.86 km/s and 12.86 km/s,respectively.Usually,even if C60@M have the same temperature,the local thermal fl uctuation can be different.For avoiding the influence of thermal fluctuations,we do 1000 simulations repeatedly to get their average values.The differences between the 1000 simulations are the initial velocity of thermal fluctuation for every atom(carbon and M atom).As displayed in Figs.2(a),the passing probabilities of C60,C60@He,C60@Ne,C60@Ar,and C60@Li obviously increase with the environmental temperature.C60 can easily pass through the defective graphene at the same temperature.However,C70 passes through the graphene difficultly.One can also figure out that C60 implanted with Li can pass through the graphene more easily than C60 contained with Ar.

    Fig.2 (Color online)(a)and(b)the probability for passing through graphene(Pth)vs.the temperature and the maximum number of broken bonds in graphene,respectively;(c)and(d)the probability of the atom in C60 pass through graphene when all carbon atoms of C60 can not pass through graphene vs.the temperature and the maximum number of broken bonds(MNB),respectively;(e)the frequency vs.the maximum number of broken bonds in graphene;the length of broken carbon-carbon bond is longer than 0.21 nm[18]in simulations.

    The number of broken bonds in graphene was used to de fi ne the extent of damage in graphene.Since the extent of damage in graphene can evolve during bombardment,we can use the maximum number of broken bonds in graphene to measure the extent of damage during bombardment.This method of the maximum number of broken bonds is used for discovering the mechanism of passing through graphene in next simulations.At 500 K,we do 400 00 simulations repeatedly by using different clusters with 839.75 eV.The results are presented in Figs.2(b),2(d)and 2(e). As shown in Figs.2(b)and 2(d),the probability of He in C60 passing through graphene alone decreases with the maximum number of broken bonds quickly.It is illustrated that the behavior of He in C60 is slightly associated with the capability of passing through graphene and then we can consider that the capability of C60@He passing through graphene is almost consistent with C60’s.In Fig.2(b),probabilities of different clusters passing through graphene suddenly increase with the maximum number of broken bonds when the maximum number of broken bonds is larger than 8(as the red line shown in Fig.2(e)).It shows that the clusters need to create a big enough hole for passing through graphene.In Fig.2(e),we can see that all different distributions of the maximum number of broken bonds agree with the normal distribution and probabilities of different clusters passing through graphene strongly depend on their distributions of the maximum number of broken bonds.Therefore,we can understand that,even if the graphene is bombarded by different clusters,the probability of passing through graphene closely relates to the maximum number of broken bonds in graphene.

    For further knowing the mechanism of passing through graphene,we still apply the method of the maximum number of broken bonds to discuss it.We simulate C60 with 839.75 eV energy to bombard graphene at 500 K.The initial structure of breaking carbon-carbon bonds affects the next revolution of destroying bonds in graphene greatly.As shown in Figs.3(a)and 3(b),the initial structure of destroying bonds at 101.2 fs was displayed by two differ-ent perspectives.In this simulation,four different areas of breaking bonds near the deformed boundary are generated firstly in the process of bombardment.Simultaneously,the uncertainty of bond-breaking number and location closing to the boundary in the initial structure will lead to the uncertainty of generating nanopores in graphene.But the capability of breaking bonds depends on the velocity of clusters and the strength of carbon-carbon bonds in graphene significantly.As shown in Fig.3(c),the length of carbon-carbon bonds obviously increases with the temperature.High temperature means more energy transmission from C60@M to graphene in the collisions.Then the capability of destroying bonds is enhanced.

    Fig.3 (Color online)(a)The top view of C60(with energy 839.75 eV or the velocity of C60 is 15.0 km/s)bombarding graphene at 101.2 fs and the blue dash circle is the boundary of depression;(b)The oblique view of graphene at 101.2 fs after bombardment;the four pink arrows point to four different areas with broken bonds.The environmental temperature is 500 K in both figures.(c)The minimum,mean and maximum lengths of carboncarbon bond in thermal equilibrium vs.temperature.

    Based on the initial structure of graphene,the interaction between the graphene and the cluster also plays an important role in the behavior of breaking bonds for C60 passing through graphene.As shown in Figs.4(a),4(b),and 4(c).The three different maximum number of broken bonds are 3,10 and 17,respectively.We can find that the size of small holes created in the initial structure of graphene can constantly evolve under the pressure of C60.The area closing to the center of graphene can be generated small holes by C60 at some time.For this reason,the holes have a higher possibility to form a bigger hole with the adjacent holes for C60 passing through graphene.As displayed in Fig.2(b),the probability of C60 passing through graphene can justify that the possibility of forming a bigger hole increases with the maximum number of broken bonds.

    To discover the distribution of the maximum number of broken bonds in graphene bombarded by C60,we do 40000 simulations for more precise.In Figs.4(d)and 4(e),the normal distribution of the maximum number of broken bonds obviously moves from small to large number of broken bonds as the velocity of C60 increasing.All three different kinds of probabilities of passing through graphene depend on the maximum number of broken bonds strongly.However,when the maximum number of broken bonds is between 9 and 25,the probability of C60 with high energy is larger than the one of C60 with low energy clearly.

    Fig.4 (Color online)Three different maximum numbers of broken bonds selected from 1000 simulations at 500 K are 3(a),10(b)and 17(c),respectively.Three red arrows point to three different areas with broken bonds.The energy of C60 is 839.75 eV.The probability of passing through graphene(d)and the frequency(e)depend on the maximum number of broken bonds.The total frequency of simulations is 40 000 for every average velocity.The temperature is 500 K.

    According to the above research,our results not only o ff er insights for further understanding the mechanism of generating nanopore in graphene,but also lead to the potential applications about the functionalization of graphene and the production of nanopores,such as seawater desalination,biosensors,ionic sieves of high selectivity and transparency,single-molecule genomic screening devices,polymer composites,optoelectronic materials and devices,and so on.

    4 Conclusion

    In conclusion,we have studied the probability of passing through graphene bombarded by different clusters by controlling the environmental temperature,the species of clusters,the incident velocity of clusters and the defect of graphene.In the transitional region of passing through graphene,the temperature of heat baths can obviously influence the probability of passing through graphene significantly.The velocity of clusters changes the passing probability by influencing the energy of clusters.The species of clusters can affect the probability through the deformation of structure during bombardment.The defect of graphene also can obviously improve the probability of passing through graphene due to the instability of carboncarbon bonds near the boundary of defect.Thus,in order to obtain more efficient production of nanopores,we should select the contained atom properly and use right bombard velocity and temperature.Our results may not only offer additional insights for further understanding the mechanism of generating nanopores in graphene,but also lead to some potential applications in the functionalization of graphene and the production of nanopores at low cost and with high efficiency.

    Acknowledgments

    Our simulations were supported by the high performance computing platform of Jinan University and Siyuan clusters of the physics department.ZWR thanks Y.Xiao at City University of Hong Kong for his contribution in plotting.

    References

    [1]T.Humplik,J.Lee,S.C.O’Hern,et al.,Nanotechnology 22(2011)292001.

    [2]Z.S.Siwy and M.Davenport,Nature Nanotech.5(2010)697.

    [3]K.Sint,B.Wang,and P.J.Kr′al,Am.Chem.Soc.130(2008)16448.

    [4]S.Garaj,W.Hubbard,A.Reina,et al.,Nature(London)467(2010)190.

    [5]G.F.Schneider,S.W.Kowalczyk,V.E.Calado,et al.,Nano Lett.10(2010)3163.

    [6]T.Ramanathan,A.A.Abdala,S.Stankovich,et al.,Nature(London)3(2008)327.

    [7]S.Stankovich,D.A.Dikin,G.H.B.Dommett,et al.,Nature(London)442(2006)282.

    [8]Y.F.Xu,Z.B.Liu,X.L.Zhang,et al.,Adv.Mater 21(2009)1275.

    [9]Z.Liu,J.T.Robinson,X.M.Sun,and H.J.Dai,J.Am.Chem.Soc.130(2008)10876.

    [10]Y.N.Chan,T.Wong,F.Byrne,M.Kavallaris,and V.Bulmus,Biomacromolecules 9(2008)1826.

    [11]M.D.Fischbein and M.Drndi,Appl.Phys.Lett.93(2008)113107.

    [12]N.Inui,K.Mochiji,K.Moritani,and N.Nakashima,Appl.Phys.A:Mater.Sci.Process.98(2010)787.

    [13]Y.C.Cheng,H.T.Wang,Z.Y.Zhu,et al.,Phys.Rev.B 85(2012)073406.

    [14]S.J.Zhao,J.M.Xue,L.Liang,Y.G.Wang,and S.Yan,J.Phys.Chem.C 116(2012)11776.

    [15]M.Waiblinger,K.Lips,W.Harneit,A.Weidinger,E.Dietel,and A.Hirsch,Phys.Rev.B 64(2001)159901.

    [16]V.Bernshtein and I.Oref,Phys.Rev.A 62(2000)033201.

    [17]L.Pang and F.Brisse,J.Phys.Chem.97(1993)8562.

    [18]D.W.Brenner,Phys.Rev.B 42(1990)9458.

    [19]L.A.Girifalco,M.Hodak,and R.S.Lee,Phys.Rev.B 62(2000)13104.

    [20]G.Stan,M.J.Bojan,S.Curtarolo,S.M.Gatica,and M.W.Cole,Phys.Rev.B 62(2000)2173.

    [21]T.Halicioglu,G.M.Pound,Physica Status Solidi(a)30(1975)619.

    [22]V.Bernshtein and I.Oref,Phys.Rev.A 62(2000)033201.

    [23]W.C.Swope,H.C.Andersen,P.H.Berens,and K.R.Wilson,J.Chem.Phys.76(1982)637.

    [24]Z.C.Xu and W.R.Zhong,Acta Phys.Sin.8(2014)083401.

    [25]Z.C.Xu and W.R.Zhong,Appl.Phys.Lett.104(2014)261907.

    猜你喜歡
    志成
    百家齊爭(zhēng)鳴,文化共薈萃
    “雙減”背景下小學(xué)數(shù)學(xué)減負(fù)增效的實(shí)踐與思考
    眾志成誠迎戰(zhàn)特大暴雨
    《天·水》《時(shí)空》
    文化交流(2020年3期)2020-03-18 16:38:47
    胡釋中、劉虹、肖文莊、張志成作品
    Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions?
    連志成:一心向戰(zhàn)
    周志成:我們要從跟跑邁向領(lǐng)跑
    太空探索(2016年1期)2016-07-12 09:56:03
    天天都是感恩節(jié)
    Detached-eddy simulation of wing-tip vortex in the near field of NACA 0015 airfoil*
    狂野欧美白嫩少妇大欣赏| 亚洲av中文av极速乱| 午夜爱爱视频在线播放| 久久韩国三级中文字幕| 女生性感内裤真人,穿戴方法视频| eeuss影院久久| 日本五十路高清| 国产老妇女一区| 久久久久久久久久成人| 国产大屁股一区二区在线视频| 国产69精品久久久久777片| 亚洲成a人片在线一区二区| 国产免费一级a男人的天堂| 看片在线看免费视频| 国内精品宾馆在线| 亚洲av熟女| 久久久精品欧美日韩精品| 男人舔女人下体高潮全视频| 国产三级在线视频| 99久久久亚洲精品蜜臀av| 欧美日韩综合久久久久久| 日本熟妇午夜| 美女被艹到高潮喷水动态| 内地一区二区视频在线| 成人二区视频| 好男人在线观看高清免费视频| 毛片一级片免费看久久久久| 成人漫画全彩无遮挡| 淫秽高清视频在线观看| 亚洲激情五月婷婷啪啪| 日韩一区二区视频免费看| 精品一区二区三区视频在线| 日本免费a在线| 欧美三级亚洲精品| 99精品在免费线老司机午夜| 又爽又黄a免费视频| 精品午夜福利视频在线观看一区| 人妻少妇偷人精品九色| 精品久久久久久久久av| 国产精品国产三级国产av玫瑰| 亚洲激情五月婷婷啪啪| 寂寞人妻少妇视频99o| 国语自产精品视频在线第100页| 特级一级黄色大片| 内地一区二区视频在线| 久久精品国产99精品国产亚洲性色| 国产淫片久久久久久久久| 给我免费播放毛片高清在线观看| 精品免费久久久久久久清纯| 最近视频中文字幕2019在线8| 国产一区二区亚洲精品在线观看| 国产av不卡久久| 亚洲美女视频黄频| 麻豆久久精品国产亚洲av| 国产熟女欧美一区二区| 国产高清不卡午夜福利| 人妻丰满熟妇av一区二区三区| 免费看日本二区| 可以在线观看的亚洲视频| 国产黄色视频一区二区在线观看 | 六月丁香七月| 国产黄色小视频在线观看| 免费电影在线观看免费观看| 欧美日韩在线观看h| 日韩一本色道免费dvd| 亚洲经典国产精华液单| 精品福利观看| 亚洲专区国产一区二区| 在线播放国产精品三级| 一级av片app| 色综合站精品国产| 国产成人91sexporn| 有码 亚洲区| 丰满的人妻完整版| av在线蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 特级一级黄色大片| 欧美日韩国产亚洲二区| av专区在线播放| 成人性生交大片免费视频hd| 高清毛片免费观看视频网站| 亚洲欧美日韩卡通动漫| 91在线精品国自产拍蜜月| 一区二区三区四区激情视频 | 九九久久精品国产亚洲av麻豆| 五月伊人婷婷丁香| 在线观看66精品国产| 国产色婷婷99| 亚洲精品国产av成人精品 | 久久国内精品自在自线图片| 在现免费观看毛片| 日日撸夜夜添| 人人妻人人澡人人爽人人夜夜 | 亚洲精品乱码久久久v下载方式| 国产av在哪里看| 亚洲国产高清在线一区二区三| 淫妇啪啪啪对白视频| av在线蜜桃| 日韩在线高清观看一区二区三区| 国产视频内射| 69人妻影院| 婷婷亚洲欧美| 国产片特级美女逼逼视频| 免费不卡的大黄色大毛片视频在线观看 | 国产熟女欧美一区二区| 欧美日本视频| 国产大屁股一区二区在线视频| 成人鲁丝片一二三区免费| 欧美成人a在线观看| or卡值多少钱| 热99在线观看视频| 国产乱人视频| 插逼视频在线观看| 中文资源天堂在线| 亚洲在线自拍视频| 久久草成人影院| 午夜激情福利司机影院| 最后的刺客免费高清国语| 超碰av人人做人人爽久久| 久久久久久久久大av| 欧美日本亚洲视频在线播放| 你懂的网址亚洲精品在线观看 | 少妇人妻一区二区三区视频| 成年女人看的毛片在线观看| 国产成人一区二区在线| 国产av麻豆久久久久久久| 国产av一区在线观看免费| aaaaa片日本免费| 简卡轻食公司| 给我免费播放毛片高清在线观看| 国产成人a∨麻豆精品| 99在线人妻在线中文字幕| 免费av毛片视频| 国产不卡一卡二| 最好的美女福利视频网| 我的老师免费观看完整版| 欧美最新免费一区二区三区| 看免费成人av毛片| 97超碰精品成人国产| 久久久a久久爽久久v久久| 欧美极品一区二区三区四区| 欧美色欧美亚洲另类二区| 可以在线观看的亚洲视频| 美女内射精品一级片tv| 亚洲内射少妇av| 在线免费观看的www视频| 国产精品无大码| 此物有八面人人有两片| 日韩欧美 国产精品| 国产精品久久久久久久电影| 成年版毛片免费区| 欧美激情久久久久久爽电影| 色5月婷婷丁香| 亚洲精华国产精华液的使用体验 | 中文字幕久久专区| 赤兔流量卡办理| 一本一本综合久久| 国产免费一级a男人的天堂| 永久网站在线| 女同久久另类99精品国产91| 亚洲经典国产精华液单| 精品福利观看| 国语自产精品视频在线第100页| 国产毛片a区久久久久| 久久久久国产精品人妻aⅴ院| 天天一区二区日本电影三级| 久久精品国产亚洲av涩爱 | 97超碰精品成人国产| 中文字幕av在线有码专区| 99精品在免费线老司机午夜| 中文字幕久久专区| 欧美潮喷喷水| 国产激情偷乱视频一区二区| 亚洲在线自拍视频| 啦啦啦观看免费观看视频高清| 韩国av在线不卡| 国产乱人视频| 高清午夜精品一区二区三区 | 午夜精品国产一区二区电影 | 国产高清视频在线播放一区| 国产熟女欧美一区二区| 一本精品99久久精品77| 国产精品伦人一区二区| 欧美中文日本在线观看视频| 亚洲成a人片在线一区二区| 国产精品久久久久久久电影| 一级黄色大片毛片| 国产伦一二天堂av在线观看| 少妇的逼水好多| 国产高清三级在线| 日本三级黄在线观看| 国产精品一二三区在线看| 国产黄色视频一区二区在线观看 | 亚洲成人av在线免费| 国产免费男女视频| 日韩成人伦理影院| 小蜜桃在线观看免费完整版高清| 啦啦啦韩国在线观看视频| 亚洲在线自拍视频| 啦啦啦观看免费观看视频高清| 亚洲国产精品国产精品| 日本一二三区视频观看| 男女之事视频高清在线观看| 狂野欧美激情性xxxx在线观看| 国产高清视频在线观看网站| 久久久成人免费电影| 黄片wwwwww| 国产 一区精品| 国产av在哪里看| 此物有八面人人有两片| 久久人人精品亚洲av| 亚洲国产欧洲综合997久久,| 国产成人福利小说| 精品久久久久久久久av| 综合色av麻豆| 国产高清有码在线观看视频| 国产69精品久久久久777片| 如何舔出高潮| 18禁在线无遮挡免费观看视频 | 国产 一区 欧美 日韩| 欧美日韩乱码在线| 最新中文字幕久久久久| 91午夜精品亚洲一区二区三区| 两个人的视频大全免费| 99久久精品一区二区三区| 国产v大片淫在线免费观看| 国内精品宾馆在线| 亚洲国产精品成人久久小说 | 日韩制服骚丝袜av| 波野结衣二区三区在线| 在线观看66精品国产| 精品不卡国产一区二区三区| 三级男女做爰猛烈吃奶摸视频| 日韩精品中文字幕看吧| 日本熟妇午夜| 小蜜桃在线观看免费完整版高清| 免费一级毛片在线播放高清视频| 成人欧美大片| 看免费成人av毛片| 99久久九九国产精品国产免费| 成年女人看的毛片在线观看| 久久欧美精品欧美久久欧美| 日韩中字成人| 99久久中文字幕三级久久日本| 国产亚洲91精品色在线| 最近视频中文字幕2019在线8| 欧美在线一区亚洲| 一本一本综合久久| 日本撒尿小便嘘嘘汇集6| 九九爱精品视频在线观看| 青春草视频在线免费观看| 中文资源天堂在线| 在线观看66精品国产| 天天躁夜夜躁狠狠久久av| 日韩中字成人| 亚洲熟妇中文字幕五十中出| 成人漫画全彩无遮挡| av在线播放精品| 亚洲欧美日韩高清专用| 亚洲成a人片在线一区二区| 亚洲国产精品国产精品| 天堂av国产一区二区熟女人妻| 伦精品一区二区三区| 国产高清不卡午夜福利| 91午夜精品亚洲一区二区三区| 97人妻精品一区二区三区麻豆| 男女啪啪激烈高潮av片| 波多野结衣巨乳人妻| 看免费成人av毛片| 国产精品人妻久久久久久| 成人精品一区二区免费| 啦啦啦观看免费观看视频高清| 淫妇啪啪啪对白视频| 熟妇人妻久久中文字幕3abv| 亚洲专区国产一区二区| 又粗又爽又猛毛片免费看| 男人舔女人下体高潮全视频| 哪里可以看免费的av片| 亚洲av第一区精品v没综合| 久久九九热精品免费| 桃色一区二区三区在线观看| 天堂影院成人在线观看| 看黄色毛片网站| 欧美日韩综合久久久久久| av天堂在线播放| 国产成人91sexporn| 嫩草影院入口| av女优亚洲男人天堂| 国产亚洲精品久久久com| 一级黄片播放器| 国产成人影院久久av| 久久午夜福利片| 久久久久久国产a免费观看| 国产高清有码在线观看视频| 亚洲精品456在线播放app| 99热6这里只有精品| 午夜精品国产一区二区电影 | 久久精品国产99精品国产亚洲性色| 十八禁国产超污无遮挡网站| 日韩欧美在线乱码| 日本熟妇午夜| 日本与韩国留学比较| 色吧在线观看| 激情 狠狠 欧美| 久久国内精品自在自线图片| 蜜桃久久精品国产亚洲av| 日韩在线高清观看一区二区三区| 99久久九九国产精品国产免费| 此物有八面人人有两片| 深夜精品福利| 国产成人a∨麻豆精品| 成年免费大片在线观看| 成人综合一区亚洲| 伦理电影大哥的女人| 午夜影院日韩av| 亚洲熟妇熟女久久| 18禁裸乳无遮挡免费网站照片| 又爽又黄无遮挡网站| 日日摸夜夜添夜夜添小说| 亚洲人成网站在线播放欧美日韩| 人人妻人人澡人人爽人人夜夜 | 在线播放国产精品三级| 国产精品亚洲美女久久久| 22中文网久久字幕| 精品乱码久久久久久99久播| 日日干狠狠操夜夜爽| aaaaa片日本免费| 国产伦精品一区二区三区四那| 女同久久另类99精品国产91| www日本黄色视频网| 我要看日韩黄色一级片| 久99久视频精品免费| 亚洲av成人精品一区久久| 中文亚洲av片在线观看爽| 久久精品久久久久久噜噜老黄 | 国产精品电影一区二区三区| 永久网站在线| 色吧在线观看| 在线观看午夜福利视频| 国产单亲对白刺激| 日韩成人伦理影院| 大型黄色视频在线免费观看| 日韩欧美三级三区| 午夜福利在线观看吧| 校园春色视频在线观看| 亚洲av二区三区四区| 村上凉子中文字幕在线| 久久中文看片网| 久久韩国三级中文字幕| 午夜福利成人在线免费观看| 国产精品乱码一区二三区的特点| 亚洲精品日韩在线中文字幕 | 久久99热这里只有精品18| 亚洲欧美日韩卡通动漫| 欧美中文日本在线观看视频| 国产免费男女视频| 成人毛片a级毛片在线播放| 九色成人免费人妻av| 国产精品爽爽va在线观看网站| 简卡轻食公司| 亚洲人成网站在线观看播放| 日韩一本色道免费dvd| 国产一区二区在线av高清观看| 能在线免费观看的黄片| 又爽又黄a免费视频| 国产探花在线观看一区二区| 国产极品精品免费视频能看的| 97超视频在线观看视频| 高清毛片免费观看视频网站| 国产综合懂色| 国产黄片美女视频| 国产不卡一卡二| 久久韩国三级中文字幕| 校园春色视频在线观看| 看十八女毛片水多多多| 男女那种视频在线观看| 最好的美女福利视频网| 精品一区二区三区视频在线观看免费| 俺也久久电影网| 99久久成人亚洲精品观看| 欧美日韩在线观看h| 午夜免费激情av| 国产免费男女视频| 国产高清视频在线观看网站| 欧美成人一区二区免费高清观看| 成人精品一区二区免费| 国产精品久久久久久精品电影| 久久精品夜色国产| 看十八女毛片水多多多| av在线天堂中文字幕| 精品国内亚洲2022精品成人| 日本与韩国留学比较| 麻豆成人午夜福利视频| 国产探花在线观看一区二区| 国产一区二区在线观看日韩| 久99久视频精品免费| 99久久九九国产精品国产免费| 97在线视频观看| 性欧美人与动物交配| 永久网站在线| 欧美成人a在线观看| 欧美高清成人免费视频www| 看非洲黑人一级黄片| 日韩亚洲欧美综合| 三级经典国产精品| 我要看日韩黄色一级片| 国产 一区 欧美 日韩| 此物有八面人人有两片| 嫩草影院入口| 国产在线男女| 日韩精品青青久久久久久| 亚洲aⅴ乱码一区二区在线播放| 国内精品久久久久精免费| 亚洲美女视频黄频| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看 | 99热精品在线国产| 久久精品国产亚洲av香蕉五月| 99热6这里只有精品| 插逼视频在线观看| 亚洲精品国产成人久久av| 又爽又黄a免费视频| 日本免费一区二区三区高清不卡| 日日干狠狠操夜夜爽| 国产又黄又爽又无遮挡在线| 国产三级中文精品| 男女视频在线观看网站免费| 欧美高清成人免费视频www| 我的女老师完整版在线观看| 国产日本99.免费观看| 两个人的视频大全免费| 欧美成人一区二区免费高清观看| 在线播放无遮挡| 精品久久久久久久久av| 日本三级黄在线观看| 午夜福利18| 在现免费观看毛片| 国产高清不卡午夜福利| 欧美一区二区亚洲| a级一级毛片免费在线观看| 免费av毛片视频| 亚洲一区高清亚洲精品| 国产免费一级a男人的天堂| 毛片一级片免费看久久久久| 中文字幕人妻熟人妻熟丝袜美| 日本免费一区二区三区高清不卡| videossex国产| 久久久欧美国产精品| 久久人人精品亚洲av| 国产av在哪里看| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文日韩欧美视频| 97超碰精品成人国产| 美女黄网站色视频| 99九九线精品视频在线观看视频| 国产真实乱freesex| a级一级毛片免费在线观看| 日本色播在线视频| av在线播放精品| 国产探花在线观看一区二区| 国产高潮美女av| 欧美+亚洲+日韩+国产| or卡值多少钱| 99热6这里只有精品| 白带黄色成豆腐渣| 久久精品国产亚洲av香蕉五月| 久久九九热精品免费| 99热这里只有精品一区| 内射极品少妇av片p| 国产三级中文精品| 97在线视频观看| 51国产日韩欧美| 波多野结衣巨乳人妻| 亚洲一区二区三区色噜噜| 婷婷六月久久综合丁香| 欧美zozozo另类| 成人综合一区亚洲| 不卡一级毛片| 最近中文字幕高清免费大全6| 欧美3d第一页| 国产精品亚洲一级av第二区| 日本免费一区二区三区高清不卡| 国产伦精品一区二区三区视频9| 国产欧美日韩一区二区精品| 欧美绝顶高潮抽搐喷水| 亚洲精品一卡2卡三卡4卡5卡| 久久这里只有精品中国| 成人性生交大片免费视频hd| a级一级毛片免费在线观看| 欧美最新免费一区二区三区| 国产高清激情床上av| 一本一本综合久久| 国产探花在线观看一区二区| 亚洲国产精品sss在线观看| 欧美一区二区国产精品久久精品| 亚洲人成网站在线播| 91在线观看av| 插逼视频在线观看| 搡老妇女老女人老熟妇| 久久久久久久亚洲中文字幕| 少妇丰满av| 欧美成人一区二区免费高清观看| av在线亚洲专区| 国产精品久久久久久久电影| 丰满的人妻完整版| 一个人免费在线观看电影| 中文在线观看免费www的网站| 亚洲国产高清在线一区二区三| 91在线精品国自产拍蜜月| 精品一区二区三区av网在线观看| 少妇人妻一区二区三区视频| 日本爱情动作片www.在线观看 | 少妇的逼水好多| 国产精品一区二区性色av| 国产精品三级大全| 久久久久久久亚洲中文字幕| 国产真实伦视频高清在线观看| 精品人妻熟女av久视频| 两性午夜刺激爽爽歪歪视频在线观看| 欧美一区二区国产精品久久精品| 99在线视频只有这里精品首页| 国内精品久久久久精免费| 亚洲av二区三区四区| 亚洲中文字幕一区二区三区有码在线看| 日产精品乱码卡一卡2卡三| 国产黄色小视频在线观看| 国产视频内射| 看十八女毛片水多多多| 亚洲成人中文字幕在线播放| 午夜激情福利司机影院| 国产精品不卡视频一区二区| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩卡通动漫| 熟女人妻精品中文字幕| 日本成人三级电影网站| 深夜精品福利| 国产久久久一区二区三区| av在线蜜桃| 毛片女人毛片| 在线免费十八禁| 一进一出抽搐gif免费好疼| 一本久久中文字幕| 欧美区成人在线视频| 免费大片18禁| 亚洲欧美成人精品一区二区| 婷婷色综合大香蕉| 99国产精品一区二区蜜桃av| 中文资源天堂在线| 精品人妻视频免费看| 国产片特级美女逼逼视频| 色5月婷婷丁香| 国产黄a三级三级三级人| 中文字幕免费在线视频6| 亚洲成人中文字幕在线播放| 免费观看的影片在线观看| 国产精品亚洲美女久久久| 3wmmmm亚洲av在线观看| 美女内射精品一级片tv| 一个人看的www免费观看视频| 亚洲熟妇熟女久久| 美女被艹到高潮喷水动态| 少妇人妻一区二区三区视频| 99热这里只有是精品在线观看| 欧美日韩综合久久久久久| 亚洲av熟女| 日日摸夜夜添夜夜添小说| 国产高清视频在线观看网站| 国产视频内射| 欧美一区二区精品小视频在线| 一个人免费在线观看电影| 久久久久久久久久成人| 亚洲精品色激情综合| 久久精品国产鲁丝片午夜精品| 又粗又爽又猛毛片免费看| 九九热线精品视视频播放| 午夜精品一区二区三区免费看| 成人三级黄色视频| 夜夜夜夜夜久久久久| 一级黄色大片毛片| 毛片一级片免费看久久久久| 可以在线观看毛片的网站| 国产亚洲91精品色在线| 老司机午夜福利在线观看视频| 亚洲三级黄色毛片| 亚洲精品成人久久久久久| 99久久无色码亚洲精品果冻| 国产精品电影一区二区三区| 美女免费视频网站| 亚洲成a人片在线一区二区| 成人高潮视频无遮挡免费网站| 天美传媒精品一区二区| 国产乱人偷精品视频| 18禁黄网站禁片免费观看直播| 一边摸一边抽搐一进一小说| h日本视频在线播放| 久久人人爽人人爽人人片va| 日本一本二区三区精品| 免费看a级黄色片| 久久精品国产亚洲网站| 亚洲成人av在线免费| 亚洲高清免费不卡视频| 成人精品一区二区免费| 久久久久久久午夜电影| 又爽又黄a免费视频| 久久久成人免费电影| 欧美色欧美亚洲另类二区| 亚洲精品日韩在线中文字幕 | 熟女电影av网| 男女边吃奶边做爰视频| 免费一级毛片在线播放高清视频| 看非洲黑人一级黄片| 成熟少妇高潮喷水视频| 此物有八面人人有两片| 99热全是精品| 国产一级毛片七仙女欲春2|