• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic Structure of Helium Atom in a Quantum Dot?

    2016-05-14 12:51:03JayantaSahaBhattacharyyaandMukherjee
    Communications in Theoretical Physics 2016年3期

    Jayanta K.Saha,S.Bhattacharyya,and T.K.Mukherjee

    1Indian Association for the Cultivation of Science,Jadavpur,Kolkata 700032,India

    2Aliah University,IIA/27,New Town,Kolkata 700156,India

    3Acharyya Prafulla Chandra College,New Barrackpore,Kolkata 700131,India

    4Narula Institute of Technology,Agarpara,Kolkata 700109,India

    1 Introduction

    The subject of atomic systems under spatial confinement is of immense interest among the researchers since the advent of quantum mechanics as the spectral characteristics of atomic systems placed under different confinements change appreciably as compared to those of free atoms.[1?2]different types of phenomenological potentials have been used by researchers to model atoms within cavities,[3]atoms under pressure,[4]impurities in quantum dots or nano crystals,[5]nanopores,[6?7]fullerenes,[8]foreign atoms in liquid helium environment[9]etc.The study of quantum dots(QD)has got considerable attention in recent times due to its fundamental importance in theoretical researches as well as in fabricating new functional devices.The QD’s(or artificial atoms),in general,contain several electrons subjected to an external confining potential and they show similar structural properties as compared to pure atoms.The structural changes of the impurity atoms inside QD’s with reference to the parameters of confining potentials provide huge physical insight about the interactions of the atoms with surroundings.Although the bound states of confined hydrogen and helium atoms have been studied extensively by several researchers,[1?2,4]very few attempts have so far been made towards the quasi bound or resonance states of one electron impurity atom in an isolated QD[10?11]and also in case of confined two electron systems.[12?14]Transformations of two-electron bound states to Feshbach and then to shape resonances depending upon a parameter of model rectangular well-type potential representing the QD have been studied by Bylicki et al.[12]Sajeev et al.[13]and Genkinet al.[14]showed that the singly excited bound states of a two-electron atom become resonance states for appropriately chosen parameters of an external attractive spherical Gaussian type con fining potential used to model the QD.

    In the present work,we have considered a spherically symmetric finite oscillator(FO)potential[3,15?16]of the type,

    for modeling the QD con finement.Here V0is the depth of the potential well and the cavity constant cwis defined as,

    where?is the width of the potential.By tuning the parameters V0and?,one can change the shape of the potential given by Eq.(1).Such type of two-parameter(V0and?)potential provides much control and flexibility in modeling the size of a QD.When r→0 i.e.near the center of QD,Vc(r)~r2and thus a harmonic nature is observed in the potential for a given cavity constant cw.But for large “r”,it deviates from the harmonic behavior.In fact,The FO potential is quite similar in profile to that of Gaussian potential.At the same time,it facilitates the computation of matrix elements in a simple and efficient manner,especially when the Slater-type orbitals are used in constructing the wave function with appropriate boundary conditions for a confined system.This FO potential was used by Winkler[15]to study the two-electron bound and resonant states of helium in QD where the electron correlation was not included initially in the optimized wave function.Even the inclusion of electron correlation could not remove the uncertainties in their calculations.[15]Later,Kimani et al.[16]applied the restricted Hartree–Fock method to estimate the ground states of many-electron close-shell quantum dots modeled by the FO potential where the electron correlations were included approximately.Chakraborty and Ho[3]made a sophisticated approach to deal with this problem by expanding the wave function in single exponent Hylleraas type basis within the framework of stabilization method,but their work was restricted to only the lowest lying doubly excited resonance state 2s2(1Se)of helium.It is worthwhile to mention that an appropriate knowledge of resonance structure of few-electron QD with and without a central impurity atom will help to understand the electron transport phenomena occurring in real semiconductor QDs.[12]

    Under such circumstances,we have studied the resonance parameters of1Sestates originated from 2sns and 2pnp(n=2–5)configurations of QD confined helium below N=2 ionization threshold of He+in the framework of stabilization method[17]by using explicitly correlated multi-exponent Hylleraas type basis set.This method was successfully employed by the present workers[18?22]for calculations of resonance parameters of different resonance states of the free and confined helium-like ions.In the present study,the resonance parameters of the states under consideration are estimated over a wide range of width(?)for a fixed depth(V0)of the FO potential.The energy values of bound 1sns(1Se)states(n=1?6)have also been reported.Moreover,the positions of 1s,2s(2S)and 2p(2P)states of He+have been estimated for a comprehensive understanding about the structure of QD confined helium.The variation of ionization potential of QD confined He with respect to the width of the FO potential has been studied.It has also been shown that the potential given by Eq.(1)breaks the orbital angular momentum(l)degeneracy in Coulomb field for the energy levels of hydrogen-like atoms.Finally,we have shown that for a fixed cavity depth(V0),the widths of the resonance states show oscillatory behavior with respect to the width(?)of the quantum cavity.It has been noted that for higher excited states,such oscillations are more pronounced.The paper is arranged as follows:a brief discussion on the present methodology is given in Sec.2,followed by a discussion on the results in Sec.3,and finally concluding in Sec.4 with a view towards further use of the present techniques in related studies of spatially confined atomic systems e.g.QD,pressure confinement,strongly coupled plasma confinement etc.

    2 Method

    For any1S state of even parity arising from two electrons having same azimuthal quantum number,the variational equation[23]can be written as,

    subject to the normalization condition,

    where the symbols used in Eqs.(3)and(4)are same as in Ref.[23].The effective potential is given by

    The multi-exponent correlated wavefunction[20]considered in the present calculation is expressed as

    with

    where σ’s are the non-linear parameters.Here,r1and r2are the radial co-ordinates of the electrons and r12is the relative distance between them.In a multiexponent basis set,if there are p number of non-linear parameters,then the number of terms in the radially correlated basis is p(p+1)/2 and,therefore,the dimension of the full basis(N)including angular correlation will be[(p(p+1)/2)×q],where q is the number of terms involving r12.[24]For example,as we have used here nine non-linear parameters,the number of terms in the radially correlated basis is 45 and with 10 terms involving different powers of r12,the dimension of the full basis(N)becomes 450.The values of the non-linear parameters are taken in a geometrical sequence:σi= σi?1γ,γ being the geometrical ratio.[25]The wavefunction can be squeezed or can be made more di ff use by changing the geometrical ratio(γ)keeping σ1constant throughout.To have a preliminary guess about the initial and final values of nonlinear parameter σ,we optimize the energy eigenvalues of1Sestates below N=1 ionization threshold of He+by using Nelder–Mead procedure.[26]The energy eigenroots(E)are then obtained by solving the generalized eigenvalue equation

    whereis the Hamiltonian matrix,is the overlap matrix and C is a column matrix consisting of linear variational coefficients.The wavefunction is normalized for each width(?)of the FO potential to account for the modi fi ed charge distribution inside the QD.Each energy eigenroot plotted against the geometrical ratio(γ)produces the stabilization diagram.Subsequently,we can calculate the densities of resonance states from the inverse of tangents at different points near the stabilization plateau in the neighborhood of avoided crossings for each energy eigenroot.The plots of calculated densities of resonance states versus energy for each eigenroot are then fitted separately to a standard Lorentzian pro file.The best fit,i.e.,with the least chi square(χ2)and the square of correlation(R2)near unity yields the desired position(Er)and width(Γ)of the resonance state.

    For each width(?)of the con fining potential,the energy eigenvalues of2S and2P states of confined oneelectron ion He+are obtained by using Ritz variational technique considering the wavefunction as

    where η’s are the nonlinear parameters and C’s are the linear variational coefficients.For He+(ns)states(n=1?2),we have considered 14-parameter basis set whereas for He+(2p)state we have taken 13 parameters in the basis.In both the cases,l is ranging from 0 to 4.All calculations are carried out in quadruple precision.Atomic units have been used throughout unless otherwise specified.

    3 Results and Discussions

    To construct the stabilization diagram corresponding to each width(?)of the FO potential,repeated diagonalization of the Hamiltonian matrix in the Hylleraas basis set of 450 parameters is performed in the present work for 400 different values of γ ranging from 0.63 a.u.to 0.77 a.u.A portion of the stabilization diagram for1Sestates of confined helium below N=2 ionization threshold of He+is given in Fig.1 where we have taken V0=0.2 a.u.and?=4.0 a.u.It is evident from Fig.1 that there exist two classes of states:

    (i)First few energy eigenroots lying below He+(1s)(?2.184 879 a.u.)level are insensitive with the variation of γ.This feature clearly suggests that these energy eigenroots originating from 1sns configurations of QD confined helium are bound i.e.stable against auto-ionization.

    (ii)Energy eigenrootslying between He+(1s)and He+(2s)(?0.607 849 a.u.)are sensitive with the variation of γ and give rise to flat plateaus in the vicinity of avoided crossings of the energy eigenroots in the neighborhoods of some particular energy values.This is a signature of the presence of1Seresonance states of QD con fined helium.

    The present calculated bound state energy eigenvalues(?E)of 1sns(1Se)(n=1–6)states of He as well as the He+(1s)energies for different cavity widths(?)starting from a very low value of 0.001 a.u.(corresponds to almost a free case)to a high value of 1000.0 a.u.are illustrated in Fig.2.It is to be noted that for a very small cavity width? =0.001,the 1sns(n=1–6)energy eigenvalues of helium and the He+(1s)threshold energy inside the cavity are nearly identical to the respective energy eigenvalues of the free ions and they remain almost unaltered upto the cavity width?=0.1 a.u.We can see from Eq.(1)that,for?→0,cw→∞and thus,Vc→0 which produces no effect of confinement.In between?=0.1 a.u.and 10.0 a.u.,the energy eigenvalues of helium decrease monotonically and ultimately saturate at(E1sns+2×V0)a.u.In a similar fashion,the threshold energy He+(1s)saturates at(E1s+V0)a.u.This feature is physically consistent as we can note from Eq.(1)that for?→∞,the cavity constant cw→ 0,so that Vc(r)→ ?V0.Thus the one-and two-electron energy levels undergo a downward shift by V0and 2V0respectively for? → ∞.The variation of the ionization potential(IP)i.e.the amount of energy required(in eV)to ionize one electron from the ground state(1s2)of helium atom is plotted against the width(?)of the cavity in Fig.3.In accordance with the variation of energy eigenvalues of helium and its oneelectron subsystem i.e.He+,it is evident from Fig.3 that,the IP is identical with the vacuum IP for low values of? while,for high values of?,it increases by an amount V0~5.44 eV(=0.2 a.u.).It is thus evident from Figs.2 and 3 that the rates of variations of energy values of the ions are significant when the size of the confining cavity is of the order of atomic dimensions.It is thus remarkable that the stability of an impurity atom can be controlled by suitably tuning the size of a QD i.e.the depth and width of the representing cavity.

    Fig.1 Stabilization diagram for1Sestates of helium atom under quantum cavity.Width of the cavity is set at 4.0 a.u.

    Fig.2 The variation of bound state energy eigenvalues with reference to the width of the cavity.

    Fig.3 The variation of IP with reference to the width of the cavity.

    An enlarged view of the stabilization diagram(given in Fig.1)for1Sestates of He within the energy range?0.8 a.u.to?0.64 a.u.is given in Fig.4.The1Sestates of He below N=2 ionization threshold of He+(2s)can arise due to 2sns and 2pn′p(n,n′≥ 2)configurations.From a closer look at Fig.4,we can see that for a short range of γ,each eigenroot between N=1 and N=2 ionization thresholds of He+becomes almost flat in the vicinity of avoided crossings in the neighborhood of different energies.In order to calculate the exact resonance parameters,the density of states(DOS)ρ(E)is calculated by evaluating the inverse of the slope at a number of points near these flat plateaus of each energy eigenroot using the formula[18]given by:

    The estimated DOS ρn(E)is then fitted to the following Lorentzian form[18]

    where y0is the baseline background,A is the total area under the curve from the baseline,Eris the position of the center of the peak of the curve and Γ represents the full width of the peak of the curve at half maxima.Among different fitting curves for each eigenroot corresponding to a particular resonance state,the best fitted curve i.e.the curve with least χ2and the square of correlation(R2)closer to unity[18]yields the desired resonance energy(Er)and width(Γ).For example,the calculated DOS and the corresponding fitted Lorentzian for the 2s2(1Se)resonance state of He below He+(1s)threshold for cavity width?=4.0 a.u.(given in Fig.5)yields resonance position Erat?0.98163 a.u.and width Γ =6.9961×10?3a.u.The evaluation of DOS following this fitting procedure has been repeated for each width of the confining potential(?).

    Fig.4 Enlarged view of the stabilization diagram for 1Sestates of helium atom under quantum cavity in the energy range between?8.0 a.u.to?0.64 a.u.Width of the cavity is set at 4.0 a.u.

    Fig.5 Density of states and fitted lorentzian for cavity width 4.0 a.u.

    Fig.6 The variation of resonance energies(Er)of 2sns(n=2–5)(1Se)states and corresponding 2s and 2p threshold energies with the cavity width(?).

    The estimated resonance energies of doubly excited 2sns(1Se)states(n=2–5)of helium and corresponding 2s and 2p threshold energies for the cavity depth V0=0.2 a.u.and cavity width(?)ranging from 0.001 a.u.to 1000 a.u.are given in figure 6,while the variations of resonance energies(Er)of 2pnp(n=2–5)(1Se)states and corresponding 2s and 2p threshold energies versus?are given in Fig.7.We have noted the following points.

    (i)It is clear from Figs.6 and 7 that for?=0.001 a.u.,the He+(2s)and He+(2p)states are degenerate and coincide with the energy value of N=2 ionization threshold of free He+ion.As?increases,the He+(2s)and He+(2p)states become non-degenerate.Initially,the 2s level of He+lies energetically below the 2p level for?up to 0.5 a.u.At?=1.0 a.u.,the 2s state moves above the 2p level.These results exhibit that an “incidental degeneracy”takes place for 2s and 2p states of He+at some value of?between 0.5 a.u.and 1.0 a.u.and then a “l(fā)evel crossing” occurs between these two states having different symmetry properties.Finally,these states become degenerate again for?≥100.0 a.u.The incidental degeneracy for He+(2s)and He+(2p)states occur for?in the range 0.5≤?≤1.0.Such incidental degeneracy and subsequent level crossing phenomenon have been noted earlier by Sen et al.[27]in case of cage confined hydrogen atom and by Bhattacharyya et al.[28]in case of helium-like ions within strongly coupled plasma environment.

    Fig.7 The variation of resonance energies(Er)of 2pnp(n=2?5)(1Se)states and corresponding 2s and 2p threshold energies with the cavity width(?).

    (ii)It is seen from both Figs.6 and 7 that all the resonance energies(Er)are almost unaltered up to?=0.5 a.u.,then decrease rapidly up to?=20.0 a.u.,and ultimately saturate.For low values of?(say 0.001 a.u.) the resonance energies are identical with those of the free He atom whereas for?=1000.0 a.u.the resonance energies are equal to those of free He atom plus 0.4 a.u.(i.e.2.0×V0).Thus,for a given depth(V0)of the finite oscillator potential,the variations of energies of the bound states and the resonance states of helium with reference to the width of the cavity(?)are nearly identical.

    The variation of widths(Γ)of 2sns and 2pnp(1Se)(n=2–5)resonance states with reference to ? are given in Figs.8 and 9 respectively.A closer look at Figs.8 and 9 leads us to the following observations.

    (i)In general,it can be argued that the variation of widths shows an oscillatory behavior which are more pronounced for the higher excited states.It is worthwhile to mention here that recently Chakraborty and Ho[3]also reported such oscillation of resonance width(Γ)for 2s2(1S)state of QD confined helium atom.This feature clearly indicates a possibility of controlling the autoionization lifetimes of doubly excited states of two-electron ions by tuning the parameters of the confining FO potential representing the quantum dot.

    Fig.8 The variation of resonance width(Γ)of 2sns(n=2–5)(1Se)states with the cavity width(?).

    Fig.9 The variation of resonance width(Γ)of 2pnp(n=2–5)(1Se)states with the cavity width(?).

    (ii)The variations of widths of 2s2and 2p2(1Se)states with respect to?are exactly opposite in nature.For1Sestate originating from 2s2configuration,the autoionization width first decreases within the range 0.1≤?≤1.0 and after reaching the minima,it shows a large bump around??6.0 a.u.After that it starts to decrease and fi nally the autoionization width saturates where it becomes equal to that of a free He atom.In contrast,for 2p2state,the autoionization width first increases for 0.1≤?≤1.0 and then shows a large dip approximately at the same value of?for which the 2s2state shows the bump.

    (iii)The values of?corresponding to the largest bump in the values of autoionization widths(Γ)of 2sns states and the lowest dip for 2pnp states shift towards the higher values of the cavity width(?)for higher excited states.

    Inside the QD i.e.due to the presence of the surrounding FO potential,the charge distribution of the impurity ion gets reoriented,which produces the behavioral changes as compared to a free ion.The nodes or antinodes of the resonance wavefunction lie at the boundary of the QD cavity and the interference caused inside the cavity gives rise to the oscillatory behavior of the resonance widths.[3,29]The number of nodes or antinodes of the wavefunction increases for high-lying resonance states and the oscillation becomes more prominent.

    4 Conclusion

    Structural properties of He atom confined in a QD,efficiently modeled by a two-parameter weakly confining FO type potential,have been investigated in the framework of stabilization method using explicitly correlated Hylleraastype basis sets.It has been observed that the structure of the impurity ion is a sensitive function of the dot size.For very small values of the cavity width,the system behaves almost like a free ion whereas,for very high cavity widths,a constant shift equals to the depth of the potential are observed in the energy values of the bound as well as the resonance states.When the dot size becomes comparable to the dimensions of the impurity atom,the effects are more pronounced and many remarkable behaviors such as increase in ionization potential,oscillations in the widths of two-electron resonance states,incidental degeneracy and subsequent level-crossing phenomena for one-electron ions are observed.The present work is expected to lead to future investigations on the autoionizing states of different angular momenta for QD confined two-electron systems.

    References

    [1]W.Jaskolski,Phys.Rep.1(1996)271.

    [2]J.Sabin,E.Brandas,and S.A.Cruz,Adv.Quantum Chem.57(2009)1334;58(2009)1297.

    [3]S.Chakraborty and Y.K.Ho,Phys.Rev.A 84(2011)032515.

    [4]S.Bhattacharyya,J.K.Saha,P.K.Mukherjee,and T.K.Mukherjee,Phys.Scr.87(2013)065305 and references therein.

    [5]D.J.Norris,A.L.Efros,and S.C.Erwin,Science 319(2008)1776.

    [6]N.L.Rosi,J.Eckert,M.Eddaoudi,et al.,Science 300(2003)1127.

    [7]J.L.C.Rowsell,E.C.Spencer,J.Eckert,J.A.K.Howard,and O.M.Yaghi,Science 309(2005)1350.

    [8]J.A.Ludlow,T.G.Lee,and M.S.Pindzola,J.Phys.B 43(2010)235202.

    [9]Solvation Effects on Molecules and Biomolecules,Computational Methods and Applications,ed.S.Canuto,Springer,Berlin(2008).

    [10]S.Sahoo,Y.C.Lin,and Y.K.Ho,Physica E 40(2008)3107.

    [11]S.Sahoo and Y.K.Ho,Phys.Rev.B 69(2004)165323.

    [12]M.Bylicki,W.Jasklski,A.Stachw,and J.Diaz,Phys.Rev.B 72(2005)075434.

    [13]Y.Sajeev and N.Moiseyev,Phys.Rev.B 78(2008)075316.

    [14]M.Genkin and E.Lindroth,Phys.Rev.B 81(2010)125315.

    [15]P.Winkler,Int.J.Quant.Chem.100(2004)1122.

    [16]P.Kimani,P.Jones,and P.Winkler,Int.J.Quant.Chem.108(2008)2763.

    [17]V.A.Mandelshtam,T.R.Ravuri,and H.S.Taylor,Phys.Rev.Lett.70(1993)1932.

    [18]J.K.Saha and T.K.Mukherjee,Phys.Rev.A 80(2009)022513

    [19]J.K.Saha,S.Bhattacharyya,and T.K.Mukherjee,J.Chem.Phys.132(2010)134107.

    [20]J.K.Saha,S.Bhattacharyya,T.K.Mukherjee,and P.K.Mukherjee,Int.J.Quant.Chem.111(2011)1819.

    [21]J.K.Saha,S.Bhattacharyya,and T.K.Mukherjee,Int.Rev.At.Mol.Phys.3(2012)1.

    [22]S.Kasthurirangan,et al.,Phys.Rev.Lett.111(2013)243201.

    [23]T.K.Mukherjee and P.K.Mukherjee,Phys.Rev.A 50(1994)850.

    [24]J.K.Saha,S.Bhattacharyya,T.K.Mukherjee,and P.K.Mukherjee,J.Phys.B 42(2009)245701.

    [25]M.Bylicki,J.Phys.B 30(1997)189.

    [26]J.A.Nelder and R.Mead,Comput.J.7(1965)308.

    [27]K.D.Sen,J.Chem.Phys.122(2005)194324.

    [28]S.Bhattacharyya,J.K.Saha,and T.K.Mukherjee,Phys.Rev.A 91(2015)042515.

    [29]L.G.Jiao and Y.K.Ho,Electronic Structure of Quantum Confined Atoms and Molecules,ed.K.D.Sen,Springer,Switzerland(2014)p.145.

    久久久久国内视频| 91九色精品人成在线观看| 久久伊人香网站| 精品久久久久久,| 日韩中文字幕欧美一区二区| 麻豆久久精品国产亚洲av| 在线十欧美十亚洲十日本专区| 欧美不卡视频在线免费观看| 18+在线观看网站| 亚洲一区二区三区色噜噜| 亚洲美女黄片视频| 3wmmmm亚洲av在线观看| 丰满人妻一区二区三区视频av | 一a级毛片在线观看| 久久久国产成人精品二区| 特大巨黑吊av在线直播| 日本在线视频免费播放| 婷婷丁香在线五月| 亚洲av电影不卡..在线观看| 国产色爽女视频免费观看| 久久人妻av系列| 欧美一级a爱片免费观看看| 小蜜桃在线观看免费完整版高清| 日本熟妇午夜| 动漫黄色视频在线观看| 日韩欧美国产一区二区入口| 亚洲激情在线av| 亚洲国产欧美人成| 亚洲av第一区精品v没综合| 日韩欧美精品免费久久 | 欧美成人性av电影在线观看| 亚洲七黄色美女视频| 中文字幕精品亚洲无线码一区| 色尼玛亚洲综合影院| 又黄又粗又硬又大视频| 99视频精品全部免费 在线| 国产三级中文精品| 久久久久久久久大av| 少妇裸体淫交视频免费看高清| 免费观看的影片在线观看| 久久久久性生活片| 一进一出抽搐动态| 精品国产三级普通话版| 国产伦精品一区二区三区视频9 | 亚洲激情在线av| 亚洲乱码一区二区免费版| 人妻丰满熟妇av一区二区三区| 最新美女视频免费是黄的| 国产伦精品一区二区三区四那| 亚洲av五月六月丁香网| 国产一区二区三区视频了| 欧美又色又爽又黄视频| 亚洲av美国av| 国内毛片毛片毛片毛片毛片| 91在线精品国自产拍蜜月 | 欧美乱码精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 欧美日本亚洲视频在线播放| 88av欧美| 69人妻影院| a在线观看视频网站| 欧美日韩福利视频一区二区| 午夜福利视频1000在线观看| 日本撒尿小便嘘嘘汇集6| 国产精品美女特级片免费视频播放器| 久久久国产成人精品二区| 中文字幕高清在线视频| 麻豆久久精品国产亚洲av| 国产三级在线视频| 18禁国产床啪视频网站| 免费大片18禁| 国产亚洲av嫩草精品影院| 欧美日韩一级在线毛片| 午夜久久久久精精品| 亚洲无线观看免费| 身体一侧抽搐| 少妇人妻一区二区三区视频| 亚洲成人中文字幕在线播放| 国产精品一区二区三区四区久久| 国产精品女同一区二区软件 | 好男人电影高清在线观看| 黄色女人牲交| 久久久久久大精品| 国产成人影院久久av| 97超级碰碰碰精品色视频在线观看| av黄色大香蕉| 免费看光身美女| ponron亚洲| 国产精品免费一区二区三区在线| 制服丝袜大香蕉在线| 久久久国产成人精品二区| 少妇熟女aⅴ在线视频| 一a级毛片在线观看| 最近最新免费中文字幕在线| 欧美最黄视频在线播放免费| 欧美av亚洲av综合av国产av| 男人的好看免费观看在线视频| 欧美大码av| 夜夜看夜夜爽夜夜摸| 天堂动漫精品| 成年免费大片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 男女做爰动态图高潮gif福利片| 精品久久久久久久末码| 可以在线观看毛片的网站| 精品人妻偷拍中文字幕| 国产精品女同一区二区软件 | 国产精品美女特级片免费视频播放器| 亚洲va日本ⅴa欧美va伊人久久| 国产一区在线观看成人免费| 99精品欧美一区二区三区四区| 天天一区二区日本电影三级| 在线观看66精品国产| 12—13女人毛片做爰片一| 人人妻人人澡欧美一区二区| 国产精品电影一区二区三区| 99国产综合亚洲精品| 无人区码免费观看不卡| 97超级碰碰碰精品色视频在线观看| 午夜日韩欧美国产| 国产乱人视频| 久久精品综合一区二区三区| 黄片小视频在线播放| 极品教师在线免费播放| 久久久国产成人免费| 在线播放国产精品三级| 两性午夜刺激爽爽歪歪视频在线观看| 欧美+亚洲+日韩+国产| 亚洲熟妇熟女久久| 禁无遮挡网站| 亚洲天堂国产精品一区在线| 欧美日韩精品网址| 美女大奶头视频| 极品教师在线免费播放| 国产麻豆成人av免费视频| 首页视频小说图片口味搜索| 男女那种视频在线观看| 女同久久另类99精品国产91| 日本 av在线| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩高清专用| 亚洲第一电影网av| 少妇高潮的动态图| 亚洲精品成人久久久久久| 叶爱在线成人免费视频播放| 黄色片一级片一级黄色片| 高潮久久久久久久久久久不卡| 全区人妻精品视频| 国产主播在线观看一区二区| 99久久无色码亚洲精品果冻| 少妇的丰满在线观看| 欧美一区二区精品小视频在线| 亚洲激情在线av| 嫩草影院入口| 91麻豆av在线| 白带黄色成豆腐渣| 亚洲成人中文字幕在线播放| 免费看美女性在线毛片视频| 国产69精品久久久久777片| 久久久精品大字幕| 在线观看免费视频日本深夜| 国产一区二区在线观看日韩 | 天天躁日日操中文字幕| 亚洲欧美精品综合久久99| 免费av观看视频| 欧美日韩黄片免| 精品乱码久久久久久99久播| 老鸭窝网址在线观看| 久久草成人影院| 麻豆一二三区av精品| 亚洲一区二区三区色噜噜| 黄色女人牲交| 69av精品久久久久久| 老司机午夜十八禁免费视频| 久久伊人香网站| 国产免费男女视频| 国产精品影院久久| 国产精品日韩av在线免费观看| 给我免费播放毛片高清在线观看| 亚洲国产中文字幕在线视频| 欧美高清成人免费视频www| 国产一级毛片七仙女欲春2| 国产精品久久久人人做人人爽| 成人午夜高清在线视频| 免费在线观看亚洲国产| 99热这里只有是精品50| 变态另类成人亚洲欧美熟女| 村上凉子中文字幕在线| 亚洲精品国产精品久久久不卡| 久久天躁狠狠躁夜夜2o2o| 蜜桃亚洲精品一区二区三区| 天堂av国产一区二区熟女人妻| 国产精品亚洲一级av第二区| 成人三级黄色视频| 久久久精品欧美日韩精品| 高清毛片免费观看视频网站| 欧美一级毛片孕妇| 中文资源天堂在线| 神马国产精品三级电影在线观看| 成年女人永久免费观看视频| 亚洲成av人片免费观看| svipshipincom国产片| 欧美绝顶高潮抽搐喷水| av中文乱码字幕在线| 久久久久久国产a免费观看| 在线观看午夜福利视频| 内地一区二区视频在线| 国产精品99久久久久久久久| 欧美一区二区精品小视频在线| 国产av不卡久久| 男插女下体视频免费在线播放| 老司机福利观看| 亚洲中文日韩欧美视频| 九九在线视频观看精品| 色综合亚洲欧美另类图片| 亚洲欧美日韩卡通动漫| 久久久久性生活片| 免费人成在线观看视频色| 精品国产亚洲在线| 久久久久久久久大av| 亚洲av熟女| 国产日本99.免费观看| 午夜精品一区二区三区免费看| 国产精品久久久久久久电影 | 婷婷丁香在线五月| 久久精品国产亚洲av涩爱 | 欧美日韩国产亚洲二区| 久久精品人妻少妇| 亚洲内射少妇av| 黄片大片在线免费观看| 久久人妻av系列| 波野结衣二区三区在线 | 啪啪无遮挡十八禁网站| 亚洲欧美精品综合久久99| 搞女人的毛片| 亚洲美女黄片视频| 免费观看人在逋| 两人在一起打扑克的视频| a级一级毛片免费在线观看| 人妻久久中文字幕网| 制服人妻中文乱码| 全区人妻精品视频| 久久久成人免费电影| 欧美在线一区亚洲| 特大巨黑吊av在线直播| 免费看光身美女| av国产免费在线观看| 天美传媒精品一区二区| 久久精品国产99精品国产亚洲性色| 欧美乱色亚洲激情| 人人妻人人澡欧美一区二区| 亚洲av电影在线进入| 无人区码免费观看不卡| 欧美乱码精品一区二区三区| 好男人电影高清在线观看| 深夜精品福利| 男插女下体视频免费在线播放| 制服人妻中文乱码| 国产精品久久久久久久电影 | 日本在线视频免费播放| 色老头精品视频在线观看| 男人舔女人下体高潮全视频| 欧美zozozo另类| 欧美一级毛片孕妇| 成人国产综合亚洲| 亚洲精品成人久久久久久| 成人午夜高清在线视频| www.熟女人妻精品国产| 久久香蕉精品热| 深夜精品福利| 精品熟女少妇八av免费久了| a级一级毛片免费在线观看| 神马国产精品三级电影在线观看| 欧美性感艳星| 欧美黄色淫秽网站| 欧美乱码精品一区二区三区| 美女大奶头视频| 亚洲av第一区精品v没综合| 欧美极品一区二区三区四区| 少妇高潮的动态图| 黄色女人牲交| 男人和女人高潮做爰伦理| 怎么达到女性高潮| 日韩欧美 国产精品| or卡值多少钱| www国产在线视频色| 精品福利观看| 久久中文看片网| 久9热在线精品视频| 看片在线看免费视频| 久久人人精品亚洲av| 在线观看美女被高潮喷水网站 | 亚洲五月婷婷丁香| 国产色爽女视频免费观看| 亚洲中文字幕一区二区三区有码在线看| 久久久久久国产a免费观看| 97超级碰碰碰精品色视频在线观看| 国内精品一区二区在线观看| 一a级毛片在线观看| 国产成人影院久久av| 中文字幕久久专区| 久久精品人妻少妇| 综合色av麻豆| 又爽又黄无遮挡网站| 亚洲最大成人中文| 精品国产美女av久久久久小说| 高清毛片免费观看视频网站| 啦啦啦观看免费观看视频高清| 亚洲av成人不卡在线观看播放网| 18禁美女被吸乳视频| 蜜桃久久精品国产亚洲av| 久久精品91蜜桃| 国产黄a三级三级三级人| 夜夜夜夜夜久久久久| 成人永久免费在线观看视频| 国内揄拍国产精品人妻在线| 亚洲成av人片免费观看| 一区二区三区国产精品乱码| 女人高潮潮喷娇喘18禁视频| 最近最新中文字幕大全免费视频| 最新美女视频免费是黄的| 国产高潮美女av| 亚洲av日韩精品久久久久久密| 女人被狂操c到高潮| 在线观看66精品国产| 日本精品一区二区三区蜜桃| 成人av在线播放网站| 一本综合久久免费| 婷婷六月久久综合丁香| 精品欧美国产一区二区三| 色综合婷婷激情| 男女做爰动态图高潮gif福利片| 欧美成狂野欧美在线观看| 精品国内亚洲2022精品成人| 亚洲乱码一区二区免费版| 中亚洲国语对白在线视频| 人妻丰满熟妇av一区二区三区| 日本五十路高清| 国产精品久久久久久人妻精品电影| 天堂影院成人在线观看| 91字幕亚洲| 欧美在线一区亚洲| 脱女人内裤的视频| 欧美av亚洲av综合av国产av| 成人无遮挡网站| av专区在线播放| 国产不卡一卡二| 男人和女人高潮做爰伦理| 国产伦在线观看视频一区| 日本 av在线| 女警被强在线播放| 日韩国内少妇激情av| 国产蜜桃级精品一区二区三区| 国产麻豆成人av免费视频| 又紧又爽又黄一区二区| 舔av片在线| 欧美一级毛片孕妇| 日本黄大片高清| 两个人视频免费观看高清| 人妻丰满熟妇av一区二区三区| www日本黄色视频网| 成人午夜高清在线视频| 亚洲av熟女| 国产 一区 欧美 日韩| 成人特级av手机在线观看| 91久久精品电影网| 国产一区二区在线av高清观看| 亚洲av不卡在线观看| 精品国产亚洲在线| 日本免费a在线| 淫妇啪啪啪对白视频| 欧美又色又爽又黄视频| 欧美成人一区二区免费高清观看| 美女大奶头视频| 丝袜美腿在线中文| 精品国内亚洲2022精品成人| 美女免费视频网站| 久久久色成人| 欧美精品啪啪一区二区三区| 变态另类丝袜制服| 久久久国产成人精品二区| 99视频精品全部免费 在线| 在线观看美女被高潮喷水网站 | 岛国在线免费视频观看| 脱女人内裤的视频| 国产欧美日韩一区二区三| 国产97色在线日韩免费| 精品国产超薄肉色丝袜足j| 亚洲av第一区精品v没综合| 亚洲第一电影网av| 精品人妻1区二区| 老鸭窝网址在线观看| 99热精品在线国产| 精品久久久久久,| 精品欧美国产一区二区三| 天天一区二区日本电影三级| 国产国拍精品亚洲av在线观看 | 免费无遮挡裸体视频| 露出奶头的视频| 国产色爽女视频免费观看| 成人三级黄色视频| 青草久久国产| 国产乱人伦免费视频| 超碰av人人做人人爽久久 | 好男人电影高清在线观看| 性色avwww在线观看| 又黄又粗又硬又大视频| 床上黄色一级片| 蜜桃久久精品国产亚洲av| 最好的美女福利视频网| 给我免费播放毛片高清在线观看| 老司机在亚洲福利影院| 淫秽高清视频在线观看| 亚洲在线自拍视频| 国产伦精品一区二区三区视频9 | 757午夜福利合集在线观看| 综合色av麻豆| 午夜精品一区二区三区免费看| 一a级毛片在线观看| 亚洲人成伊人成综合网2020| 亚洲国产高清在线一区二区三| 一个人观看的视频www高清免费观看| 一区二区三区国产精品乱码| 中文字幕人妻丝袜一区二区| 法律面前人人平等表现在哪些方面| 91字幕亚洲| 青草久久国产| 变态另类成人亚洲欧美熟女| 精品免费久久久久久久清纯| 真人做人爱边吃奶动态| 国产精品,欧美在线| 校园春色视频在线观看| 中文字幕av成人在线电影| 日韩高清综合在线| 伊人久久精品亚洲午夜| 国产av不卡久久| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩无卡精品| 麻豆成人午夜福利视频| 欧美日韩综合久久久久久 | 午夜日韩欧美国产| 中文字幕人妻丝袜一区二区| 精品日产1卡2卡| 男人舔奶头视频| 好男人在线观看高清免费视频| 网址你懂的国产日韩在线| 午夜视频国产福利| 精品人妻1区二区| 亚洲最大成人手机在线| 一级毛片女人18水好多| 在线观看一区二区三区| 免费在线观看亚洲国产| 国内精品美女久久久久久| 99riav亚洲国产免费| 搡老熟女国产l中国老女人| 亚洲内射少妇av| 黄色丝袜av网址大全| 啦啦啦免费观看视频1| 免费在线观看成人毛片| 色哟哟哟哟哟哟| 在线观看午夜福利视频| 欧美激情久久久久久爽电影| 欧美一区二区亚洲| 丁香六月欧美| 久久久久久久久久黄片| 欧洲精品卡2卡3卡4卡5卡区| 美女大奶头视频| aaaaa片日本免费| 久久精品人妻少妇| 一本一本综合久久| 小说图片视频综合网站| 日本a在线网址| 午夜免费男女啪啪视频观看 | 欧美日韩中文字幕国产精品一区二区三区| 日本在线视频免费播放| 美女大奶头视频| 很黄的视频免费| 一区二区三区高清视频在线| 久久精品91无色码中文字幕| 国产精品乱码一区二三区的特点| 国产精品日韩av在线免费观看| 国产成人a区在线观看| 亚洲片人在线观看| 亚洲av不卡在线观看| 色在线成人网| 亚洲最大成人手机在线| 变态另类成人亚洲欧美熟女| 久久6这里有精品| 日本熟妇午夜| 少妇裸体淫交视频免费看高清| 欧美乱码精品一区二区三区| 90打野战视频偷拍视频| 免费一级毛片在线播放高清视频| 有码 亚洲区| 窝窝影院91人妻| 变态另类丝袜制服| 亚洲欧美日韩高清在线视频| 91麻豆精品激情在线观看国产| 99久久成人亚洲精品观看| www.色视频.com| 国产av一区在线观看免费| 色综合亚洲欧美另类图片| 久久久久精品国产欧美久久久| 亚洲成人精品中文字幕电影| 欧美3d第一页| 女人高潮潮喷娇喘18禁视频| 亚洲欧美激情综合另类| 亚洲av成人不卡在线观看播放网| bbb黄色大片| 91字幕亚洲| 热99re8久久精品国产| 日韩人妻高清精品专区| 国产淫片久久久久久久久 | 久久久久久久久中文| 国产一区二区亚洲精品在线观看| 99热精品在线国产| 有码 亚洲区| 国产激情偷乱视频一区二区| 国产成人福利小说| 免费观看精品视频网站| АⅤ资源中文在线天堂| 淫妇啪啪啪对白视频| www.999成人在线观看| 欧美一级a爱片免费观看看| 国产高清视频在线观看网站| 国产成人av激情在线播放| 88av欧美| 日日夜夜操网爽| 亚洲国产欧美人成| 一级毛片高清免费大全| 久久久精品欧美日韩精品| 91九色精品人成在线观看| 国内毛片毛片毛片毛片毛片| 国产伦一二天堂av在线观看| 日本免费a在线| 欧美+日韩+精品| a级毛片a级免费在线| 欧美高清成人免费视频www| 听说在线观看完整版免费高清| 亚洲无线观看免费| 日本免费a在线| 日韩国内少妇激情av| 国产黄色小视频在线观看| 亚洲欧美日韩东京热| 免费搜索国产男女视频| 成年版毛片免费区| 日本 欧美在线| 一级黄色大片毛片| 亚洲最大成人手机在线| 99久久久亚洲精品蜜臀av| 久99久视频精品免费| 国产精品久久久久久亚洲av鲁大| 美女高潮的动态| 3wmmmm亚洲av在线观看| 日韩欧美在线二视频| 精品国产美女av久久久久小说| 最新美女视频免费是黄的| 波多野结衣高清作品| 国产av麻豆久久久久久久| 成人特级av手机在线观看| 国产亚洲精品av在线| 亚洲av第一区精品v没综合| 精品福利观看| 18禁裸乳无遮挡免费网站照片| 国产极品精品免费视频能看的| 一级作爱视频免费观看| 国产精品影院久久| 性欧美人与动物交配| 亚洲片人在线观看| 日韩欧美国产在线观看| www.999成人在线观看| 99久久精品一区二区三区| 99国产综合亚洲精品| 在线十欧美十亚洲十日本专区| 一个人观看的视频www高清免费观看| 在线观看66精品国产| 欧美乱妇无乱码| 亚洲精品亚洲一区二区| 欧美色欧美亚洲另类二区| av国产免费在线观看| 在线播放国产精品三级| 日本精品一区二区三区蜜桃| 中文字幕av在线有码专区| 我要搜黄色片| 国语自产精品视频在线第100页| 十八禁人妻一区二区| 国产高清视频在线播放一区| aaaaa片日本免费| 男人舔女人下体高潮全视频| 久久人妻av系列| h日本视频在线播放| 亚洲五月天丁香| av在线蜜桃| 免费在线观看成人毛片| 国产不卡一卡二| 国产精品 欧美亚洲| 波多野结衣高清作品| 日韩欧美在线乱码| 亚洲av熟女| 亚洲电影在线观看av| 一进一出抽搐动态| www日本黄色视频网| 最近最新中文字幕大全电影3| 国产一区二区激情短视频| 久久精品亚洲精品国产色婷小说| 国产精品 国内视频| 悠悠久久av| 欧美3d第一页| 免费av毛片视频| 亚洲av中文字字幕乱码综合| 少妇裸体淫交视频免费看高清| 国产精品98久久久久久宅男小说| 久久午夜亚洲精品久久| 国产三级在线视频| 黄色丝袜av网址大全|