• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model?

    2016-05-14 12:51:08SongFengZhao趙松峰FangHuang黃方GuoLiWang王國利andXiaoXinZhou周效信
    Communications in Theoretical Physics 2016年3期
    關(guān)鍵詞:王國

    Song-Feng Zhao(趙松峰), Fang Huang(黃方),Guo-Li Wang(王國利),and Xiao-Xin Zhou(周效信)

    College of Physics and Electronic Engineering,Northwest Normal University,Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province,Lanzhou 730070,China

    1 Introduction

    With the rapid advancement of the field-free molecular alignment and orientation techniques,[1?4]tunneling ionization of molecules in a low-frequency strong laser field has been widely studied for more than a decade both experimentally[5?21]and theoretically,[22?30]especially for the angular dependence of ionization rate(or probability)P(θ)(θ is the angle between the molecular axis and the laser’s polarization direction)and ionization suppression of molecule in comparison to its companion atom.This is because tunneling ionization of molecules is the first fundamental step of many interesting strong- field rescattering phenomena such as high-order harmonic generation(HHG),high-energy above-threshold ionization(HATI)and nonsequential double ionization(NSDI).[31?33]

    Experimentally,P(θ)has been determined by ionizing a partially aligned molecules.[5,8?10,15,19]Usingcold targetrecoilion momentum spectrometer(COLTRIMS),[34]the P(θ)can also be obtained by measuring the molecular frame photoelectron angu-lar distribution (MFPAD)[11?13,20?21]orby detecting the angular distribution of the emitted ionic fragments.[6?7,14,16?18]Theoretically,P(θ)has been obtained by using the single-active-electron approximation based time-dependent Schr¨odinger equation(SAETDSE),[23?25,35?39]time-dependent density functional theory(TDDFT),[22,40?43]or time-dependent Hatree–Fock(TDHF).[44]These ab-initio calculations are still quite challenging even for the simpler linear molecules.Therefore,some theoretical models are desirable especially for interpreting the experimental measurement of tunneling ionization of molecules in a strong laser field,such as the molecular Ammosov–Delone–Krainov(MOADK),[26?27,45?49]the molecular strong- field approximation(MO-SFA),[28?29]the molecular Perelomov–Popov–Terent’ev(MO-PPT),[50?51]and the weak- field asymptotic theory(WFAT).[30,52?55]

    Ionization suppression is another very interesting strong- field phenomena.Since tunneling ionization rate sensitively depends on the ionization potential(IP)of atoms(or molecules),one may expect the ionization rate should be comparable for a molecule and its companion atom.[56?58]However,it has been experimentally found that the ionization is strongly suppressed for the cases of D2(IP of 15.47 eV),O2(IP of 12.03 eV),and Cl2(IP of 11.48 eV)in comparison to their closest companion atoms Ar(IP of 15.76 eV)and Xe(IP of 12.13 eV),respectively,while there is no suppression for N2(IP of 15.58 eV)and F2(IP of 15.70 eV)when compared with their companion Ar atom.[50,59?64]Several theoretical models,such as Keldysh–Faisal–Reiss(i.e.MO-SFA),[28]MO-ADK,[26]multielectron screening,[65]have been proposed to interpret the experimental measurements.So far,MO-ADK model agrees well with the experimental results for pairs with suppression(D2:Ar,O2:Xe,Cl2:Xe)and pairs without suppression(N2:Ar,CO:Kr).However,the MO-ADK model predicts there is ionization suppression for F2:Ar,which is in disagreement with experiment.

    In this paper,we determine and tabulate structure parameters of the highest occupied molecular orbital(HOMO)of 27 dimers for the MO-ADK model using our previous proposed method[27,48,66?67]in Sec.3.We will also show the ionization probability of a rare-gas dimer Ne2,which has a full- filled antibond valence orbital(σu),is strongly suppressed when compared with that of its closest companion Ne atom.The rest of this paper is arranged as follows.In Sec.2,we will present how to numerically calculate molecular potentials using the density function theory(DFT)and obtain the molecular orbital wave functions with correct asymptotic behavior by solving time-independent Schr¨odinger equation with B-spline functions.The basic equations of MO-ADK,MO-PPT and MO-SFA models are also briefly reviewed.A conclusion will be given in Sec.4.Atomic units are used throughout this paper unless otherwise stated.

    2 Theoretical Method

    2.1 Construction of the One-Electron Potentials of Linear Molecules

    There are two main approaches to obtain the molecular orbital wave functions with the correct asymptotic behavior,namely using X2DHF program only for diatomic molecules[47]or by solving the time-independent Schr¨odinger equation of any linear molecules of interest.In the second method,one can easily include the exchangecorrelation interaction in molecular potentials[66?67]by using the LBα model.[68?69]

    Under the single-center expansion,the one-electron potentials of linear molecules can be expressed as

    where vl(r)is the radial component of the potential and Pl(cosθe)is the Legendre polynomial. θeis the angular coordinate of the active electron in the molecular frame.We take lmax=80 for He2,Ne2,Mg2,Si2,P2,and Ar2,lmax=120 for K2,Ca2,V2,Cr2,Mn2,Fe2,Co2,Cu2,Zn2,Ge2,As2,Se2and Kr2,and lmax=150 for others,respectively.The radial potential can be written as

    where the first two terms are the electrostatic potential(see Refs.[48,70]and the last term describes the exchange-correlation interaction(see Ref.[66]).

    2.2 Calculation of Molecular Wave Functions by Solving the Time-Independent Schr¨odinger Equation

    With molecular potentials calculated numerically using the method described in Subsec.2.1,we can obtain molecular wave functions with the correct asymptotic behavior by solving the following time-independent Schrdinger equation of linear molecules[27,48,66?67]

    Due to the cylindrical symmetry,the wave function(r)can be written as

    with ξ=cosθeand χeis the angular coordinate of the active electron in the molecular frame.The wave function ψ(r,ξ)can be expanded by B-spline functions as

    Here,Bi(r)and Bj(ξ)are radial and angular B-splines,respectively.Typically we take the corresponding number of angular B-splines Nξ=30 and of radial B-splines Nr=80 for six smaller molecules(i.e.,He2,Ne2,Mg2,Si2,P2and Ar2)and Nr=150 for others,respectively.By substituting Eqs.(1),(4)and(5)into Eq.(3)and then projecting onto the Bi′(r)(1 ? ξ2)|m|/2Bj′(ξ)basis,we obtain the following matrix equation

    where E and C are energy and coefficient matrices,respectively.The eigenfunctions and eigenvalues can be obtained by diagonalizing Eq.(6).

    Based on the single-center expansion,the wave functions of the ionizing orbitals of a linear molecule can be expanded as

    where Ylm(θe,χe)is the spherical harmonic functions.The radial wavefunction can be calculated by

    Then accurate structure parameters Clmcan be determined by matching these radial functions to the following form in the asymptotic region

    where Zcis the asymptotic charge andis the ionization potential of molecules.

    2.3 MO-ADK,MO-PPT and MO-SFA Models

    Once the structure parameters and ionization potential of molecules are available,one can easily calculate the cycle-averaged ionization rate using the MO-ADK model[26]as follows

    where F is the field strength and B(m′)can be given by

    where R is the Euler angles of the molecular frame with respect to the laboratory fi xed frame.is the rotation matrix and

    It is known that the MO-ADK model works well in the tunnelling ionization region,while it fails to give accurate ionization rate in the multiphoton region.It has been con firmed that the MO-PPT model can fit the experimental data and SAE-TDSE results in the whole range covering from multiphoton to tunnelling regimes.[51]Based on the MO-PPT model,[50?51]the cycle-averaged ionization rate can be expressed as

    where γ is Kelydsh parameter and g(γ)can be written as

    In Eq.(15),the coefficients Am′(ω,γ)can be found in Refs.[71–73].For an atom,Eq.(15)can be reduced as

    where Clis structure parameter of atom.

    Using the cycle-averaged ionization rates,the total ionization probability of a molecule by a laser pulse can be calculated by

    where m stands for the PPT,the MO-ADK or the MOPPT model.For a Gaussian pulse,the envelope F(t)can be expressed as

    with F0being the peak strength of a laser pulse and τ is the full width at half maximum(FWHM).

    According to the MO-SFA theory,[67,74]the total ionization probability of molecules by a laser pulse can be expressed as

    where the ionization amplitude f(p,R)is given by

    with p being the momentum of the emitted electron.E(t)and A(t)are the electric field and the vector potential,respectively.The quasiclassical action S(p,t)is written as

    In Eq.(21),the ground-state electronic wave function Φ0(r)of molecules is obtained from the GAUSSIAN package[75]and the continuum state is approximated by a Volkov state.

    3 Results and Discussion

    3.1 The One-Electron Potentials for Ar2

    We numerically calculate the one-electron potentials of linear molecules based on the DFT which described in Subsec.2.1,where the initial wave functions of all the occupied molecular orbitals are obtained from GAUSSIAN.[75]Figure 1 shows partial wave expansions(r),(r),(r),and vl(r))of the potential V(r,θe)(see Eqs.(1)and(2))for Ar2.

    Fig.1 (a)Partial electron-nucleus potential;(b)partial electron-electron repulsion potential;(c)partial exchangecorrelation potential;(d)partial total potential.We use lmax=80(see Eq.(1))for Ar2,but we only show here the l=0,2,4,6,8 terms for clarity.

    3.2 Determination of Structure Parameters of the HOMO for 27 Selected Dimers

    Once molecular potentials are constructed numerically,wave function and the corresponding ionization potential of linear molecules can be determined by solving Eq.(3).In Table 1,we compare the ionization potentials calculated using the present LBα model with the experimental vertical ionization potentials.For Xe2,the calculated ionization potential with GAUSSIAN code[75]using Hatree–Fock(HF)method and 3-21G basis set is also given for reference because the experimental value is unavailable as far as we know.The internuclear distances of these molecules are also listed.In the LBα model,[68]there are two empirical parameters α and β.In our calculations,we take β =0.01 and α is optimized to obtain accurate ionization potential,which is also tabulated in Table 1.With wave functions and ionization potentials,we can extract molecular structure parameters in the asymptotic region(see Eqs.(10)and(11)).In Table 2,we tabulate the structure parameters of the HOMO for 27 selected dimers.We emphasize that these structure parameters should be essential to calculate the ionization rate with the MO-ADK or the MO-PPT model.

    3.3 Comparison of Alignment-Dependent Ionization Probabilities Between the MO-ADK and the MO-SFA Models

    It is known that the alignment-dependent ionization probability P(θ)can be used to image directly electronic structures of the ionizing orbital from which the active electron is removed.By far,there is no experimental and more accurate theoretical P(θ)can be used to check the MO-ADK result.Next,we will examine the P(θ)from the MO-ADK by comparing with that of the MO-SFA.Based on the MO-ADK model,the P(θ)can be easily calculated according to Eq.(18)by using ionization potentials and structure parameters tabulated in Tables 1 and 2,respectively.Figure 2 shows the P(θ)of Cu2,Mg2,Se2and As2,respectively.All the ionization probabilities are normalized to 1.0 at the peak for simplicity.It is clear that the P(θ)obtained from the MO-ADK agree generally with that of the SFA.For Cu2and Mg2,the HOMO is a σgand σuorbital,respectively.The P(θ)is expected to have a peak at 0?and a minimum at 90?.We can see that the P(θ)exhibits a peak at 0?and a minimum at 90?in deed.For Se2,the HOMO is a πg(shù)orbital,the correspond-ing P(θ)is expected to have a peak at 45?.However,the MO-ADK and the MO-SFA results show a peak at 35?and 40?,respectively.For As2,the HOMO is a πuorbital and a peak at 90?is expeceted,while the P(θ)from both the MO-ADK and MO-SFA tend to have a peak near 50?and a minimum at 90?.

    Fig.2 Normalized angular dependence of ionization probability.(a)Cu2at laser intensity of 1.6×1013W/cm2;(b)Mg2at 8.0×1012W/cm2;(c)Se2at 2.5×1013W/cm2;(d)As2at 3.4×1013W/cm2.We take the laser field to be a Gaussian pulse with central wavelength of 800 nm and FWHM of 10 fs.

    Table 1 Internuclear distances,ionization potentials calculated with the present LBα model and experimental vertical ionization potentials for 27 dimers.The internuclear distances and experimental vertical ionization potentials are from Smirnov et al.[76]For Xe2,the calculated ionization potential with GAUSSIAN code[75]using Hatree-Fock(HF)method and 3–21G basis set is also given because the experimental one is unavailable.The α parameter used in the LBα model is also listed.

    Table 2 Fitted Clmcoefficients using the LBα potentials for 27 selected dimers.Note that m=0,1 and 2 for σ,π and δ,respectively.

    3.4 Laser Wavelength Dependence of Ionization Rates from Several Selected Dimers

    It is found that ionization probabilities of atoms and molecules in a laser field depend sensitively on the laser wavelength especially in the multiphoton ionization region.[51,63?64,77]Based on the MO-PPT model,we will show how the intensity-and alignment-dependent ionization rates of dimers depend on the laser wavelength,respectively.Figure 3 shows the intensity-dependent ionization rates of Ar2at four different laser wavelengths.We can see that the ionization rate obtained from the MO-PPT model exhibits strong wavelength dependence.For a fixed laser intensity,the ionization rate increases monotonously as wavelength decreases.For the case of wavelength λ=2000 nm,the tunnelling ionization regime dominates and the ionization rate is close to the MOADK result.Actually,the ionization rate from the MOPPT should be equal to that of the MO-ADK because Am′(ω,γ) → 1,(1+ γ2)|m′|/2+3/4→ 1 and g(γ) → 1 in the limit of γ → 0.In the case of λ =600 nm,the multiphoton regime dominates in the intensity region shown in Fig.3.There is very large discrepancies between the MO-PPT and MO-ADK models.That is because the tunnelling ionization(i.e.,MO-ADK)model is invalid in the multiphoton region as we know.

    In Fig.4,we show the alignment dependence of ionization rates for four dimers with different orbital symmetries.Based on the MO-PPT model,we found that the alignment dependent ionization rate P(θ)of these four dimers does not depend laser wavelength in the tunnelling ionization region(γ<1)as expected.We note that the P(θ)calculated from the MO-PPT is almost the same as that of the MO-ADK in the tunnelling ionization region.Can this conclusion still hold in the multiphoton ionization region(γ >1)?For Cu2,the HOMO is a σgor-bital,P(θ)does not exhibit laser wavelength dependence in the multiphoton ionization region where the wavelength λ <475 nm.For Mg2,the HOMO is a σuorbital,we can see that P(θ)has a slight dependence when λ <475 nm.For Se2,the HOMO is a πg(shù)orbital,there is a strong wavelength dependence of P(θ)shown in Fig.4(c),namely the angular width increases rapidly as the laser wavelength decreases from 475 nm to 400 nm and the peak position is shifted gradually toward smaller alignment angles.For As2,the HOMO is a πuorbital,the angular width of P(θ)displays a wavelength dependence,i.e.the width decreases rapidly from 475 nm to 450 nm and then increases gradually from 450 nm to 400 nm.

    Fig.3 Intensity-dependent ionization rates at different laser wavelengths for Ar2.

    Fig.4 Normalized alignment dependence of ionization rate at different laser wavelengths.(a)Cu2at laser intensity of 1.6×1013W/cm2;(b)Mg2at 8.0×1012W/cm2;(c)Se2at 2.5×1013W/cm2;(d)As2at 3.4×1013W/cm2.

    3.5 Strong Ionization Suppression of Several Dimers Having Valence Orbital with Antibonding Systems

    Finally,based on the PPT and MO-PPT models,we will turn to study the ionization suppression of molecule in comparison to its companion atom.In Fig.5,we show ionization probabilities of Cl2,Xe,Ne2and Ne.In our calculations,we treat all the molecules to be randomly aligned and a Gaussian pulse with wavelength of 800 nm and FWHM of 25 fs is used.For Cl2,it has a full- filled antibond valence orbital(πg(shù)),there is no companion atom in nature and the closest one is Xe.Although the ionization potential of Cl2(11.48 eV)is smaller than that of Xe(12.13 eV),we can still see that Cl2shows strong ionization suppression in comparison to Xe as shown in Fig.5(a),which is consistent with the prediction in Ref.[50].For F2,we also found the strong ionization suppression compared with its companion Ar atom(not shown),which is disagree with available experimental observations.In Fig.5(b),we see that there is strong ionization suppression of a rare-gas dimer Ne2(IP of 20.4 eV),which has a full- filled antibond valence orbital(σu),in comparison to its closest companion Ne atom(IP of 21.56 eV).Unfortunately,there is no available experimental results and more accurate theoretical simulations to compare with.

    Fig.5 Ionization probabilities for two selected dimers and their corresponding closest companion atoms.(a)Cl2 and Xe;(b)Ne2and Ne.We use the laser field to be a Gaussian pulse with central wavelength of 800 nm and FWHM of 25 fs in the present calculations.

    4 Conclusions

    In this paper we determine structure parameters Clmin the MO-ADK model for the HOMO of 27 selected dimers,where wave functions with the correct asymptotic behavior are obtained by solving time-independent Schr¨odinger equation of linear molecules with B-spline functions and one-electron potentials,which are numerically created with the LBα model based on the DFT.We emphasize that these structure parameters should be useful and thus tabulated for future applications.Using the MO-ADK model,we study the alignment-dependent ionization probabilities of several selected dimers and compare them with the MO-SFA calculations.With rapid development of free-electron laser,it becomes reliable to ionize a valence electron(or an inner-shell electron)from atoms or molecules by absorbing a single or several highenergy photons.In this case,we propose to use the MOPPT model for studying the ionization of molecules since the MO-ADK model is invalid in the multiphoton ionization region.Based on the MO-PPT model,we found that ionization rate of molecules depends on the laser wavelength and two diatomic molecules having valence orbital with antibonding systems(i.e.,Cl2and Ne2)show strong ionization suppression in comparison to their corresponding closest companion atoms.It is of interest to see if the ionization suppression of Ne2compared with Ne atom can be observed by the future experiments and by more accurate theoretical simulations.More importantly,by including Ne2in the single ionization suppression investigations,we expect to shed more light on the ionization suppression issue of the puzzling F2.

    References

    [1]H.Stapelfeldt and T.Seideman,Rev.Mod.Phys.75(2003)543.

    [2]J.G.Underwood,Nat.Phys.5(2009)253.

    [3]O.Ghafur,A.Rouz′ee,A.Gijsbertsen,et al.,Nat.Phys.5(2009)289.

    [4]M.Spanner,S.Patchkovskii,E.Frumker,and P.B.Corkum,Phys.Rev.Lett.109(2012)113001.

    [5]I.V.Litvinyuk,K.F.Lee,P.W.Dooley,et al.,Phys.Rev.Lett.90(2003)233003.

    [6]A.S.Alnaser,S.Voss,X.M.Tong,et al.,Phys.Rev.Lett.93(2004)113003.

    [7]A.S.Alnaser,C.M.Maharjan,X.M.Tong,et al.,Phys.Rev.A 71(2005)031403(R).

    [8]D.Pavii,K.F.Lee,D.M.Rayner,et al.,Phys.Rev.Lett.98(2007)243001.

    [9]I.Thomann,R.Lock,V.Sharma,et al.,J.Phys.Chem.A 112(2008)9382.

    [10]V.Kumarappan,L.Holmegaard,C.Martiny,et al.,Phys.Rev.Lett.100(2008)093006.

    [11]A.Staudte,S.Patchkovskii,D.Pavii,et al.,Phys.Rev.Lett.102(2009)033004.

    [12]H.Akagi,T.Otobe,A.Staudte,et al.,Science 325(2009)1364.

    [13]M.Magrakvelidze,F.He,S.De,et al.,Phys.Rev.A 79(2009)033408.

    [14]P.von den Ho ff,I.Znakovskaya,S.Zherebtsov,et al.,Appl.Phys.B 98(2010)659.

    [15]R.Itakura,H.Hasegawa,Y.Kurosaki,et al.,J.Phys.Chem.A 114(2010)11202.

    [16]X.Liu,C.Wu,Z.Wu,et al.,Phys.Rev.A 83(2011)035403.

    [17]H.Liu,S.F.Zhao,M.Li,et al.,Phys.Rev.A 88(2013)061401(R).

    [18]H.Chen,L.Fang,V.Tagliamonti,and G.N.Gibson,Phys.Rev.A 84(2011)043427.

    [19]J.L.Hansen,L.Holmegaard,J.H.Nielsen,et al.,J.Phys.B 45(2012)015101.

    [20]J.Wu,M.Meckel,S.Voss,et al.,Phys.Rev.Lett.108(2012)043002.

    [21]J.Wu,L.Ph.H.Schmidt,M.Kunitski,et al.,Phys.Rev.Lett.108(2012)183001.

    [22]S.K.Son and Shih-I.Chu,Phys.Rev.A 80(2009)011403(R).

    [23]S.Petretti,Y.V.Vanne,A.Saenz,et al.,Phys.Rev.Lett.104(2010)223001.

    [24]M.Spanner and S.Patchkovskii,Phys.Rev.A 80(2009)063411.

    [25]M.Abu-samha and L.B.Madsen,Phys.Rev.A 80(2009)023401.

    [26]X.M.Tong,Z.X.Zhao,and C.D.Lin,Phys.Rev.A 66(2002)033402.

    [27]S.F.Zhao,C.Jin,A.T.Le,et al.,Phys.Rev.A 80(2009)051402(R).

    [28]J.Muth-B¨ohm,A.Becker,and F.H.M.Faisal,Phys.Rev.Lett.85(2000)2280.

    [29]T.K.Kjeldsen and L.B.Madsen,J.Phys.B 37(2004)2033.

    [30]O.I.Tolstikhin,T.Morishita,and L.B.Madsen,Phys.Rev.A 84(2011)053423.

    [31]C.D.Lin,A.T.Le,Z.Chen,et al.,J.Phys.B 43(2010)122001.

    [32]M.Lein,J.Phys.B 40(2007)R135.

    [33]S.Haessler,J.Caillat,and P.Sali`eres,J.Phys.B 44(2011)203001.

    [34]J.Ullrich,R.Moshammer,R.D¨orner,et al.,J.Phys.B 30(1997)2917.

    [35]G.Lagmago Kamta and A.D.Bandrauk,Phys.Rev.A 74(2006)033415.

    [36]Y.J.Jin,X.M.Tong,and N.Toshima,Phys.Rev.A 83(2011)063409.

    [37]B.Zhang,J.Yuan,and Z.X.Zhao,Phys.Rev.A 85(2012)033421.

    [38]S.Petretti,A.Saenz,A.Castro,and P.Decleva,Chem.Phys.414(2013)45.

    [39]S.L.Hu,Z.X.Zhao,and T.Y.Shi,Chin.Phys.Lett.30(2013)103103.

    [40]D.A.Telnov and Shih-I.Chu,Phys.Rev.A 79(2009)041401(R).

    [41]X.Chu,Phys.Rev.A 82(2010)023407.

    [42]X.Chu and M.McIntyre,Phys.Rev.A 83(2011)013409.

    [43]T.Otobe and K.Yabana,Phys.Rev.A 75(2007)062507.

    [44]B.Zhang,J.Yuan,and Z.X.Zhao,Phys.Rev.Lett.111(2013)163001.

    [45]Z.X.Zhao,X.M.Tong,and C.D.Lin,Phys.Rev.A 67(2003)043404.

    [46]T.K.Kjeldsen,C.Z.Bisgaard,L.B.Madsen,and H.Stapelfeldt,Phys.Rev.A 71(2005)013418.

    [47]T.K.Kjeldsen and L.B.Madsen,Phys.Rev.A 71(2005)023411.

    [48]S.F.Zhao,C.Jin,A.T.Le,et al.,Phys.Rev.A 81(2010)033423.

    [49]S.F.Zhao,J.Xu,C.Jin,et al.,J.Phys.B 44(2011)035601.

    [50]E.P.Benis,J.F.Xia,X.M.Tong,et al.,Phys.Rev.A 70(2004)025401.

    [51]S.F.Zhao,L.Liu,and X.X.Zhou,Opt.Commun.313(2014)74.

    [52]L.B.Madsen,O.I.Tolstikhin,and T.Morishita,Phys.Rev.A 85(2012)053404.

    [53]L.B.Madsen,F.Jensen,O.I.Tolstikhin,and T.Morishita,Phys.Rev.A 87(2013)013406.

    [54]L.B.Madsen,F.Jensen,O.I.Tolstikhin,and T.Morishita,Phys.Rev.A 89(2014)033412.

    [55]R.Saito,O.I.Tolstikhin,L.B.Madsen,and T.Morishita,Atomic Data and Nuclear Data Tables 103-104(2015)4.

    [56]S.L.Chin,Y.Liang,J.E.Decker,et al.,J.Phys.B 25(1992)L249.

    [57]T.D.G.Walsh,J.E.Decker,and S.L.Chin,J.Phys.B 26(1993)L85.

    [58]T.D.G.Walsh,F.Ilkov,J.E.Decker,and S.L.Chin,J.Phys.B 27(1994)3767.

    [59]A.Talebpour,C.Y.Chien,and S.L.Chin,J.Phys.B 29(1996)L677.

    [60]A.Talebpour,S.Larochelle,and S.L.Chin,J.Phys.B 31(1998)L49.

    [61]M.J.DeWitt,E.Wells,and R.R.Jones,Phys.Rev.Lett.87(2001)153001.

    [62]E.Wells,M.J.DeWitt,and R.R.Jones,Phys.Rev.A 66(2002)013409.

    [63]Z.Y.Lin,X.Y.Jia,C.L.Wang,et al.,Phys.Rev.Lett.108(2012)223001.

    [64]H.P.Kang,Z.Y.Lin,S.P.Xu,et al.,Phys.Rev.A 90(2014)063426.

    [65]C.Guo,Phys.Rev.Lett.85(2000)2276.

    [66]S.F.Zhao,C.Jin,A.T.Le,and C.D.Lin,Phys.Rev.A 82(2010)035402.

    [67]J.P.Wang,S.F.Zhao,C.R.Zhang,et al.,Mol.Phys.112(2014)1102.

    [68]P.R.T.Schipper,O.V.Gritsenko,S.J.A.van Gisbergen,and E.J.Baerends,J.Chem.Phys.112(2000)1344.

    [69]Shih-I.Chu,J.Chem.Phys.123(2005)062207.

    [70]M.Abu-samha and L.B.Madsen,Phys.Rev.A 81(2010)033416.

    [71]A.M.Perelomov,V.S.Popov,and M.V.Terent’ev,Sov.Phys.JETP 23(1966)924.

    [72]F.A.Ilkov,J.E.Decker,and S.L.Chin,J.Phys.B 25(1992)4005.

    [73]Y.Z.Fu,S.F.Zhao,and X.X.Zhou,Chin.Phys.B 21(2012)113101.

    [74]A.T.Le,R.R.Lucchese,S.Tonzani,et al.,Phys.Rev.A 80(2009)013401.

    [75]M.J.Frisch,G.W.Trucks,H.B.Schlegel,et al.,GAUSSIAN 03,Revision B.04(Gaussian Inc.Pittsburgh,PA,2003).

    [76]B.M.Smirnov and A.S.Yatsenko,Phys.Usp.39(1996)211.

    [77]M.Awasthi,Y.V.Vanne,A.Saenz,et al.,Phys.Rev.A 77(2008)063403.

    猜你喜歡
    王國
    幾何王國歡樂多
    幾何王國歡樂多
    誤入神秘王國
    井然有序
    綠色天府(2022年7期)2022-08-16 09:08:22
    一滴水中的王國
    趣味(語文)(2020年5期)2020-11-16 01:34:54
    地下王國
    她的2000億打工王國
    逃離鼠王國
    建立新王國
    NBA特刊(2018年21期)2018-11-24 02:47:48
    最威風(fēng)的王國
    好孩子畫報(2018年2期)2018-04-14 02:04:04
    又大又黄又爽视频免费| 少妇人妻精品综合一区二区| 听说在线观看完整版免费高清| 在线观看av片永久免费下载| 久久亚洲国产成人精品v| 欧美3d第一页| 高清欧美精品videossex| 18禁在线播放成人免费| 免费电影在线观看免费观看| 亚洲激情五月婷婷啪啪| 看免费成人av毛片| 男女那种视频在线观看| 成人鲁丝片一二三区免费| 性插视频无遮挡在线免费观看| 有码 亚洲区| 搡女人真爽免费视频火全软件| 久久久久久九九精品二区国产| 欧美+日韩+精品| 国产乱人偷精品视频| 人妻系列 视频| 春色校园在线视频观看| 欧美性猛交╳xxx乱大交人| 高清日韩中文字幕在线| 亚洲欧美精品专区久久| 免费观看在线日韩| 国产探花极品一区二区| 国产色婷婷99| 蜜桃久久精品国产亚洲av| 久久久久国产精品人妻一区二区| 久久午夜福利片| 在线观看国产h片| 丰满人妻一区二区三区视频av| 亚洲熟女精品中文字幕| 亚洲精品aⅴ在线观看| 亚洲成色77777| av在线亚洲专区| 国产日韩欧美亚洲二区| 亚洲成人一二三区av| 国产片特级美女逼逼视频| 亚洲,一卡二卡三卡| 亚洲精品国产色婷婷电影| 亚洲一级一片aⅴ在线观看| 精华霜和精华液先用哪个| 边亲边吃奶的免费视频| 黄色日韩在线| 久久久久久久久久成人| 国产伦精品一区二区三区四那| 精品亚洲乱码少妇综合久久| 99热这里只有是精品在线观看| 婷婷色综合www| 卡戴珊不雅视频在线播放| 国产高清国产精品国产三级 | 免费观看在线日韩| 成年版毛片免费区| 亚洲,欧美,日韩| 亚洲av中文字字幕乱码综合| 涩涩av久久男人的天堂| 亚洲国产成人一精品久久久| 秋霞在线观看毛片| 好男人在线观看高清免费视频| 国产成人免费无遮挡视频| 中国国产av一级| 大片电影免费在线观看免费| 菩萨蛮人人尽说江南好唐韦庄| 国产一区二区三区av在线| 日韩av不卡免费在线播放| 国产熟女欧美一区二区| www.av在线官网国产| 伦精品一区二区三区| 亚洲人成网站在线观看播放| 99热这里只有是精品50| 别揉我奶头 嗯啊视频| 一级av片app| 三级国产精品片| 国产成人aa在线观看| 亚洲av免费高清在线观看| 午夜老司机福利剧场| 国产精品久久久久久av不卡| 一区二区三区四区激情视频| 免费大片18禁| 激情 狠狠 欧美| 成人特级av手机在线观看| 一级片'在线观看视频| 中国三级夫妇交换| 亚洲综合色惰| 国产伦精品一区二区三区视频9| 亚洲天堂av无毛| 亚洲自拍偷在线| 免费高清在线观看视频在线观看| 寂寞人妻少妇视频99o| 亚洲精品成人av观看孕妇| 在线观看免费高清a一片| 18禁在线无遮挡免费观看视频| av国产精品久久久久影院| 高清av免费在线| 亚洲av福利一区| 国产成年人精品一区二区| 99久久中文字幕三级久久日本| 日韩不卡一区二区三区视频在线| 婷婷色综合大香蕉| 亚洲自拍偷在线| 亚洲成人精品中文字幕电影| 久久精品夜色国产| 国产亚洲av嫩草精品影院| 亚洲国产最新在线播放| 91精品伊人久久大香线蕉| 免费观看无遮挡的男女| 国产黄片视频在线免费观看| 视频中文字幕在线观看| 美女xxoo啪啪120秒动态图| 综合色av麻豆| 狂野欧美激情性xxxx在线观看| 欧美另类一区| a级毛片免费高清观看在线播放| 一级a做视频免费观看| 亚洲内射少妇av| 国产精品三级大全| 夫妻午夜视频| 激情五月婷婷亚洲| 亚洲精品国产色婷婷电影| 国产高清国产精品国产三级 | av免费在线看不卡| 99久久中文字幕三级久久日本| 亚洲精品乱久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美潮喷喷水| 午夜免费观看性视频| 少妇的逼水好多| 久久亚洲国产成人精品v| 熟女av电影| 99re6热这里在线精品视频| 国产精品99久久久久久久久| 赤兔流量卡办理| 97超碰精品成人国产| 日韩成人伦理影院| 99re6热这里在线精品视频| 免费看光身美女| 成人高潮视频无遮挡免费网站| 看免费成人av毛片| 三级经典国产精品| 肉色欧美久久久久久久蜜桃 | 日本一二三区视频观看| 一本一本综合久久| 狂野欧美激情性bbbbbb| 色视频www国产| 中文字幕制服av| 国产乱人偷精品视频| 国产精品麻豆人妻色哟哟久久| 国产淫语在线视频| 国产精品人妻久久久久久| 久久精品国产亚洲av涩爱| www.av在线官网国产| 欧美区成人在线视频| 大话2 男鬼变身卡| 日韩人妻高清精品专区| 国产精品成人在线| 亚洲成人中文字幕在线播放| 精品一区二区免费观看| 777米奇影视久久| 噜噜噜噜噜久久久久久91| 69人妻影院| 一区二区三区免费毛片| 99久国产av精品国产电影| 亚洲欧美日韩另类电影网站 | 91精品伊人久久大香线蕉| 春色校园在线视频观看| 水蜜桃什么品种好| 成人鲁丝片一二三区免费| 亚洲美女搞黄在线观看| 99热这里只有是精品50| 小蜜桃在线观看免费完整版高清| av在线亚洲专区| 黄色日韩在线| 边亲边吃奶的免费视频| 日韩欧美精品v在线| 亚洲怡红院男人天堂| 国产一区亚洲一区在线观看| 国产一区二区亚洲精品在线观看| 成人漫画全彩无遮挡| 久久韩国三级中文字幕| 国产在视频线精品| 亚洲人与动物交配视频| 国产一级毛片在线| 老师上课跳d突然被开到最大视频| 男女无遮挡免费网站观看| 国产精品不卡视频一区二区| 国产精品一区二区三区四区免费观看| 在线天堂最新版资源| 亚洲精品亚洲一区二区| 黄片wwwwww| 亚洲av福利一区| 超碰av人人做人人爽久久| 亚洲高清免费不卡视频| 在现免费观看毛片| 国产乱来视频区| 中文字幕免费在线视频6| 夜夜爽夜夜爽视频| 欧美+日韩+精品| 欧美日韩综合久久久久久| 国产女主播在线喷水免费视频网站| 亚洲精品视频女| 国产精品av视频在线免费观看| 精品久久久久久久久av| 国产伦在线观看视频一区| 人妻制服诱惑在线中文字幕| 你懂的网址亚洲精品在线观看| 日韩av不卡免费在线播放| 看非洲黑人一级黄片| 国产亚洲91精品色在线| 日本爱情动作片www.在线观看| 色婷婷久久久亚洲欧美| 免费看日本二区| 天堂网av新在线| 人人妻人人爽人人添夜夜欢视频 | 男女边吃奶边做爰视频| 国精品久久久久久国模美| 亚洲精品日本国产第一区| 久热久热在线精品观看| 天堂网av新在线| 日韩,欧美,国产一区二区三区| 亚洲第一区二区三区不卡| 亚洲自拍偷在线| 777米奇影视久久| 啦啦啦中文免费视频观看日本| 久久久色成人| 嘟嘟电影网在线观看| 中文字幕久久专区| 欧美激情久久久久久爽电影| 交换朋友夫妻互换小说| 久久精品国产自在天天线| 自拍欧美九色日韩亚洲蝌蚪91 | 女人久久www免费人成看片| 91久久精品电影网| 久久精品国产自在天天线| 夫妻午夜视频| 精品久久久久久久末码| 国产精品一二三区在线看| 热re99久久精品国产66热6| 看黄色毛片网站| 色网站视频免费| 中文欧美无线码| 爱豆传媒免费全集在线观看| 久久久久久久精品精品| 麻豆成人午夜福利视频| 免费av观看视频| 2021天堂中文幕一二区在线观| 狂野欧美激情性xxxx在线观看| 国产成人免费无遮挡视频| 亚洲av不卡在线观看| 亚洲在线观看片| 亚洲激情五月婷婷啪啪| 美女主播在线视频| 男人舔奶头视频| 小蜜桃在线观看免费完整版高清| 国产伦在线观看视频一区| 街头女战士在线观看网站| 中国三级夫妇交换| 国产一级毛片在线| 交换朋友夫妻互换小说| 精品久久久久久久末码| 91狼人影院| 亚洲精品乱码久久久久久按摩| 国产av国产精品国产| 真实男女啪啪啪动态图| 久久精品国产自在天天线| 日本欧美国产在线视频| 久久久久久久久久人人人人人人| 搡老乐熟女国产| 国产久久久一区二区三区| 午夜福利在线在线| 国产人妻一区二区三区在| 国产白丝娇喘喷水9色精品| 国国产精品蜜臀av免费| 午夜精品一区二区三区免费看| 五月伊人婷婷丁香| 亚洲成人一二三区av| 两个人的视频大全免费| 国产在视频线精品| 国产黄片美女视频| 91在线精品国自产拍蜜月| 99久久精品一区二区三区| www.色视频.com| 国产亚洲一区二区精品| 亚洲精品乱码久久久久久按摩| 18禁裸乳无遮挡免费网站照片| 搞女人的毛片| 听说在线观看完整版免费高清| 国产色爽女视频免费观看| 五月伊人婷婷丁香| 免费看日本二区| 成人毛片a级毛片在线播放| 91精品伊人久久大香线蕉| 尾随美女入室| 狂野欧美激情性xxxx在线观看| tube8黄色片| 免费观看a级毛片全部| h日本视频在线播放| 国产 一区精品| av女优亚洲男人天堂| av福利片在线观看| 卡戴珊不雅视频在线播放| 免费av观看视频| 亚洲国产欧美在线一区| videos熟女内射| 黄片wwwwww| 99热全是精品| 亚洲一区二区三区欧美精品 | 欧美国产精品一级二级三级 | 水蜜桃什么品种好| 国产熟女欧美一区二区| 亚洲高清免费不卡视频| 不卡视频在线观看欧美| 我要看日韩黄色一级片| 波多野结衣巨乳人妻| 各种免费的搞黄视频| 欧美成人午夜免费资源| 精品久久久久久久久亚洲| 人妻系列 视频| 国产高潮美女av| 性色avwww在线观看| 黄色配什么色好看| 91在线精品国自产拍蜜月| 中文资源天堂在线| 亚洲av电影在线观看一区二区三区 | 熟女电影av网| 日韩免费高清中文字幕av| 白带黄色成豆腐渣| 国产免费视频播放在线视频| 亚洲欧美日韩东京热| 噜噜噜噜噜久久久久久91| 男女无遮挡免费网站观看| 我的女老师完整版在线观看| 中文字幕人妻熟人妻熟丝袜美| 日韩伦理黄色片| 啦啦啦啦在线视频资源| 国产精品福利在线免费观看| 国产精品一二三区在线看| 在线观看av片永久免费下载| 丝袜脚勾引网站| 制服丝袜香蕉在线| 久久久色成人| 身体一侧抽搐| 亚洲国产色片| 国产爱豆传媒在线观看| 国产精品久久久久久精品电影小说 | 纵有疾风起免费观看全集完整版| 亚洲av免费高清在线观看| 成人亚洲欧美一区二区av| 青春草亚洲视频在线观看| 国产一区二区三区av在线| 秋霞在线观看毛片| 国产精品国产三级专区第一集| 熟女人妻精品中文字幕| 国产乱人视频| 少妇人妻精品综合一区二区| 在线观看av片永久免费下载| 午夜激情福利司机影院| 亚洲精品亚洲一区二区| 久久人人爽人人片av| 天天躁夜夜躁狠狠久久av| 精品一区二区三区视频在线| av网站免费在线观看视频| 亚洲va在线va天堂va国产| 老司机影院毛片| 王馨瑶露胸无遮挡在线观看| 99精国产麻豆久久婷婷| 最近手机中文字幕大全| 欧美xxⅹ黑人| 日本欧美国产在线视频| 欧美区成人在线视频| 王馨瑶露胸无遮挡在线观看| 成人亚洲欧美一区二区av| 欧美xxxx黑人xx丫x性爽| 人人妻人人澡人人爽人人夜夜| 91在线精品国自产拍蜜月| 亚洲最大成人中文| 国产高清有码在线观看视频| 久久鲁丝午夜福利片| 日本av手机在线免费观看| 伦精品一区二区三区| 少妇裸体淫交视频免费看高清| 国产伦理片在线播放av一区| 午夜亚洲福利在线播放| 九草在线视频观看| 嫩草影院入口| 一级毛片黄色毛片免费观看视频| 亚洲最大成人手机在线| 身体一侧抽搐| 少妇人妻精品综合一区二区| av播播在线观看一区| 久久99热6这里只有精品| 亚洲欧美精品专区久久| 一级av片app| 日本色播在线视频| 狠狠精品人妻久久久久久综合| 精品久久久久久久久亚洲| 午夜精品国产一区二区电影 | 久久人人爽人人片av| av在线观看视频网站免费| 亚洲成人久久爱视频| 久久精品人妻少妇| 美女高潮的动态| 精品人妻视频免费看| 免费看日本二区| 看非洲黑人一级黄片| 精品99又大又爽又粗少妇毛片| 久久久久精品久久久久真实原创| 亚洲天堂国产精品一区在线| 中文精品一卡2卡3卡4更新| 黄色欧美视频在线观看| 岛国毛片在线播放| 欧美成人一区二区免费高清观看| 天堂中文最新版在线下载 | 人体艺术视频欧美日本| 男人和女人高潮做爰伦理| 麻豆久久精品国产亚洲av| 老司机影院成人| 91久久精品电影网| 色视频www国产| 亚洲成人中文字幕在线播放| 直男gayav资源| 成人国产av品久久久| 日韩三级伦理在线观看| 日韩一区二区视频免费看| av一本久久久久| 国产伦理片在线播放av一区| 色播亚洲综合网| av天堂中文字幕网| 亚洲精品日本国产第一区| 日韩av在线免费看完整版不卡| 三级国产精品片| 亚洲精品日韩av片在线观看| 亚洲精品一区蜜桃| 欧美精品国产亚洲| 国产伦精品一区二区三区四那| 亚洲最大成人av| 一个人看视频在线观看www免费| 91久久精品国产一区二区成人| 波野结衣二区三区在线| 色婷婷久久久亚洲欧美| 亚洲精品日韩在线中文字幕| 中文字幕制服av| 日日撸夜夜添| 久久久精品免费免费高清| 国产精品三级大全| 麻豆成人av视频| 国产精品久久久久久av不卡| 国产午夜福利久久久久久| 乱系列少妇在线播放| 中文欧美无线码| 欧美高清性xxxxhd video| 日韩大片免费观看网站| 免费人成在线观看视频色| 在线观看国产h片| 十八禁网站网址无遮挡 | 青青草视频在线视频观看| 黄色配什么色好看| 亚洲四区av| 亚洲精品乱码久久久久久按摩| 黄色一级大片看看| 午夜老司机福利剧场| 午夜福利网站1000一区二区三区| 久久99热6这里只有精品| 久久精品久久久久久噜噜老黄| 观看免费一级毛片| 男女国产视频网站| 五月开心婷婷网| 亚洲欧美清纯卡通| 日韩av不卡免费在线播放| 成人二区视频| 亚洲一级一片aⅴ在线观看| 成人欧美大片| 69人妻影院| 最近中文字幕2019免费版| 国产片特级美女逼逼视频| 免费高清在线观看视频在线观看| 欧美高清性xxxxhd video| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜精品一区二区三区免费看| 噜噜噜噜噜久久久久久91| 色综合色国产| 五月天丁香电影| 欧美亚洲 丝袜 人妻 在线| 久久久久久久国产电影| 国产成年人精品一区二区| 免费看不卡的av| av国产精品久久久久影院| 熟女电影av网| a级毛色黄片| 日韩不卡一区二区三区视频在线| 精品一区二区三卡| 精品少妇久久久久久888优播| 99视频精品全部免费 在线| 国产人妻一区二区三区在| 精品人妻视频免费看| 新久久久久国产一级毛片| 男女边吃奶边做爰视频| 欧美激情久久久久久爽电影| 亚洲四区av| 日本与韩国留学比较| 别揉我奶头 嗯啊视频| 国产黄a三级三级三级人| 特级一级黄色大片| 婷婷色综合www| 日日啪夜夜撸| 亚洲精品一区蜜桃| 综合色av麻豆| 波野结衣二区三区在线| 久久久久国产精品人妻一区二区| 搡女人真爽免费视频火全软件| 天堂网av新在线| 搡老乐熟女国产| 欧美最新免费一区二区三区| 亚洲欧美一区二区三区国产| 久久久久精品久久久久真实原创| 亚洲丝袜综合中文字幕| 亚洲,一卡二卡三卡| 三级国产精品欧美在线观看| 亚洲精品456在线播放app| 国产精品国产三级国产av玫瑰| 欧美高清成人免费视频www| 久久午夜福利片| 久久久亚洲精品成人影院| 成人亚洲精品av一区二区| 欧美精品国产亚洲| 免费大片黄手机在线观看| 国产精品熟女久久久久浪| 亚洲欧美精品专区久久| 国产一区有黄有色的免费视频| 一级毛片久久久久久久久女| 全区人妻精品视频| 成年免费大片在线观看| 国产精品国产三级国产av玫瑰| 国产伦理片在线播放av一区| 日本一二三区视频观看| 亚洲自拍偷在线| 国产成人a区在线观看| 亚洲av一区综合| 欧美日韩一区二区视频在线观看视频在线 | 久热这里只有精品99| 久久韩国三级中文字幕| 精品人妻偷拍中文字幕| 99热这里只有精品一区| 久久久久久久午夜电影| 免费av不卡在线播放| 少妇人妻精品综合一区二区| 久久久久久伊人网av| 中国美白少妇内射xxxbb| 男插女下体视频免费在线播放| 国产黄频视频在线观看| 国产高清三级在线| 欧美日韩视频高清一区二区三区二| 你懂的网址亚洲精品在线观看| 天堂俺去俺来也www色官网| 色吧在线观看| 欧美激情国产日韩精品一区| 在现免费观看毛片| av国产免费在线观看| 免费人成在线观看视频色| 国产免费视频播放在线视频| 亚洲精品自拍成人| 涩涩av久久男人的天堂| 国产精品女同一区二区软件| 免费观看在线日韩| 欧美成人精品欧美一级黄| 国产亚洲午夜精品一区二区久久 | 在线免费十八禁| 最新中文字幕久久久久| 亚洲人成网站在线观看播放| 一区二区三区免费毛片| 亚洲真实伦在线观看| 久久久a久久爽久久v久久| 综合色丁香网| 两个人的视频大全免费| 亚洲精品乱码久久久v下载方式| 91久久精品国产一区二区三区| 在线a可以看的网站| 欧美丝袜亚洲另类| 亚洲国产欧美在线一区| 白带黄色成豆腐渣| 日韩一区二区三区影片| 最近最新中文字幕免费大全7| 国产精品99久久久久久久久| 亚洲四区av| 视频区图区小说| 亚洲精华国产精华液的使用体验| 久久久久九九精品影院| av国产免费在线观看| 波多野结衣巨乳人妻| 最近手机中文字幕大全| 婷婷色综合大香蕉| 国产精品国产av在线观看| 精品久久久精品久久久| 深夜a级毛片| 国产伦精品一区二区三区四那| 亚洲国产最新在线播放| 国产 一区精品| 久久久精品免费免费高清| 插阴视频在线观看视频| 97人妻精品一区二区三区麻豆| 可以在线观看毛片的网站| 最后的刺客免费高清国语| 亚洲精品成人久久久久久| 国产午夜精品一二区理论片| 18禁裸乳无遮挡免费网站照片| 亚洲成人中文字幕在线播放| 少妇的逼水好多| 亚洲精品国产av成人精品| 日韩伦理黄色片| 久久亚洲国产成人精品v| 精品一区二区三区视频在线| 亚洲伊人久久精品综合| 国产伦在线观看视频一区| 水蜜桃什么品种好| 成人国产av品久久久|