• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlocal Symmetries and Interaction Solutions for Potential Kadomtsev–Petviashvili Equation?

    2016-05-14 12:51:01BoRen任博JunYu俞軍andXiZhongLiu劉希忠
    Communications in Theoretical Physics 2016年3期

    Bo Ren(任博),Jun Yu(俞軍),and Xi-Zhong Liu(劉希忠)

    Institute of Nonlinear Science,Shaoxing University,Shaoxing 312000,China

    1 Introduction

    A large number of useful methods have been proposed to find soliton solutions for nonlinear partial differential equations.Some of the most important methods are the inverse scattering transformation,[1]the Hirota’s bilinear method,[2]symmetry reductions,[3]the Darboux transformation,[4]the Painlev′e analysis method,[5]the B¨aklund transformation(BT),[6]the separated variable method,[7]etc.[8]Among these methods,it is still quite difficult to obtain the interaction solutions among different nonlinear excitations.Recently,these interaction solutions were directly obtained by using the localization procedure related with the nonlocal symmetry and a consistent tanh expansion(CTE)method.[9?12]In this paper,we shall apply the localization procedure and CTE method to study the potential Kadomtsev–Petviashvili(pKP)equation.Some interesting results are discussed which might be applicable to explain the relevant physical processes.

    The paper is organized as follows.In Sec.2,the nonlocal symmetry for the pKP equation is obtained with the truncated Painlev′e method.To solve the initial value problem of the nonlocal symmetry,the nonlocal symmetry is localized by prolongation the pKP equation.The finite symmetry transformations are presented by solving the initial value problem of the Lie’s first principle.The multi-front waves and the inelastic interactions of two front waves are analyzed by using the finite symmetry transformations.In Sec.3,a CTE method is developed to the pKP equation.It is proved that the pKP equation is CTE solvable system.The CTE method for pKP equation leads to a nonauto-BT theorem.In Sec.4,some special interaction solutions are given due to the entrance of an arbitrary function in the nonauto-BT theorem.The last section is a simple summary and discussion.

    2 Nonlocal Symmetry and Multi-front Waves of the pKP Equation

    The(2+1)-dimensional pKP equation reads

    which describes the dynamics in two-dimensional.(1)is derived in various physical contexts assuming that the wave is moving along x and all changes in y are slower than in the direction of motion.[13]Various exact solutions,include traveling wave solutions,linear solitary wave solutions,soliton-like solutions and some numerical solutions have been given.[14?17]Recently,the periodic soliton solution,doubly periodic solution and symmetry invariant solutions are investigated.[18?20]In this section,we shall consider the nonlocal symmetry and multi-front wave solution of the pKP equation from the Painlev′e analysis.

    The solution of(1)can be truncated about the singularity manifold φ(x,y,t)as[5]

    where u0and u1are functions with respect to the spacetime variables.By substituting the expansion(2)into(1)and balancing the coefficients of powers of φ?5and φ?4independently,we get

    Substituting the expressions(2),(3)and(4)into(1),the field φ satisfies the following Schwarzian pKP form

    where

    is the Schwarzian derivative.The Schwarzian form(5)is invariant under the Mbious transformation

    For the special case a=d=1,b=0,c=?,the symmetry of(5)reads as

    By substituting the M¨obious transformation symmetry σφinto the linearized equation of(3),the nonlocal symmetry of the pKP equation(1)is

    The nonlocal symmetry(8)is the residual of the singularity manifold φ.This nonlocal symmetry is thus called as the residual symmetry(RS).[10]The RS(8)can also be read out by the truncated Painlev′e expansion(2).

    For the nonlocal symmetry(8),the corresponding initial value problem is

    It is difficult to solve the initial value problem of the Lie’s first principle(9)due to the intrusion of the function φ and its differentiations.[10]To solve the initial value problem(9),we prolong the pKP system(1)such that RS becomes the local Lie point symmetry for the prolonged system.By localization the nonlocal symmetry(8),the potential field of φ is introduced as

    The local Lie point symmetry for the prolonged systems(1),(4)and(10)reads as

    Correspondingly,the initial value problem becomes

    The solution of the initial value problem(12)for the enlarged pKP system(1),(4)and(10)is given as

    Using the finite symmetry transformations(13),one can obtain another solution from any initial solution.We take the trivial solution u=0 for(1).The multi-front waves solution for(4)and(5)is supposed as

    where kn,lnand ωnare arbitrary constants.The multifront waves solution(14)is the solution of(4)and(5)only with the relations

    The multiple-front waves of Eq.(1)present in the following form using(10),(13)and(14)

    For the interaction behaviors of the multiple-front waves(16),we discuss the details of interactions between two front waves solution as the specific and typical.The interactions are classified into two cases,i.e.,k1k2<0 and k1k2>0.[21?22]It represents the head-on coalescence and overtaking coalescence respectively.We show the evolution of two fronts u with the parameters n=2,k1=1,l1=1,k2= ?1,?=1/2 in Fig.1.It illustrates two fronts along the opposite propagation direction in y-axis coalescing into one large front in their interaction region of the(x,y)-plane.As comparison,Fig.2 shows coalescence of two fronts with the same propagation direction in y-axis k1k2>0,in which the large-amplitude front with faster velocity overtakes the small-amplitude one.The parameters are n=2,k1=1,l1=1,k2=3,?=1/2.It is obviously that the two front waves solution may combine into a single front wave after collision(soliton fusion).Neither elastic scattering nor fission does exist in both interaction modes.

    RemarkThe multiple-front waves are established with variety of powerful methods,such as the Cole-Hopf transformation and perturbation expansion method,the multiple exp-function method and the Hirota’s bilinear method.[21?25]In this paper,we obtain the multiple-front waves with truncated Painlev′e expansion related nonlocal symmetry.

    Fig.1 Plot the propagation of two front waves expressed by(16)with the parameters n=2,k1=1,l1=1,k2= ?1,?=1/2.(a)t=?6;(b)t=0;(c)t=6.It is obviously that two fronts propagate with the opposite direction in y-axis and coalesce into one large front in their interaction region.

    Fig.2 Plot the propagation of two front waves expressed by(16)with the parameters n=2,k1=1,l1=1,k2=3,?=1/2.(a)t=?1;(b)t=0;(c)t=1.It shows that two fronts propagate with the same direction in y-axis and the large-amplitude front with faster velocity overtakes the small-amplitude one.

    3 CTE Solvability for pKP System

    The consistent tanh expansion writes as the following form by using the leading order analysis[10]

    where u0,u1and f are arbitrary functions of(t,x,y).By substituting(17)into the pKP system(1)and vanishing the coefficients of powers of tanh5(f),tanh4(f)and tanh3(f),we obtain

    Collecting the coefficient of tanh2(f)and using(18),the consistent condition reads

    The coefficients of tanh1(f)and tanh0(f)are identically zero by using(19).The consistent condition(19)can also be written as

    where C=ft/fx,R= φy/φx,S={φ;x}= φxxx/φx?(3/2)(φ2xx/φ2x).The pKP system for u0,u1and f is consistent,or,not over-determined,the expansion(17)is called a CTE and the pKP system(1)is CTE solvable system.[9]The nonauto-BT theorem for the pKP equation(1)is given by using the CTE approach.

    Nonauto-BT TheoremIf the solution f satisfies the consistent condition(19),then u for equation(21)is also a solution of the pKP system(1)

    where G(y,t)is arbitrary functions of y and t.

    By means of the nonauto-BT theorem,we can obtain some special exact solutions of the pKP equation,in particularly the interaction solutions among solitons and other kinds of complicated waves.In the next section,some concrete interesting examples are given via above nonauto-BT theorem.

    4 Interaction Solutions for pKP System

    A quite trivial straight line solution of(19)has the form

    where k,l and ω are the free constants.Substituting the trivial solution(22)into(21),the exact solution of pKP system yields

    The nontrivial solution of the pKP equation is given from some quite trivial solution of(22).Actually,the solution of the pKP equation may have quite rich structures due to an arbitrariness function of(23).The parameters are k=1,l=2,ω = ?2 both in Figs.3(a)and 3(b).One kink soliton coupled to the periodic wave background shows in Fig.3(a)with the arbitrary function G(y,t)=sin(y+t).Figure 3(b)plots the interaction between one kink and one soliton solution with the arbitrary function G(y,t)=1/[1+(y+t)2].It is obvious that the interaction behavior is different with selecting different parameters.

    To find the other types of interaction solutions,we can look for the solutions with one straight line(22)plus an undetermined waves for the f field.The interaction solutions between solitons and multiple resonant soliton solutions of the pKP equation assume

    where kiare arbitrary constants while liand ωiare determined by the relations

    The solution of pKP equation will be obtained by substituting(24)into(21).Because the expression of u is quite complicated,we neglect write it down here and only plot their figures under the special values of the parameters.Figure 4 displays the special interaction solution with the symbol“±”in(25)as“+”and the parameters selected as n=2,k=2,l=1,ω =2,k1= ?1,k2= ?2.The arbitrary function G(y,t)is chosen as 1/(y+t)2and sin(y+t)2for Fig.4(a)and Fig.4(b)respectively.

    For the interaction solution between solitons and cnoidal periodic waves,the interaction solution reads as

    where k0,l0, ω0,k,l and ω are all the free constants.Substituting the expression(26)into(19),we obtain an equation about F1(X)as

    where

    C1and C2are arbitrary constant.The solution F1in(27)can be written as[11?12]

    The interaction solution between solitons and cnoidal periodic waves of(26)reads

    where S is the Jacobi elliptic functionEFand Eπare the first and third incomplete elliptic integrals and r1,r2,r3,r4are related with a1,a2,a3,a4in the following relations

    Fig.3 (a)Plot of one kink soliton in the periodic wave background expressed by(23)with the arbitrary function G(y,t)=sin(y+t);(b)Plot of the interaction between one kink and one soliton solution by(23)with the arbitrary function G(y,t)=1/[1+(y+t)2].The parameters are k=1,l=2,ω=?2.

    In the ocean,there are some typical nonlinear waves such as interaction solutions between solitons and cnoidal periodic waves.[11]We introduce the interaction solutions may be useful for studying the ocean waves.

    RemarkThe CTE method has been successfully applied to lots of nonlinear integrable[26?28]and even nonintegrable systems.[29?30]The interaction solutions between a soliton and the cnoidal waves,Painlev′e waves,Airy waves,Bessel waves are generated with the CTE method.For the pKP system,an arbitrary function is included in a nonauto-BT theorem.There exist many abundant interaction solutions of pKP equation by selecting the different arbitrary function.The interaction behaviors for pKP equation are thus different from other systems via the CTE method.

    Fig.4 (a)Plot of special interaction between one soliton and two resonant soliton solutions with the arbitrary function G(y,t)=1/[1+(y+t)2];(b)Plot of the interaction between one soliton and two resonant soliton solutions in the periodic wave background with the arbitrary function G(y,t)=sin(y+t)2.The parameters are n=2,k=2,l=1,ω=2,k1=?1,k2=?2.

    5 Conclusion

    In summary,the nonlocal symmetry of the pKP equation is obtained with the truncated Painlev′e method.To solve the initial value problem related by the nonlocal symmetry,we prolong the pKP equation such that nonlocal symmetry becomes the local Lie point symmetry for the prolonged system.The finite symmetry transformations of the prolonged pKP system are derived by using the Lie’s first principle.The multi-front wave solution and their interaction behaviors for pKP equation are studied with the finite symmetry transformations.The inelastic interactions among the two-front wave are studied which were not reported for the pKP equation.Then,the CTE method is applied to the pKP equation.The CTE method for the pKP system leads to a nonauto-BT theorem.Abundant interaction solutions between solitons and other types of solitary waves for the pKP system are obtained with a nonauto-BT theorem.These types of interaction solutions can also be given through symmetries reduction of the prolonged systems.

    In this paper,we discuss the localization procedure for one particular nonlocal symmetry,i.e.,the residual symmetries. There are many methods to obtain the nonlocal symmetry, such as the Darboux transformation,[11?12,31?32]the B¨acklund transformation,[33]and the nonlinearizations.[34?35]How to apply these various nonlocal symmetries to obtain new interaction solutions is an important topic.

    References

    [1]C.S.Gardner,J.M.Greene,M.D.Kruskal,and R.M.Miura,Phys.Rev.Lett.19(1967)1095.

    [2]R.Hirota,The Direct Method in Soliton Theory,Cambridge University Press,Cambridge(2004).

    [3]P.J.Olver,Application of Lie Group to differential Equation,Springer-Verlag,Berlin(1986);G.W.Bluman and S.C.Anco,Symmetry and Integration Methods for Differential Equations,Springer-Verlag,New York(2002).

    [4]V.B.Matveev and M.A.Salle,Darboux Transformations and Solitons,Springer,Berlin(1991).

    [5]J.Weiss,M.Tabor,and G.Carnevale,J.Math.Phys.24(1983)522.

    [6]C.Rogers and W.K.Schief,B¨acklund and Darboux Transformations Geometry and Modern Applications in Soliton Theory,Cambridge Texts in Applied Mathematics,Cambridge University Press,Cambridge(2002).

    [7]X.Y.Tang,S.Y.Lou,and Y.Zhang,Phys.Rev.E 66(2002)046601.

    [8]X.L,Commun.Nonlinear Sci.Numer.Simulat.19(2014)3969;W.M.Moslem,S.Ali,P.K.Shukla,and X.Y.Tang,Phys.Plasmas 14(2007)082308.

    [9]S.Y.Lou,Stud.Appl.Math.134(2015)372.

    [10]X.N.Gao,S.Y.Lou,and X.Y.Tang,J.High Energy Phys.05(2013)029.

    [11]X.R.Hu,S.Y.Lou,and Y.Chen,Phys.Rev.E 85(2012)056607.

    [12]X.P.Cheng,S.Y.Lou,C.L.Chen,and X.Y.Tang,Phys.Rev.E 89(2014)043202.

    [13]M.J.Ablowitz and P.A.Clarkson,Nonlinear Evolution Equations and Inverse Scattering Transform,Cambridge University Press,Cambridge(1990).

    [14]D.Kaya and S.M.El-Sayed,Phys.Lett.A 320(2003)192.

    [15]D.Li and H.Zhang,Appl.Math.Comput.146(2003)381.

    [16]Z.Dai,S.Li,D.Li,and A.Zhu,Chin.Phys.Lett.24(2007)1429.

    [17]Z.D.Dai,Y.Huang,et al.,Chaos,Solitons&Fractals 40(2009)946.

    [18]Z.Dai,J.Liu,and Z.Liu,Commun.Nonlinear Sci.Numer.Simul.15(2010)2331.

    [19]D.Q.Xian and H.L.Chen,Appl.Math.Comput.217(2010)1340.

    [20]R.K.Gupta and A.Bansal,Appl.Math.Comput.219(2013)5290.

    [21]S.Wang,X.Y.Tang,and S.Y.Lou,Chaos,Solitons&Fractals 21(2004)231.

    [22]Z.Y.Sun,Y.T.Gao,et al.,Wave Motion 46(2009)511.

    [23]A.M.Wazwaz,Appl.Math.Comput.190(2007)1198;A.M.Wazwaz,Commun.Nonlinear Sci.Numer.Simulat.17(2012)491;A.M.Wazwaz,Comput.Fluids 97(2014)164.

    [24]W.X.Ma and E.Fan,Comput.Math.Appl.61(2011)950.

    [25]W.X.Ma and Z.N.Zhu,Appl.Math.Comput.218(2012)11871.

    [26]S.Y.Lou,X.P.Chen,and X.Y.Tang,Chin.Phys.Lett.31(2014)070201.

    [27]C.L.Chen and S.Y.Lou,Chin.Phys.Lett.30(2013)110202.

    [28]B.Ren,X.Z.Liu,and P.Liu,Commun.Theor.Phys.63(2015)125;B.Ren,J.R.Yang,P.Liu,and X.Z.Liu,Chinese J.Phys.53(2015)080001.

    [29]B.Ren and J.Lin,Z.Naturforsch 70a(2015)539.

    [30]B.Ren,J.Yu,and X.Z.Liu,Abstr.Appl.Anal.2015(2015)213847.

    [31]X.P.Cheng,C.L.Chen,and S.Y.Lou,Wave Motion 51(2014)1298.

    [32]J.C.Chen,X.P.Xin,and Y.Chen,J.Math.Phys.55(2014)053508.

    [33]S.Y.Lou,X.R.Hu,and Y.Chen,J.Phys.A:Math.Theor.45(2012)155209.

    [34]C.W.Cao and X.G.Geng,J.Phys.A:Math.Gen.23(1990)4117.

    [35]Y.Cheng and Y.S.Li,Phys.Lett.A 157(1991)22.

    中文字幕免费在线视频6| 丁香欧美五月| 黄色丝袜av网址大全| av视频在线观看入口| 久久人人爽人人爽人人片va | 日韩欧美三级三区| 国产精品久久久久久亚洲av鲁大| h日本视频在线播放| 小蜜桃在线观看免费完整版高清| 在线播放国产精品三级| 中文字幕精品亚洲无线码一区| 久久久久久久精品吃奶| 午夜福利免费观看在线| 国产精品av视频在线免费观看| 91字幕亚洲| 精品一区二区三区视频在线观看免费| 在线观看舔阴道视频| 脱女人内裤的视频| 十八禁国产超污无遮挡网站| 国产成人啪精品午夜网站| 免费在线观看亚洲国产| 最近最新免费中文字幕在线| 偷拍熟女少妇极品色| 女生性感内裤真人,穿戴方法视频| 久久久成人免费电影| 少妇被粗大猛烈的视频| 成人三级黄色视频| 人妻制服诱惑在线中文字幕| 可以在线观看的亚洲视频| 亚洲人成网站在线播放欧美日韩| 如何舔出高潮| 制服丝袜大香蕉在线| 国产三级黄色录像| 一进一出好大好爽视频| 午夜福利欧美成人| 亚洲美女黄片视频| 亚洲精品亚洲一区二区| 999久久久精品免费观看国产| 亚洲电影在线观看av| 亚洲av五月六月丁香网| 伊人久久精品亚洲午夜| 在线观看舔阴道视频| 麻豆一二三区av精品| 国产精品一区二区免费欧美| 内地一区二区视频在线| 精品人妻熟女av久视频| 欧美成狂野欧美在线观看| 啪啪无遮挡十八禁网站| 岛国在线免费视频观看| 91在线精品国自产拍蜜月| 亚洲熟妇中文字幕五十中出| 日韩欧美一区二区三区在线观看| 国产真实伦视频高清在线观看 | 1000部很黄的大片| 亚洲电影在线观看av| 日本黄大片高清| 国产精品久久久久久久电影| 麻豆成人av在线观看| 国产探花极品一区二区| 国产毛片a区久久久久| 精品99又大又爽又粗少妇毛片 | 欧美zozozo另类| 国产伦人伦偷精品视频| 丰满乱子伦码专区| a级毛片a级免费在线| 亚洲无线在线观看| 亚洲七黄色美女视频| 黄色视频,在线免费观看| 国产成人福利小说| 欧美一区二区国产精品久久精品| 波多野结衣高清作品| www.999成人在线观看| 久久精品国产清高在天天线| 国产成年人精品一区二区| 长腿黑丝高跟| 亚洲av日韩精品久久久久久密| 一级毛片久久久久久久久女| 嫩草影院精品99| 国内毛片毛片毛片毛片毛片| 国产伦人伦偷精品视频| 在线观看美女被高潮喷水网站 | 国产成人aa在线观看| 少妇人妻精品综合一区二区 | 亚洲黑人精品在线| 91在线精品国自产拍蜜月| 欧美xxxx黑人xx丫x性爽| 欧美性感艳星| av视频在线观看入口| 亚洲精华国产精华精| 亚洲欧美清纯卡通| 给我免费播放毛片高清在线观看| 久久久久久久精品吃奶| 久久九九热精品免费| 熟女人妻精品中文字幕| 非洲黑人性xxxx精品又粗又长| 麻豆av噜噜一区二区三区| 欧美成人免费av一区二区三区| 蜜桃久久精品国产亚洲av| 99久久成人亚洲精品观看| 中文在线观看免费www的网站| 最近最新中文字幕大全电影3| 丁香六月欧美| 在线播放无遮挡| 国产精品乱码一区二三区的特点| 精品福利观看| 精品不卡国产一区二区三区| 日韩中文字幕欧美一区二区| 午夜福利在线观看免费完整高清在 | 高清毛片免费观看视频网站| 国产精品三级大全| 国产一区二区在线av高清观看| 亚洲狠狠婷婷综合久久图片| 久久6这里有精品| 18禁裸乳无遮挡免费网站照片| 久久九九热精品免费| 午夜精品在线福利| 精品无人区乱码1区二区| 三级毛片av免费| 女人被狂操c到高潮| 成熟少妇高潮喷水视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产av一区在线观看免费| 日韩欧美国产在线观看| 人妻丰满熟妇av一区二区三区| 少妇的逼水好多| 熟妇人妻久久中文字幕3abv| 变态另类成人亚洲欧美熟女| 亚洲中文字幕一区二区三区有码在线看| 久久久久久九九精品二区国产| 亚洲精品一区av在线观看| 国产主播在线观看一区二区| 五月玫瑰六月丁香| 久久久久久大精品| 欧美xxxx黑人xx丫x性爽| 国产真实乱freesex| 性欧美人与动物交配| 亚洲欧美激情综合另类| 亚洲av电影不卡..在线观看| 亚洲天堂国产精品一区在线| 国产大屁股一区二区在线视频| 久久久久久九九精品二区国产| 在线观看免费视频日本深夜| 亚洲电影在线观看av| 亚洲自拍偷在线| 丰满的人妻完整版| www.999成人在线观看| 18禁在线播放成人免费| 亚洲国产精品成人综合色| 99久久无色码亚洲精品果冻| 久久午夜亚洲精品久久| 麻豆国产av国片精品| 桃色一区二区三区在线观看| 一本精品99久久精品77| 99久久99久久久精品蜜桃| 国产伦一二天堂av在线观看| 日本熟妇午夜| 国产亚洲精品久久久久久毛片| 两个人的视频大全免费| 国产午夜精品久久久久久一区二区三区 | eeuss影院久久| www.999成人在线观看| 亚洲av第一区精品v没综合| 午夜老司机福利剧场| 无人区码免费观看不卡| 国内久久婷婷六月综合欲色啪| 九色国产91popny在线| 在线播放无遮挡| 一个人看的www免费观看视频| 两个人的视频大全免费| 日韩中字成人| 97超视频在线观看视频| 亚洲狠狠婷婷综合久久图片| 成人无遮挡网站| 国产成人aa在线观看| 非洲黑人性xxxx精品又粗又长| 黄色丝袜av网址大全| 美女被艹到高潮喷水动态| 亚洲国产精品合色在线| 精品人妻偷拍中文字幕| 午夜a级毛片| 亚洲国产欧美人成| 欧美黑人巨大hd| 国产人妻一区二区三区在| 久久草成人影院| 国产精品一区二区免费欧美| 天天一区二区日本电影三级| 在线观看免费视频日本深夜| 国产av在哪里看| 国产免费av片在线观看野外av| 国产精品日韩av在线免费观看| 一本一本综合久久| 精品午夜福利视频在线观看一区| 久久久久久久亚洲中文字幕 | 色哟哟·www| 欧美激情在线99| 三级毛片av免费| 国产大屁股一区二区在线视频| 日日摸夜夜添夜夜添av毛片 | 不卡一级毛片| 亚洲真实伦在线观看| 欧美午夜高清在线| 69人妻影院| 亚洲最大成人手机在线| 国产单亲对白刺激| 久久久精品大字幕| 亚洲va日本ⅴa欧美va伊人久久| 动漫黄色视频在线观看| 午夜影院日韩av| 亚洲国产欧美人成| 日日干狠狠操夜夜爽| 亚洲国产色片| 中出人妻视频一区二区| 人妻丰满熟妇av一区二区三区| 网址你懂的国产日韩在线| 嫩草影视91久久| 国产91精品成人一区二区三区| 免费大片18禁| 麻豆成人午夜福利视频| 国产精品永久免费网站| 中文字幕av在线有码专区| 99久久成人亚洲精品观看| 亚洲成av人片在线播放无| 国产精品电影一区二区三区| 一个人看的www免费观看视频| 此物有八面人人有两片| 国产91精品成人一区二区三区| 18禁在线播放成人免费| 日本撒尿小便嘘嘘汇集6| 淫妇啪啪啪对白视频| 免费av不卡在线播放| av国产免费在线观看| 嫩草影院精品99| 99精品久久久久人妻精品| 91麻豆av在线| 在线观看舔阴道视频| 日韩免费av在线播放| 免费电影在线观看免费观看| 精品免费久久久久久久清纯| 一级黄片播放器| 免费观看精品视频网站| 成年版毛片免费区| 婷婷精品国产亚洲av在线| 亚州av有码| 男女视频在线观看网站免费| 成人性生交大片免费视频hd| 国产 一区 欧美 日韩| 亚洲va日本ⅴa欧美va伊人久久| 国产爱豆传媒在线观看| 久久久久久久久久黄片| 精品一区二区三区视频在线观看免费| av在线观看视频网站免费| 哪里可以看免费的av片| 国产精华一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 国产伦一二天堂av在线观看| 免费看a级黄色片| 丰满乱子伦码专区| 日韩 亚洲 欧美在线| 男女那种视频在线观看| 亚洲av二区三区四区| 中文字幕人成人乱码亚洲影| 搡老妇女老女人老熟妇| 性欧美人与动物交配| 国产精品人妻久久久久久| 亚洲专区中文字幕在线| 国产av不卡久久| 午夜精品久久久久久毛片777| 九色国产91popny在线| 女同久久另类99精品国产91| 亚洲成人中文字幕在线播放| 一级毛片久久久久久久久女| 日本撒尿小便嘘嘘汇集6| 欧美高清成人免费视频www| 国产乱人视频| 免费高清视频大片| 久久性视频一级片| 中文字幕免费在线视频6| 婷婷精品国产亚洲av| 亚洲片人在线观看| 91在线精品国自产拍蜜月| 两人在一起打扑克的视频| 韩国av一区二区三区四区| 神马国产精品三级电影在线观看| 亚洲无线在线观看| 热99re8久久精品国产| 91在线观看av| 午夜影院日韩av| 91在线精品国自产拍蜜月| 极品教师在线视频| 日韩精品中文字幕看吧| 美女免费视频网站| 超碰av人人做人人爽久久| 国产成人欧美在线观看| 老司机深夜福利视频在线观看| 日本五十路高清| 国产黄色小视频在线观看| 欧美丝袜亚洲另类 | 色5月婷婷丁香| 国产午夜精品久久久久久一区二区三区 | 久久午夜福利片| 久久久久精品国产欧美久久久| 日本成人三级电影网站| 日本精品一区二区三区蜜桃| 欧美乱妇无乱码| 国产探花在线观看一区二区| 成人av一区二区三区在线看| 久久精品影院6| 精品无人区乱码1区二区| 成人永久免费在线观看视频| 国产真实伦视频高清在线观看 | 色播亚洲综合网| 亚洲av不卡在线观看| 亚洲av二区三区四区| 久久精品国产清高在天天线| 男插女下体视频免费在线播放| 国产精品一区二区免费欧美| 在线观看av片永久免费下载| 床上黄色一级片| 一进一出抽搐动态| 18+在线观看网站| 久久人人精品亚洲av| 国产高清有码在线观看视频| 国产精品久久电影中文字幕| 免费av不卡在线播放| 精品午夜福利在线看| 久久久色成人| 窝窝影院91人妻| 亚洲av成人不卡在线观看播放网| 深爱激情五月婷婷| 首页视频小说图片口味搜索| 白带黄色成豆腐渣| 日本精品一区二区三区蜜桃| 亚洲成人久久爱视频| 亚洲一区二区三区不卡视频| 婷婷色综合大香蕉| 亚洲黑人精品在线| 又爽又黄a免费视频| 亚洲国产高清在线一区二区三| 国产一区二区激情短视频| 久久99热6这里只有精品| 亚洲国产精品合色在线| 精品一区二区免费观看| 久久久色成人| 亚洲无线观看免费| 一级a爱片免费观看的视频| 桃红色精品国产亚洲av| 亚洲欧美日韩高清在线视频| 91午夜精品亚洲一区二区三区 | 51午夜福利影视在线观看| 亚洲av电影不卡..在线观看| 欧美日韩综合久久久久久 | 成人毛片a级毛片在线播放| or卡值多少钱| 精品99又大又爽又粗少妇毛片 | 一区二区三区激情视频| 淫秽高清视频在线观看| 成年免费大片在线观看| 欧美精品啪啪一区二区三区| 黄色女人牲交| 亚洲av免费高清在线观看| 午夜免费男女啪啪视频观看 | 精品久久久久久成人av| 一区二区三区激情视频| 琪琪午夜伦伦电影理论片6080| 欧美极品一区二区三区四区| 久久香蕉精品热| 久久久久久国产a免费观看| 国产美女午夜福利| 日本熟妇午夜| 国产欧美日韩一区二区三| 麻豆成人午夜福利视频| 伊人久久精品亚洲午夜| 色吧在线观看| 亚洲成人久久爱视频| 91在线观看av| 国产精品av视频在线免费观看| 国产精品爽爽va在线观看网站| 毛片一级片免费看久久久久 | 99在线视频只有这里精品首页| 国产熟女xx| 国产伦精品一区二区三区视频9| 国产精华一区二区三区| 免费一级毛片在线播放高清视频| 国产男靠女视频免费网站| 亚洲欧美日韩卡通动漫| 乱码一卡2卡4卡精品| 日韩欧美国产一区二区入口| 久久久久久久精品吃奶| 成人一区二区视频在线观看| 色在线成人网| 久久九九热精品免费| 国产精品亚洲美女久久久| 精华霜和精华液先用哪个| 桃红色精品国产亚洲av| 中文字幕高清在线视频| 国产蜜桃级精品一区二区三区| 日韩有码中文字幕| 老司机深夜福利视频在线观看| 一进一出好大好爽视频| 非洲黑人性xxxx精品又粗又长| 国产精品1区2区在线观看.| 亚洲精品色激情综合| x7x7x7水蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 欧美黄色片欧美黄色片| xxxwww97欧美| 国产精品亚洲一级av第二区| 亚洲最大成人av| 内地一区二区视频在线| 麻豆久久精品国产亚洲av| 欧美一区二区亚洲| 久久伊人香网站| 午夜福利高清视频| 老鸭窝网址在线观看| 少妇的逼水好多| 一区福利在线观看| 最近在线观看免费完整版| 亚洲,欧美,日韩| 国产高清视频在线观看网站| 婷婷丁香在线五月| 成人av一区二区三区在线看| 亚洲av熟女| 精品久久久久久久人妻蜜臀av| 免费av毛片视频| 欧美3d第一页| 午夜福利在线观看免费完整高清在 | 日本 av在线| 在线免费观看不下载黄p国产 | 色哟哟哟哟哟哟| 岛国在线免费视频观看| 美女被艹到高潮喷水动态| 久久精品久久久久久噜噜老黄 | 成年女人永久免费观看视频| 免费看日本二区| 97碰自拍视频| 一边摸一边抽搐一进一小说| av黄色大香蕉| 午夜两性在线视频| 91在线精品国自产拍蜜月| 欧美潮喷喷水| 他把我摸到了高潮在线观看| 欧美3d第一页| 1000部很黄的大片| 亚洲精华国产精华精| 亚洲,欧美,日韩| 国产av不卡久久| 别揉我奶头 嗯啊视频| 亚洲成人精品中文字幕电影| 亚洲国产色片| 小说图片视频综合网站| 国产精品女同一区二区软件 | 国产亚洲精品av在线| 国产精品一区二区三区四区久久| 色av中文字幕| 97碰自拍视频| 别揉我奶头~嗯~啊~动态视频| 婷婷亚洲欧美| 男女之事视频高清在线观看| 国产亚洲精品综合一区在线观看| 美女高潮喷水抽搐中文字幕| 亚洲久久久久久中文字幕| 少妇人妻一区二区三区视频| 国产成人av教育| 亚洲电影在线观看av| 午夜福利在线观看吧| 国内精品一区二区在线观看| 变态另类丝袜制服| 中文在线观看免费www的网站| 久久精品久久久久久噜噜老黄 | 中文字幕熟女人妻在线| 久久久精品大字幕| 我的女老师完整版在线观看| 国产精品亚洲av一区麻豆| 日韩人妻高清精品专区| 免费观看的影片在线观看| 少妇熟女aⅴ在线视频| 乱人视频在线观看| 国产av麻豆久久久久久久| 亚洲综合色惰| 欧美极品一区二区三区四区| 日韩欧美国产一区二区入口| 国产精品久久视频播放| 怎么达到女性高潮| 中文字幕av成人在线电影| 12—13女人毛片做爰片一| 丁香欧美五月| 我的女老师完整版在线观看| 欧美午夜高清在线| 欧美精品国产亚洲| www.999成人在线观看| 国产三级黄色录像| 免费在线观看成人毛片| 亚洲 欧美 日韩 在线 免费| 最后的刺客免费高清国语| 一个人看视频在线观看www免费| 欧美精品国产亚洲| 国产av一区在线观看免费| 国产三级在线视频| 国产麻豆成人av免费视频| 亚洲国产高清在线一区二区三| 一个人观看的视频www高清免费观看| 久久久久久久久久成人| 极品教师在线免费播放| av专区在线播放| 美女黄网站色视频| 别揉我奶头 嗯啊视频| www日本黄色视频网| 国产中年淑女户外野战色| 真人做人爱边吃奶动态| 国产私拍福利视频在线观看| 精品99又大又爽又粗少妇毛片 | 人妻夜夜爽99麻豆av| 日韩欧美精品免费久久 | 国产高清有码在线观看视频| 中文资源天堂在线| 欧美性猛交黑人性爽| 精品久久久久久久人妻蜜臀av| 男女床上黄色一级片免费看| 级片在线观看| 久久精品国产亚洲av香蕉五月| 亚洲久久久久久中文字幕| 少妇被粗大猛烈的视频| 两人在一起打扑克的视频| 亚洲精品在线观看二区| av女优亚洲男人天堂| 中文亚洲av片在线观看爽| 老鸭窝网址在线观看| 亚洲精品一卡2卡三卡4卡5卡| 一级毛片久久久久久久久女| 免费av观看视频| 最近视频中文字幕2019在线8| 日韩大尺度精品在线看网址| 亚洲av免费在线观看| 国产成人a区在线观看| 亚洲熟妇中文字幕五十中出| 中文字幕人妻熟人妻熟丝袜美| 国产精品av视频在线免费观看| 国产精品久久久久久久久免 | 一夜夜www| 内射极品少妇av片p| 男女之事视频高清在线观看| 一本综合久久免费| 国内毛片毛片毛片毛片毛片| 国产亚洲精品av在线| 国产精品精品国产色婷婷| 少妇的逼水好多| 色综合站精品国产| 亚洲成av人片在线播放无| 欧美一区二区国产精品久久精品| a级一级毛片免费在线观看| 天堂√8在线中文| 99精品在免费线老司机午夜| 久久久久久久久久黄片| 国产色爽女视频免费观看| 久久婷婷人人爽人人干人人爱| 蜜桃久久精品国产亚洲av| 久久亚洲精品不卡| 久久精品国产亚洲av天美| 黄色女人牲交| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久久亚洲 | 亚洲avbb在线观看| 久久精品久久久久久噜噜老黄 | 一个人免费在线观看的高清视频| 免费人成在线观看视频色| 天堂√8在线中文| 免费观看精品视频网站| 精品久久久久久久久av| 国产av麻豆久久久久久久| 丰满乱子伦码专区| 中文资源天堂在线| 免费观看人在逋| 亚洲va日本ⅴa欧美va伊人久久| 欧美在线一区亚洲| 国产老妇女一区| 免费观看的影片在线观看| 欧美三级亚洲精品| 禁无遮挡网站| 国产高潮美女av| 一级黄片播放器| 村上凉子中文字幕在线| 婷婷丁香在线五月| 亚洲精品日韩av片在线观看| 女人被狂操c到高潮| 一区福利在线观看| 亚洲天堂国产精品一区在线| 亚洲精品色激情综合| 精品国内亚洲2022精品成人| 免费高清视频大片| 亚洲av中文字字幕乱码综合| 99国产综合亚洲精品| 人妻制服诱惑在线中文字幕| 免费搜索国产男女视频| 成年版毛片免费区| 青草久久国产| 国产乱人视频| 亚洲一区高清亚洲精品| 亚洲片人在线观看| 久久国产精品人妻蜜桃| 变态另类丝袜制服| 欧美高清成人免费视频www| 亚洲av第一区精品v没综合| 亚洲av二区三区四区| 国产亚洲精品久久久com| 每晚都被弄得嗷嗷叫到高潮| 在线免费观看不下载黄p国产 | 美女大奶头视频| 欧美极品一区二区三区四区| 久久中文看片网| 午夜视频国产福利| 午夜亚洲福利在线播放| 国产黄片美女视频| 久久久久九九精品影院| 一进一出抽搐gif免费好疼| 99热这里只有是精品在线观看 |