• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic Structure of Helium Atom in a Quantum Dot?

    2016-05-14 12:51:03JayantaSahaBhattacharyyaandMukherjee
    Communications in Theoretical Physics 2016年3期

    Jayanta K.Saha,S.Bhattacharyya,and T.K.Mukherjee

    1Indian Association for the Cultivation of Science,Jadavpur,Kolkata 700032,India

    2Aliah University,IIA/27,New Town,Kolkata 700156,India

    3Acharyya Prafulla Chandra College,New Barrackpore,Kolkata 700131,India

    4Narula Institute of Technology,Agarpara,Kolkata 700109,India

    1 Introduction

    The subject of atomic systems under spatial confinement is of immense interest among the researchers since the advent of quantum mechanics as the spectral characteristics of atomic systems placed under different confinements change appreciably as compared to those of free atoms.[1?2]different types of phenomenological potentials have been used by researchers to model atoms within cavities,[3]atoms under pressure,[4]impurities in quantum dots or nano crystals,[5]nanopores,[6?7]fullerenes,[8]foreign atoms in liquid helium environment[9]etc.The study of quantum dots(QD)has got considerable attention in recent times due to its fundamental importance in theoretical researches as well as in fabricating new functional devices.The QD’s(or artificial atoms),in general,contain several electrons subjected to an external confining potential and they show similar structural properties as compared to pure atoms.The structural changes of the impurity atoms inside QD’s with reference to the parameters of confining potentials provide huge physical insight about the interactions of the atoms with surroundings.Although the bound states of confined hydrogen and helium atoms have been studied extensively by several researchers,[1?2,4]very few attempts have so far been made towards the quasi bound or resonance states of one electron impurity atom in an isolated QD[10?11]and also in case of confined two electron systems.[12?14]Transformations of two-electron bound states to Feshbach and then to shape resonances depending upon a parameter of model rectangular well-type potential representing the QD have been studied by Bylicki et al.[12]Sajeev et al.[13]and Genkinet al.[14]showed that the singly excited bound states of a two-electron atom become resonance states for appropriately chosen parameters of an external attractive spherical Gaussian type con fining potential used to model the QD.

    In the present work,we have considered a spherically symmetric finite oscillator(FO)potential[3,15?16]of the type,

    for modeling the QD con finement.Here V0is the depth of the potential well and the cavity constant cwis defined as,

    where?is the width of the potential.By tuning the parameters V0and?,one can change the shape of the potential given by Eq.(1).Such type of two-parameter(V0and?)potential provides much control and flexibility in modeling the size of a QD.When r→0 i.e.near the center of QD,Vc(r)~r2and thus a harmonic nature is observed in the potential for a given cavity constant cw.But for large “r”,it deviates from the harmonic behavior.In fact,The FO potential is quite similar in profile to that of Gaussian potential.At the same time,it facilitates the computation of matrix elements in a simple and efficient manner,especially when the Slater-type orbitals are used in constructing the wave function with appropriate boundary conditions for a confined system.This FO potential was used by Winkler[15]to study the two-electron bound and resonant states of helium in QD where the electron correlation was not included initially in the optimized wave function.Even the inclusion of electron correlation could not remove the uncertainties in their calculations.[15]Later,Kimani et al.[16]applied the restricted Hartree–Fock method to estimate the ground states of many-electron close-shell quantum dots modeled by the FO potential where the electron correlations were included approximately.Chakraborty and Ho[3]made a sophisticated approach to deal with this problem by expanding the wave function in single exponent Hylleraas type basis within the framework of stabilization method,but their work was restricted to only the lowest lying doubly excited resonance state 2s2(1Se)of helium.It is worthwhile to mention that an appropriate knowledge of resonance structure of few-electron QD with and without a central impurity atom will help to understand the electron transport phenomena occurring in real semiconductor QDs.[12]

    Under such circumstances,we have studied the resonance parameters of1Sestates originated from 2sns and 2pnp(n=2–5)configurations of QD confined helium below N=2 ionization threshold of He+in the framework of stabilization method[17]by using explicitly correlated multi-exponent Hylleraas type basis set.This method was successfully employed by the present workers[18?22]for calculations of resonance parameters of different resonance states of the free and confined helium-like ions.In the present study,the resonance parameters of the states under consideration are estimated over a wide range of width(?)for a fixed depth(V0)of the FO potential.The energy values of bound 1sns(1Se)states(n=1?6)have also been reported.Moreover,the positions of 1s,2s(2S)and 2p(2P)states of He+have been estimated for a comprehensive understanding about the structure of QD confined helium.The variation of ionization potential of QD confined He with respect to the width of the FO potential has been studied.It has also been shown that the potential given by Eq.(1)breaks the orbital angular momentum(l)degeneracy in Coulomb field for the energy levels of hydrogen-like atoms.Finally,we have shown that for a fixed cavity depth(V0),the widths of the resonance states show oscillatory behavior with respect to the width(?)of the quantum cavity.It has been noted that for higher excited states,such oscillations are more pronounced.The paper is arranged as follows:a brief discussion on the present methodology is given in Sec.2,followed by a discussion on the results in Sec.3,and finally concluding in Sec.4 with a view towards further use of the present techniques in related studies of spatially confined atomic systems e.g.QD,pressure confinement,strongly coupled plasma confinement etc.

    2 Method

    For any1S state of even parity arising from two electrons having same azimuthal quantum number,the variational equation[23]can be written as,

    subject to the normalization condition,

    where the symbols used in Eqs.(3)and(4)are same as in Ref.[23].The effective potential is given by

    The multi-exponent correlated wavefunction[20]considered in the present calculation is expressed as

    with

    where σ’s are the non-linear parameters.Here,r1and r2are the radial co-ordinates of the electrons and r12is the relative distance between them.In a multiexponent basis set,if there are p number of non-linear parameters,then the number of terms in the radially correlated basis is p(p+1)/2 and,therefore,the dimension of the full basis(N)including angular correlation will be[(p(p+1)/2)×q],where q is the number of terms involving r12.[24]For example,as we have used here nine non-linear parameters,the number of terms in the radially correlated basis is 45 and with 10 terms involving different powers of r12,the dimension of the full basis(N)becomes 450.The values of the non-linear parameters are taken in a geometrical sequence:σi= σi?1γ,γ being the geometrical ratio.[25]The wavefunction can be squeezed or can be made more di ff use by changing the geometrical ratio(γ)keeping σ1constant throughout.To have a preliminary guess about the initial and final values of nonlinear parameter σ,we optimize the energy eigenvalues of1Sestates below N=1 ionization threshold of He+by using Nelder–Mead procedure.[26]The energy eigenroots(E)are then obtained by solving the generalized eigenvalue equation

    whereis the Hamiltonian matrix,is the overlap matrix and C is a column matrix consisting of linear variational coefficients.The wavefunction is normalized for each width(?)of the FO potential to account for the modi fi ed charge distribution inside the QD.Each energy eigenroot plotted against the geometrical ratio(γ)produces the stabilization diagram.Subsequently,we can calculate the densities of resonance states from the inverse of tangents at different points near the stabilization plateau in the neighborhood of avoided crossings for each energy eigenroot.The plots of calculated densities of resonance states versus energy for each eigenroot are then fitted separately to a standard Lorentzian pro file.The best fit,i.e.,with the least chi square(χ2)and the square of correlation(R2)near unity yields the desired position(Er)and width(Γ)of the resonance state.

    For each width(?)of the con fining potential,the energy eigenvalues of2S and2P states of confined oneelectron ion He+are obtained by using Ritz variational technique considering the wavefunction as

    where η’s are the nonlinear parameters and C’s are the linear variational coefficients.For He+(ns)states(n=1?2),we have considered 14-parameter basis set whereas for He+(2p)state we have taken 13 parameters in the basis.In both the cases,l is ranging from 0 to 4.All calculations are carried out in quadruple precision.Atomic units have been used throughout unless otherwise specified.

    3 Results and Discussions

    To construct the stabilization diagram corresponding to each width(?)of the FO potential,repeated diagonalization of the Hamiltonian matrix in the Hylleraas basis set of 450 parameters is performed in the present work for 400 different values of γ ranging from 0.63 a.u.to 0.77 a.u.A portion of the stabilization diagram for1Sestates of confined helium below N=2 ionization threshold of He+is given in Fig.1 where we have taken V0=0.2 a.u.and?=4.0 a.u.It is evident from Fig.1 that there exist two classes of states:

    (i)First few energy eigenroots lying below He+(1s)(?2.184 879 a.u.)level are insensitive with the variation of γ.This feature clearly suggests that these energy eigenroots originating from 1sns configurations of QD confined helium are bound i.e.stable against auto-ionization.

    (ii)Energy eigenrootslying between He+(1s)and He+(2s)(?0.607 849 a.u.)are sensitive with the variation of γ and give rise to flat plateaus in the vicinity of avoided crossings of the energy eigenroots in the neighborhoods of some particular energy values.This is a signature of the presence of1Seresonance states of QD con fined helium.

    The present calculated bound state energy eigenvalues(?E)of 1sns(1Se)(n=1–6)states of He as well as the He+(1s)energies for different cavity widths(?)starting from a very low value of 0.001 a.u.(corresponds to almost a free case)to a high value of 1000.0 a.u.are illustrated in Fig.2.It is to be noted that for a very small cavity width? =0.001,the 1sns(n=1–6)energy eigenvalues of helium and the He+(1s)threshold energy inside the cavity are nearly identical to the respective energy eigenvalues of the free ions and they remain almost unaltered upto the cavity width?=0.1 a.u.We can see from Eq.(1)that,for?→0,cw→∞and thus,Vc→0 which produces no effect of confinement.In between?=0.1 a.u.and 10.0 a.u.,the energy eigenvalues of helium decrease monotonically and ultimately saturate at(E1sns+2×V0)a.u.In a similar fashion,the threshold energy He+(1s)saturates at(E1s+V0)a.u.This feature is physically consistent as we can note from Eq.(1)that for?→∞,the cavity constant cw→ 0,so that Vc(r)→ ?V0.Thus the one-and two-electron energy levels undergo a downward shift by V0and 2V0respectively for? → ∞.The variation of the ionization potential(IP)i.e.the amount of energy required(in eV)to ionize one electron from the ground state(1s2)of helium atom is plotted against the width(?)of the cavity in Fig.3.In accordance with the variation of energy eigenvalues of helium and its oneelectron subsystem i.e.He+,it is evident from Fig.3 that,the IP is identical with the vacuum IP for low values of? while,for high values of?,it increases by an amount V0~5.44 eV(=0.2 a.u.).It is thus evident from Figs.2 and 3 that the rates of variations of energy values of the ions are significant when the size of the confining cavity is of the order of atomic dimensions.It is thus remarkable that the stability of an impurity atom can be controlled by suitably tuning the size of a QD i.e.the depth and width of the representing cavity.

    Fig.1 Stabilization diagram for1Sestates of helium atom under quantum cavity.Width of the cavity is set at 4.0 a.u.

    Fig.2 The variation of bound state energy eigenvalues with reference to the width of the cavity.

    Fig.3 The variation of IP with reference to the width of the cavity.

    An enlarged view of the stabilization diagram(given in Fig.1)for1Sestates of He within the energy range?0.8 a.u.to?0.64 a.u.is given in Fig.4.The1Sestates of He below N=2 ionization threshold of He+(2s)can arise due to 2sns and 2pn′p(n,n′≥ 2)configurations.From a closer look at Fig.4,we can see that for a short range of γ,each eigenroot between N=1 and N=2 ionization thresholds of He+becomes almost flat in the vicinity of avoided crossings in the neighborhood of different energies.In order to calculate the exact resonance parameters,the density of states(DOS)ρ(E)is calculated by evaluating the inverse of the slope at a number of points near these flat plateaus of each energy eigenroot using the formula[18]given by:

    The estimated DOS ρn(E)is then fitted to the following Lorentzian form[18]

    where y0is the baseline background,A is the total area under the curve from the baseline,Eris the position of the center of the peak of the curve and Γ represents the full width of the peak of the curve at half maxima.Among different fitting curves for each eigenroot corresponding to a particular resonance state,the best fitted curve i.e.the curve with least χ2and the square of correlation(R2)closer to unity[18]yields the desired resonance energy(Er)and width(Γ).For example,the calculated DOS and the corresponding fitted Lorentzian for the 2s2(1Se)resonance state of He below He+(1s)threshold for cavity width?=4.0 a.u.(given in Fig.5)yields resonance position Erat?0.98163 a.u.and width Γ =6.9961×10?3a.u.The evaluation of DOS following this fitting procedure has been repeated for each width of the confining potential(?).

    Fig.4 Enlarged view of the stabilization diagram for 1Sestates of helium atom under quantum cavity in the energy range between?8.0 a.u.to?0.64 a.u.Width of the cavity is set at 4.0 a.u.

    Fig.5 Density of states and fitted lorentzian for cavity width 4.0 a.u.

    Fig.6 The variation of resonance energies(Er)of 2sns(n=2–5)(1Se)states and corresponding 2s and 2p threshold energies with the cavity width(?).

    The estimated resonance energies of doubly excited 2sns(1Se)states(n=2–5)of helium and corresponding 2s and 2p threshold energies for the cavity depth V0=0.2 a.u.and cavity width(?)ranging from 0.001 a.u.to 1000 a.u.are given in figure 6,while the variations of resonance energies(Er)of 2pnp(n=2–5)(1Se)states and corresponding 2s and 2p threshold energies versus?are given in Fig.7.We have noted the following points.

    (i)It is clear from Figs.6 and 7 that for?=0.001 a.u.,the He+(2s)and He+(2p)states are degenerate and coincide with the energy value of N=2 ionization threshold of free He+ion.As?increases,the He+(2s)and He+(2p)states become non-degenerate.Initially,the 2s level of He+lies energetically below the 2p level for?up to 0.5 a.u.At?=1.0 a.u.,the 2s state moves above the 2p level.These results exhibit that an “incidental degeneracy”takes place for 2s and 2p states of He+at some value of?between 0.5 a.u.and 1.0 a.u.and then a “l(fā)evel crossing” occurs between these two states having different symmetry properties.Finally,these states become degenerate again for?≥100.0 a.u.The incidental degeneracy for He+(2s)and He+(2p)states occur for?in the range 0.5≤?≤1.0.Such incidental degeneracy and subsequent level crossing phenomenon have been noted earlier by Sen et al.[27]in case of cage confined hydrogen atom and by Bhattacharyya et al.[28]in case of helium-like ions within strongly coupled plasma environment.

    Fig.7 The variation of resonance energies(Er)of 2pnp(n=2?5)(1Se)states and corresponding 2s and 2p threshold energies with the cavity width(?).

    (ii)It is seen from both Figs.6 and 7 that all the resonance energies(Er)are almost unaltered up to?=0.5 a.u.,then decrease rapidly up to?=20.0 a.u.,and ultimately saturate.For low values of?(say 0.001 a.u.) the resonance energies are identical with those of the free He atom whereas for?=1000.0 a.u.the resonance energies are equal to those of free He atom plus 0.4 a.u.(i.e.2.0×V0).Thus,for a given depth(V0)of the finite oscillator potential,the variations of energies of the bound states and the resonance states of helium with reference to the width of the cavity(?)are nearly identical.

    The variation of widths(Γ)of 2sns and 2pnp(1Se)(n=2–5)resonance states with reference to ? are given in Figs.8 and 9 respectively.A closer look at Figs.8 and 9 leads us to the following observations.

    (i)In general,it can be argued that the variation of widths shows an oscillatory behavior which are more pronounced for the higher excited states.It is worthwhile to mention here that recently Chakraborty and Ho[3]also reported such oscillation of resonance width(Γ)for 2s2(1S)state of QD confined helium atom.This feature clearly indicates a possibility of controlling the autoionization lifetimes of doubly excited states of two-electron ions by tuning the parameters of the confining FO potential representing the quantum dot.

    Fig.8 The variation of resonance width(Γ)of 2sns(n=2–5)(1Se)states with the cavity width(?).

    Fig.9 The variation of resonance width(Γ)of 2pnp(n=2–5)(1Se)states with the cavity width(?).

    (ii)The variations of widths of 2s2and 2p2(1Se)states with respect to?are exactly opposite in nature.For1Sestate originating from 2s2configuration,the autoionization width first decreases within the range 0.1≤?≤1.0 and after reaching the minima,it shows a large bump around??6.0 a.u.After that it starts to decrease and fi nally the autoionization width saturates where it becomes equal to that of a free He atom.In contrast,for 2p2state,the autoionization width first increases for 0.1≤?≤1.0 and then shows a large dip approximately at the same value of?for which the 2s2state shows the bump.

    (iii)The values of?corresponding to the largest bump in the values of autoionization widths(Γ)of 2sns states and the lowest dip for 2pnp states shift towards the higher values of the cavity width(?)for higher excited states.

    Inside the QD i.e.due to the presence of the surrounding FO potential,the charge distribution of the impurity ion gets reoriented,which produces the behavioral changes as compared to a free ion.The nodes or antinodes of the resonance wavefunction lie at the boundary of the QD cavity and the interference caused inside the cavity gives rise to the oscillatory behavior of the resonance widths.[3,29]The number of nodes or antinodes of the wavefunction increases for high-lying resonance states and the oscillation becomes more prominent.

    4 Conclusion

    Structural properties of He atom confined in a QD,efficiently modeled by a two-parameter weakly confining FO type potential,have been investigated in the framework of stabilization method using explicitly correlated Hylleraastype basis sets.It has been observed that the structure of the impurity ion is a sensitive function of the dot size.For very small values of the cavity width,the system behaves almost like a free ion whereas,for very high cavity widths,a constant shift equals to the depth of the potential are observed in the energy values of the bound as well as the resonance states.When the dot size becomes comparable to the dimensions of the impurity atom,the effects are more pronounced and many remarkable behaviors such as increase in ionization potential,oscillations in the widths of two-electron resonance states,incidental degeneracy and subsequent level-crossing phenomena for one-electron ions are observed.The present work is expected to lead to future investigations on the autoionizing states of different angular momenta for QD confined two-electron systems.

    References

    [1]W.Jaskolski,Phys.Rep.1(1996)271.

    [2]J.Sabin,E.Brandas,and S.A.Cruz,Adv.Quantum Chem.57(2009)1334;58(2009)1297.

    [3]S.Chakraborty and Y.K.Ho,Phys.Rev.A 84(2011)032515.

    [4]S.Bhattacharyya,J.K.Saha,P.K.Mukherjee,and T.K.Mukherjee,Phys.Scr.87(2013)065305 and references therein.

    [5]D.J.Norris,A.L.Efros,and S.C.Erwin,Science 319(2008)1776.

    [6]N.L.Rosi,J.Eckert,M.Eddaoudi,et al.,Science 300(2003)1127.

    [7]J.L.C.Rowsell,E.C.Spencer,J.Eckert,J.A.K.Howard,and O.M.Yaghi,Science 309(2005)1350.

    [8]J.A.Ludlow,T.G.Lee,and M.S.Pindzola,J.Phys.B 43(2010)235202.

    [9]Solvation Effects on Molecules and Biomolecules,Computational Methods and Applications,ed.S.Canuto,Springer,Berlin(2008).

    [10]S.Sahoo,Y.C.Lin,and Y.K.Ho,Physica E 40(2008)3107.

    [11]S.Sahoo and Y.K.Ho,Phys.Rev.B 69(2004)165323.

    [12]M.Bylicki,W.Jasklski,A.Stachw,and J.Diaz,Phys.Rev.B 72(2005)075434.

    [13]Y.Sajeev and N.Moiseyev,Phys.Rev.B 78(2008)075316.

    [14]M.Genkin and E.Lindroth,Phys.Rev.B 81(2010)125315.

    [15]P.Winkler,Int.J.Quant.Chem.100(2004)1122.

    [16]P.Kimani,P.Jones,and P.Winkler,Int.J.Quant.Chem.108(2008)2763.

    [17]V.A.Mandelshtam,T.R.Ravuri,and H.S.Taylor,Phys.Rev.Lett.70(1993)1932.

    [18]J.K.Saha and T.K.Mukherjee,Phys.Rev.A 80(2009)022513

    [19]J.K.Saha,S.Bhattacharyya,and T.K.Mukherjee,J.Chem.Phys.132(2010)134107.

    [20]J.K.Saha,S.Bhattacharyya,T.K.Mukherjee,and P.K.Mukherjee,Int.J.Quant.Chem.111(2011)1819.

    [21]J.K.Saha,S.Bhattacharyya,and T.K.Mukherjee,Int.Rev.At.Mol.Phys.3(2012)1.

    [22]S.Kasthurirangan,et al.,Phys.Rev.Lett.111(2013)243201.

    [23]T.K.Mukherjee and P.K.Mukherjee,Phys.Rev.A 50(1994)850.

    [24]J.K.Saha,S.Bhattacharyya,T.K.Mukherjee,and P.K.Mukherjee,J.Phys.B 42(2009)245701.

    [25]M.Bylicki,J.Phys.B 30(1997)189.

    [26]J.A.Nelder and R.Mead,Comput.J.7(1965)308.

    [27]K.D.Sen,J.Chem.Phys.122(2005)194324.

    [28]S.Bhattacharyya,J.K.Saha,and T.K.Mukherjee,Phys.Rev.A 91(2015)042515.

    [29]L.G.Jiao and Y.K.Ho,Electronic Structure of Quantum Confined Atoms and Molecules,ed.K.D.Sen,Springer,Switzerland(2014)p.145.

    最近在线观看免费完整版| 最近的中文字幕免费完整| 99热全是精品| 九九爱精品视频在线观看| 秋霞在线观看毛片| 国产精品人妻久久久久久| 日日摸夜夜添夜夜添av毛片| 亚洲av二区三区四区| av.在线天堂| 午夜福利18| 久久这里只有精品中国| 观看美女的网站| 男人和女人高潮做爰伦理| 国产69精品久久久久777片| 又爽又黄a免费视频| 啦啦啦韩国在线观看视频| 久久鲁丝午夜福利片| av在线蜜桃| 99精品在免费线老司机午夜| 99久久九九国产精品国产免费| 久久热精品热| 亚洲18禁久久av| 精品免费久久久久久久清纯| 中国美女看黄片| 美女高潮的动态| 午夜精品一区二区三区免费看| 两性午夜刺激爽爽歪歪视频在线观看| 老熟妇仑乱视频hdxx| 国产蜜桃级精品一区二区三区| 国产精品女同一区二区软件| 一级毛片我不卡| 桃色一区二区三区在线观看| 免费观看精品视频网站| 欧美激情久久久久久爽电影| 男人舔奶头视频| 日韩欧美一区二区三区在线观看| 蜜臀久久99精品久久宅男| 蜜臀久久99精品久久宅男| 国产成年人精品一区二区| 嫩草影院新地址| 亚洲欧美中文字幕日韩二区| 日韩欧美国产在线观看| 一个人看的www免费观看视频| 男人舔奶头视频| 亚洲av免费在线观看| 一区二区三区四区激情视频 | 国产69精品久久久久777片| 最近最新中文字幕大全电影3| 尾随美女入室| 亚洲中文字幕日韩| 18禁黄网站禁片免费观看直播| 国产一区二区激情短视频| 亚洲五月天丁香| 欧美中文日本在线观看视频| 看黄色毛片网站| 你懂的网址亚洲精品在线观看 | 亚洲精品久久国产高清桃花| 91精品国产九色| 亚洲国产精品久久男人天堂| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区三区av在线 | 丝袜美腿在线中文| 久久99热6这里只有精品| 亚洲国产精品久久男人天堂| 伊人久久精品亚洲午夜| av天堂在线播放| 亚洲国产欧洲综合997久久,| 色播亚洲综合网| 午夜激情欧美在线| 天堂影院成人在线观看| 国产伦一二天堂av在线观看| 一个人看视频在线观看www免费| 三级男女做爰猛烈吃奶摸视频| 变态另类成人亚洲欧美熟女| 国产 一区精品| 国产精品日韩av在线免费观看| 99久久无色码亚洲精品果冻| 麻豆av噜噜一区二区三区| 免费黄网站久久成人精品| 欧美日韩国产亚洲二区| 在线观看av片永久免费下载| 国产男人的电影天堂91| 男女视频在线观看网站免费| 如何舔出高潮| 国产亚洲精品综合一区在线观看| 国产爱豆传媒在线观看| 有码 亚洲区| 国产精品精品国产色婷婷| 亚洲最大成人手机在线| 久久久久久久亚洲中文字幕| 中文亚洲av片在线观看爽| 久久精品久久久久久噜噜老黄 | 久久鲁丝午夜福利片| 日日啪夜夜撸| 激情 狠狠 欧美| av女优亚洲男人天堂| 久久久a久久爽久久v久久| 欧美绝顶高潮抽搐喷水| 一级a爱片免费观看的视频| 91久久精品国产一区二区三区| 最近在线观看免费完整版| 国产91av在线免费观看| 看片在线看免费视频| 成年女人看的毛片在线观看| 国产精品一及| 免费观看的影片在线观看| 国产久久久一区二区三区| 特级一级黄色大片| 欧美日本亚洲视频在线播放| 亚洲自偷自拍三级| 国产亚洲精品久久久com| 亚洲图色成人| 在线观看66精品国产| 亚洲成人久久性| 亚洲美女视频黄频| 午夜福利在线观看吧| 亚洲av不卡在线观看| 欧美高清成人免费视频www| 12—13女人毛片做爰片一| 久久久久久伊人网av| 色播亚洲综合网| av女优亚洲男人天堂| 亚洲在线观看片| 国产亚洲精品久久久久久毛片| 色噜噜av男人的天堂激情| 欧美性猛交╳xxx乱大交人| 少妇人妻精品综合一区二区 | 特大巨黑吊av在线直播| 你懂的网址亚洲精品在线观看 | 亚洲成av人片在线播放无| 不卡一级毛片| 国产高清激情床上av| 国产黄色小视频在线观看| 久久99热6这里只有精品| 欧美高清成人免费视频www| 一进一出抽搐gif免费好疼| 黑人高潮一二区| 99久久精品国产国产毛片| 别揉我奶头 嗯啊视频| 欧美不卡视频在线免费观看| 最新中文字幕久久久久| videossex国产| 国产精品永久免费网站| 伊人久久精品亚洲午夜| 九九久久精品国产亚洲av麻豆| av在线播放精品| 国产v大片淫在线免费观看| 不卡视频在线观看欧美| 看非洲黑人一级黄片| 日韩欧美免费精品| 精品午夜福利视频在线观看一区| 欧美激情国产日韩精品一区| 国产爱豆传媒在线观看| 久久久精品欧美日韩精品| 秋霞在线观看毛片| 色5月婷婷丁香| 日产精品乱码卡一卡2卡三| 丰满乱子伦码专区| 女人被狂操c到高潮| 欧美人与善性xxx| 亚洲乱码一区二区免费版| 嫩草影院精品99| 精品无人区乱码1区二区| 中文字幕av在线有码专区| 国产亚洲精品久久久久久毛片| 亚洲av.av天堂| 久久久久九九精品影院| 免费人成在线观看视频色| 网址你懂的国产日韩在线| eeuss影院久久| 卡戴珊不雅视频在线播放| 成人av在线播放网站| av专区在线播放| 精品福利观看| av免费在线看不卡| 乱系列少妇在线播放| 日韩欧美国产在线观看| 91久久精品电影网| 色综合站精品国产| 一级黄片播放器| 国产午夜精品论理片| 国产午夜精品久久久久久一区二区三区 | 亚洲中文日韩欧美视频| 亚洲真实伦在线观看| 我要看日韩黄色一级片| 免费看av在线观看网站| h日本视频在线播放| 国产精品av视频在线免费观看| 久久6这里有精品| 校园春色视频在线观看| 亚洲人成网站在线播放欧美日韩| 五月玫瑰六月丁香| 51国产日韩欧美| 在线播放无遮挡| 亚洲美女黄片视频| 一本久久中文字幕| 18+在线观看网站| 国产精品福利在线免费观看| 丝袜美腿在线中文| 日本一本二区三区精品| 欧美+亚洲+日韩+国产| a级毛片免费高清观看在线播放| 99热全是精品| 亚洲专区国产一区二区| 精品久久国产蜜桃| 欧美丝袜亚洲另类| 欧美不卡视频在线免费观看| 日日撸夜夜添| 久久久国产成人免费| 联通29元200g的流量卡| 自拍偷自拍亚洲精品老妇| 免费看美女性在线毛片视频| 亚洲国产精品久久男人天堂| 全区人妻精品视频| 一级毛片电影观看 | 亚洲av五月六月丁香网| 男女做爰动态图高潮gif福利片| 少妇猛男粗大的猛烈进出视频 | 真实男女啪啪啪动态图| 国产亚洲精品综合一区在线观看| h日本视频在线播放| 黄片wwwwww| or卡值多少钱| 麻豆国产av国片精品| 精品人妻一区二区三区麻豆 | 日韩欧美在线乱码| 蜜臀久久99精品久久宅男| 日韩三级伦理在线观看| 男女视频在线观看网站免费| 99久久精品国产国产毛片| 又黄又爽又刺激的免费视频.| 色5月婷婷丁香| 国产精品久久久久久亚洲av鲁大| 搡女人真爽免费视频火全软件 | 欧美性猛交黑人性爽| videossex国产| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美成人精品一区二区| 我的老师免费观看完整版| 久久亚洲精品不卡| 99热网站在线观看| 听说在线观看完整版免费高清| 综合色丁香网| 最近手机中文字幕大全| 51国产日韩欧美| 国产又黄又爽又无遮挡在线| 国产蜜桃级精品一区二区三区| 日本爱情动作片www.在线观看 | 国产精品久久久久久久电影| 国产伦精品一区二区三区视频9| 观看美女的网站| 国产欧美日韩一区二区精品| 亚洲人成网站在线播| 国产伦一二天堂av在线观看| 亚洲人成网站在线播放欧美日韩| 欧美日韩精品成人综合77777| 中国美女看黄片| 欧美另类亚洲清纯唯美| 国产极品精品免费视频能看的| 亚洲无线在线观看| 国内久久婷婷六月综合欲色啪| av在线蜜桃| 欧美性猛交╳xxx乱大交人| 中文字幕免费在线视频6| 精品一区二区三区视频在线观看免费| 美女xxoo啪啪120秒动态图| 精品99又大又爽又粗少妇毛片| av天堂中文字幕网| 欧美性猛交黑人性爽| 女的被弄到高潮叫床怎么办| 免费av不卡在线播放| 精品久久国产蜜桃| 老司机午夜福利在线观看视频| 变态另类成人亚洲欧美熟女| 日韩强制内射视频| 尤物成人国产欧美一区二区三区| 91久久精品电影网| 日本免费a在线| 精品久久久久久久久久久久久| 国产成人精品久久久久久| 嫩草影院精品99| 中文字幕免费在线视频6| 麻豆久久精品国产亚洲av| 久久久久久大精品| 日本三级黄在线观看| 永久网站在线| 91久久精品国产一区二区成人| 老女人水多毛片| av天堂在线播放| 欧美成人一区二区免费高清观看| 久久久欧美国产精品| 一级a爱片免费观看的视频| 男插女下体视频免费在线播放| 国产在线精品亚洲第一网站| 国产真实伦视频高清在线观看| 男插女下体视频免费在线播放| 18+在线观看网站| 亚洲精品成人久久久久久| 嫩草影院新地址| 一个人观看的视频www高清免费观看| 此物有八面人人有两片| 悠悠久久av| 国产蜜桃级精品一区二区三区| 一本久久中文字幕| 日韩大尺度精品在线看网址| 蜜臀久久99精品久久宅男| 中文资源天堂在线| 亚洲精品日韩在线中文字幕 | 久久久精品94久久精品| 亚洲美女搞黄在线观看 | 男插女下体视频免费在线播放| 亚洲,欧美,日韩| 亚洲熟妇中文字幕五十中出| 最新在线观看一区二区三区| 一个人看的www免费观看视频| 精品久久国产蜜桃| 精品午夜福利视频在线观看一区| 中文亚洲av片在线观看爽| 一夜夜www| a级一级毛片免费在线观看| 99热网站在线观看| 国产精品久久久久久久久免| 午夜福利高清视频| 日韩av在线大香蕉| 精品久久久噜噜| 亚洲自拍偷在线| 午夜精品在线福利| 日本熟妇午夜| 丰满的人妻完整版| 国产真实乱freesex| 国产免费男女视频| 国产欧美日韩精品亚洲av| 尤物成人国产欧美一区二区三区| 嫩草影视91久久| 日韩av在线大香蕉| 在线国产一区二区在线| 亚洲av免费在线观看| 人妻久久中文字幕网| 欧美+亚洲+日韩+国产| 日本欧美国产在线视频| 日韩国内少妇激情av| 日韩三级伦理在线观看| 久久99热6这里只有精品| 亚洲中文字幕一区二区三区有码在线看| 日韩成人av中文字幕在线观看 | av在线观看视频网站免费| 一个人免费在线观看电影| 久久草成人影院| 免费看光身美女| 白带黄色成豆腐渣| 亚洲精品日韩在线中文字幕 | 久久热精品热| 狠狠狠狠99中文字幕| 男女那种视频在线观看| 欧美三级亚洲精品| 亚洲18禁久久av| 欧美色欧美亚洲另类二区| 亚洲国产日韩欧美精品在线观看| 此物有八面人人有两片| 校园人妻丝袜中文字幕| 欧美色欧美亚洲另类二区| 特级一级黄色大片| 国产精品av视频在线免费观看| 亚洲精品影视一区二区三区av| 亚洲精品久久国产高清桃花| 精品日产1卡2卡| 亚洲第一区二区三区不卡| 日韩欧美免费精品| 中出人妻视频一区二区| 国产精品人妻久久久久久| 此物有八面人人有两片| 美女黄网站色视频| 综合色av麻豆| 我的女老师完整版在线观看| 99热这里只有是精品50| 日韩欧美国产在线观看| 22中文网久久字幕| 亚洲综合色惰| 亚洲欧美中文字幕日韩二区| 日韩成人伦理影院| 久久国产乱子免费精品| 欧美一区二区精品小视频在线| 免费看美女性在线毛片视频| 久久久精品大字幕| 菩萨蛮人人尽说江南好唐韦庄 | 男人狂女人下面高潮的视频| 天天躁夜夜躁狠狠久久av| 日韩高清综合在线| 欧美绝顶高潮抽搐喷水| av在线天堂中文字幕| 欧美潮喷喷水| 亚洲av成人av| 美女高潮的动态| 国产男靠女视频免费网站| 国产中年淑女户外野战色| 蜜臀久久99精品久久宅男| 麻豆av噜噜一区二区三区| 日韩欧美精品v在线| 欧美中文日本在线观看视频| 久久亚洲精品不卡| 日韩欧美国产在线观看| 天堂√8在线中文| 成人一区二区视频在线观看| 国产一区二区三区在线臀色熟女| 国产成人freesex在线 | 成人特级黄色片久久久久久久| 亚洲四区av| 国产爱豆传媒在线观看| 亚洲天堂国产精品一区在线| 久久久成人免费电影| 亚洲第一电影网av| 久久精品国产自在天天线| 51国产日韩欧美| 此物有八面人人有两片| 免费看av在线观看网站| 精品福利观看| 18禁裸乳无遮挡免费网站照片| 国产极品精品免费视频能看的| 简卡轻食公司| 亚洲成人精品中文字幕电影| 亚洲美女搞黄在线观看 | 亚洲成av人片在线播放无| 深爱激情五月婷婷| 三级经典国产精品| 国产亚洲精品久久久com| 91久久精品电影网| 啦啦啦啦在线视频资源| 久久精品国产亚洲av香蕉五月| 久久久久久久久久久丰满| 日韩三级伦理在线观看| 看黄色毛片网站| 一个人免费在线观看电影| 看十八女毛片水多多多| 亚洲四区av| 亚洲激情五月婷婷啪啪| 又爽又黄无遮挡网站| 亚洲欧美成人综合另类久久久 | 亚洲av不卡在线观看| 男人舔女人下体高潮全视频| 日本在线视频免费播放| 精品午夜福利在线看| 亚洲人成网站在线观看播放| а√天堂www在线а√下载| 亚洲专区国产一区二区| 成人性生交大片免费视频hd| 亚洲欧美日韩无卡精品| 亚洲无线在线观看| 波多野结衣巨乳人妻| 综合色丁香网| 小说图片视频综合网站| 国产精品一区www在线观看| 人人妻人人澡欧美一区二区| 亚洲图色成人| 亚洲精品粉嫩美女一区| 国产探花极品一区二区| 男女视频在线观看网站免费| 悠悠久久av| 麻豆av噜噜一区二区三区| 成人国产麻豆网| 成人美女网站在线观看视频| 中文字幕熟女人妻在线| 网址你懂的国产日韩在线| 日本欧美国产在线视频| 欧美日本亚洲视频在线播放| 直男gayav资源| 亚洲av成人av| 搞女人的毛片| 男插女下体视频免费在线播放| 国产乱人视频| 午夜精品国产一区二区电影 | 狂野欧美激情性xxxx在线观看| 国产精品99久久久久久久久| 午夜福利在线观看吧| 12—13女人毛片做爰片一| 最新在线观看一区二区三区| 国产精品久久久久久精品电影| 精品久久久噜噜| 黄色视频,在线免费观看| 成年版毛片免费区| av女优亚洲男人天堂| 国产精品无大码| 又爽又黄a免费视频| 国国产精品蜜臀av免费| 亚洲国产精品合色在线| 亚洲欧美日韩高清专用| 国产一区二区三区av在线 | 亚洲国产高清在线一区二区三| 久久精品夜色国产| 热99在线观看视频| 免费观看精品视频网站| 亚洲av第一区精品v没综合| 夜夜看夜夜爽夜夜摸| 99热全是精品| 国产精品久久久久久精品电影| 国产av麻豆久久久久久久| 亚洲av第一区精品v没综合| 欧美日韩一区二区视频在线观看视频在线 | 69人妻影院| 全区人妻精品视频| 桃色一区二区三区在线观看| 99热网站在线观看| 国产亚洲精品综合一区在线观看| 夜夜爽天天搞| 国产高潮美女av| 国产精品久久久久久久久免| 五月玫瑰六月丁香| 内射极品少妇av片p| 亚洲精品久久国产高清桃花| 嫩草影视91久久| 免费黄网站久久成人精品| 亚洲内射少妇av| 黄色配什么色好看| 最近在线观看免费完整版| 日本色播在线视频| 午夜精品一区二区三区免费看| 一级毛片久久久久久久久女| 亚洲国产高清在线一区二区三| 99热这里只有是精品在线观看| 九九久久精品国产亚洲av麻豆| 看片在线看免费视频| 色播亚洲综合网| 国产爱豆传媒在线观看| 内地一区二区视频在线| 男女边吃奶边做爰视频| 老熟妇乱子伦视频在线观看| 日韩中字成人| 啦啦啦观看免费观看视频高清| 少妇裸体淫交视频免费看高清| 亚洲电影在线观看av| 欧美丝袜亚洲另类| 美女黄网站色视频| 国产伦在线观看视频一区| 18禁在线无遮挡免费观看视频 | 亚洲欧美精品综合久久99| 亚洲18禁久久av| 日本熟妇午夜| 在线免费十八禁| 男女下面进入的视频免费午夜| 亚洲丝袜综合中文字幕| 女人十人毛片免费观看3o分钟| 身体一侧抽搐| 成人亚洲精品av一区二区| 有码 亚洲区| 国产黄片美女视频| 精品无人区乱码1区二区| 99热网站在线观看| 亚洲性久久影院| 免费观看的影片在线观看| 成人三级黄色视频| 99热精品在线国产| 欧美在线一区亚洲| 91久久精品电影网| 欧美国产日韩亚洲一区| 最近视频中文字幕2019在线8| 三级男女做爰猛烈吃奶摸视频| 免费在线观看成人毛片| 日韩欧美三级三区| 欧美激情国产日韩精品一区| 国产欧美日韩一区二区精品| 日韩精品有码人妻一区| 午夜视频国产福利| 性色avwww在线观看| 欧美日本亚洲视频在线播放| 久久久精品大字幕| 丝袜美腿在线中文| 欧美+亚洲+日韩+国产| av黄色大香蕉| 观看美女的网站| 国产女主播在线喷水免费视频网站 | 国产免费一级a男人的天堂| 欧美极品一区二区三区四区| 麻豆国产97在线/欧美| 国产黄片美女视频| 国产视频内射| 十八禁网站免费在线| 成人高潮视频无遮挡免费网站| 麻豆成人午夜福利视频| 久久这里只有精品中国| 色5月婷婷丁香| 久久久色成人| 色噜噜av男人的天堂激情| 久久久欧美国产精品| 日本一二三区视频观看| 精品久久久久久久久亚洲| 国产在线男女| 在线观看午夜福利视频| 色在线成人网| 中文字幕久久专区| 毛片一级片免费看久久久久| 国产精品久久久久久亚洲av鲁大| 日本一本二区三区精品| 亚洲国产精品成人综合色| 欧美+亚洲+日韩+国产| 丝袜喷水一区| 69av精品久久久久久| 日本五十路高清| 国内精品久久久久精免费| 嫩草影院入口| 色在线成人网| 国产伦精品一区二区三区四那| 日韩高清综合在线| 五月伊人婷婷丁香| 久久久欧美国产精品| 亚洲av免费高清在线观看| 热99在线观看视频| 国产伦在线观看视频一区| 国产精品一区www在线观看| 91麻豆精品激情在线观看国产| 国产探花极品一区二区| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av香蕉五月| 欧美+日韩+精品| 国产黄色视频一区二区在线观看 | 男人舔女人下体高潮全视频| 亚洲精华国产精华液的使用体验 |