• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Monolithic semi-polar(1ˉ101)InGaN/GaN near white light-emitting diodes on micro-striped Si(100)substrate?

    2019-08-16 01:20:48QiWang王琦GuoDongYuan袁國棟WenQiangLiu劉文強ShuaiZhao趙帥LuZhang張璐ZhiQiangLiu劉志強JunXiWang王軍喜andJinMinLi李晉閩
    Chinese Physics B 2019年8期
    關(guān)鍵詞:張璐王琦

    Qi Wang(王琦), Guo-Dong Yuan(袁國棟),?, Wen-Qiang Liu(劉文強), Shuai Zhao(趙帥),Lu Zhang(張璐), Zhi-Qiang Liu(劉志強), Jun-Xi Wang(王軍喜), and Jin-Min Li(李晉閩)

    1Center for Semiconductor Lighting,Institute of Semiconductors,Chinese Academy of Sciences,State Key Laboratory of Solid State Lighting,Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: InGaN/GaN MQWs,near white light-emitting diodes,Si(100)substrate

    1. Introduction

    Over the last few years,GaN-based light-emitting diodes(LEDs) have been rapidly developed due to their low energy consumption and long lifetime.[1-5]By reducing the indium content, the band gap of InGaN increases from 0.7 eV to 3.4 eV,which corresponds to the wavelength of emission from ultraviolet to infrared.[6-8]Traditionally, polar blue InGaN-based LEDs are combined with phosphors to produce white LEDs[9-12]This method has achieved a high lumen efficiency(197.8 lm/W),[13]but this method is not a fully meaningful LEDs lighting technology, and there are still some shortcomings: the process is complex,[14]conversion efficiency is still far from the theoretical efficiency limit(298.7 lm/W),[13]and polar InGaN has a strong quantum confined stark effect(QCSE).[15]As a result, researchers are looking for a new method to produce white LEDs on a monochromatic chip with no phosphors. For example,by growing a hexagonal nanopillar and inverted pyramid structure,the mixed structures of polar and semi-polar multiple quantum wells (MQWs), or inclined polar MQWs with changing the in-plane indium content in MQWs are prepared.[16-18]The white LEDs can also be achieved by changing the indium content of MQWs in polar,semi-polar and non-polar MQWs,respectively.[19-22]Nevertheless,the white LEDs have not been realized by changing the in-plane In content in semi-polar InGaN/GaN MQWs.The semi-polar facets of nitride include (1ˉ101), (11ˉ22), (20ˉ2ˉ1),etc., the first-principles calculation shows theoretically that the In incorporated in semi-polar facet is higher than in polar facet.[23,24]The semi-polar facet has a lower strain state than polar facet,which will give rise to higher In content[25,26]It was experimentally reported that the semi-polar(1ˉ101)has the maximum In content incorporation-efficiency compared with polar,nonpolar,and other semi-polar planes.[26]For long wavelength nitride LEDs, the InGaN/GaN MQWs with high indium content are needed, which is necessary for fabricating monochromatic white LEDs. The Si-based LEDs have become a hot research topic.[27-32]There are already some publications about semi-polar(1ˉ101)GaN grown on patterned Si(100)substrate.[33-37]Most of these studies focus on the growing of single-layer semi-polar GaN films, blue-green LEDs,blue lasers, and high-In content InGaN/GaN MQWs.[34,35]However,the white LEDs based on semi-polar(1ˉ101)MQWs on patterned Si (100) substrates have not yet been reported,which is probably due to V-grooves on a patterned Si (100)substrate with a width smaller than 3μm.[35]In such a small width,in-plane distribution of the indium content is more uniform and corresponding emission waveband is too narrow to emit wide spectrum light.Here in this work,semi-polar(1ˉ101)MQWs are grown on patterned Si (100) substrates with a V-groove width of ~10μm. The wide in-plane indium distribution in semi-polar (1ˉ101) MQW is realized by carefully controlling the size of micro-stripe and the growth temperature of the InGaN, and the electroluminescence (EL) of white LEDs is reported.

    2. Experiment

    An InGaN MQW structure was grown on a(1ˉ101)plane GaN by selective-area epitaxy on inclined Si (111) planes etched from a Si(100)substrate as shown in Fig.1. First,the micro-stripes on Si(100)substrate were fabricated by depositing a 200-nm-thick silicon dioxide(SiO2)hard mask layer via plasma-enhanced chemical vapor deposition (Fig. 1(b)) followed by conventional photolithography (Fig. 1(c)), then the SiO2and photoresist were removed from the surface. After that, the Si(100)substrate was etched by tetramethyl ammonium hydroxide and isopropyl alcoholmixed solution, which is normally used for the anisotropic etching of(100)-oriented Si[38,39]as reported previously in our work.[40]Finally,the two opposite Si(111)planes were exposed with an inclined angle of about 54.7°with respect to the horizontal Si (100) plane.The LED structures were grown on a two-inch-thick p-type patterned Si (100) substrate by metal organic chemical vapor deposition(MOCVD).Trimethylgallium,trimethylaluminum,and ammonia were used as the Ga, Al, and N precursor, respectively. And hydrogen (H2) served as the carrier gas. As shown in Fig. 1(f), a 30-nm-thick AlN nucleation layer was deposited at 600°C and a 300-nm-thick AlN nucleation layer was deposited at 1100°C followed by a graded AlGaN buffer layer in which the Al content changed from 10% to 100%.Next, we deposited a 3-μm-thick n-GaN layer at 800°C, 11 periods of InGaN/GaN MQWs at 700°C/834°C, and a fiveperiod AlGaN/GaN superlattice.Finally,100-nm-thick p-GaN and 20-nm-thick u-GaN layer are grown as shown in Fig. 1.With a given sized patterned-Si (100) substrate, the growing of semi-polar(1ˉ101)LED structures shows a very good reproducibility.

    Fig. 1. Schematic diagram of (a) Si (100) substrate, (b) Si (100) substrate with SiO2 mask, (c) photolithography, (d) removing SiO2 and photoresist,(e)developing trenches by TMAH,(f)InGaN multiple-quantum-well system grown on the(1ˉ101)plane of GaN based on selectivearea epitaxial growth.

    The morphology of the epitaxy structures was characterized by scanning electron microscopy (SEM). The structural analysis of the LED epitaxy structure formed on the micro-striped Si (100) substrate was performed by transmission electron microscopy (TEM). The cathodoluminescence(CL) measurements were conducted to determine the luminescence spectra. For functional testing, lateral LED devices were fabricated. A p-contact was deposited by electron-beam evaporation and defined by photolithography and lift-off. The Cr/Al/Ti/Au was used for the n-contact and the probing pad.The electroluminescence (EL) spectra of the LEDs indicate that the semi-polar InGaN/GaN MQWs emit near white light.

    3. Results and discussion

    From the cross-sectional SEM image in Fig.2(a),we obtain smooth triangular protrusions with Si(111)and(ˉ1ˉ11)side planes, and a period of 15μm, and 10-μm-wide trenches between the protrusions. Figure 2(b) shows an SEM image of the cross-section of the epilayers grown in the grooves shown in Fig.2(a). In our experiments,the size of the micro-stripe is enlarged:its maximum size is only 3μm in Ref.[35],whereas we use lithography to produce micro-stripes of 10μm or even larger V-groove to analyze the inner structures. The large size is favorable for the research of subsequent devices: the larger the more favorable. Besides,the width of the MQW is closely related to the size of the micro-stripe. Figure 2(c)reveals the surface morphology from a top-down view. The morphology is slightly roughened by the two opposite layers colliding with each other. The c (0001) plane of GaN completely disappears,and the semi-polar(1ˉ101)plane covers the whole stripe surface,which is shown in Fig.2(d). Figure 2(d)shows a cross-sectional SEM image of InGaN/GaN MQWs grown on a Si(111)plane,from which we see that the inclined angle between the side wall and the flat is ~7°, indicating that the GaN (1ˉ101) semi-polar plane is not parallel to Si (100). The existence of the inclination angle is the main reason for the inhomogeneity of the epitaxial structure(for example,the width of InGaN/GaN MQWs). Furthermore, the growth rate of the GaN on the c (0001) plane is almost three times higher than that on the semi-polar(1ˉ101)plane. Under these growth conditions, the growth rate of the c (0001) plane is much larger than that of the semi-polar (1ˉ101) plane, indicating that the growth rate depends on the crystal orientation. The growth rates on both the Si(111)plane and the Si(ˉ1ˉ11)plane are almost the same, giving rise to a nearly symmetrical structure with a kite-like cross section in the trench. The growth direction of the GaN (0001) plane is perpendicular to that of the Si (111) plane, so that the two opposite GaN layers collide with each other, leaving only the(1ˉ101)plane. Then the two(1ˉ101)semi-polar planes merge after they have been in contact while growing,as shown in Fig.2(b).

    The LED structure growth process is shown in Figs.3(a)-3(c). As shown in Fig.3(a),the AlN/AlGaN buffer layer only grows along the c-direction on two opposite Si (111) planes.The gradually decreasing of precursor concentration gives rise to different growth rates in the V-grooves along the c-plane.[41]The larger the open window of V-groove,the more obvious the uneven distribution will be. With the growth time increasing,due to the V-groove geometrical limitation, the polar c-plane area decreases while the semi-polar plane increases. When the c-plane fills the whole V-groove,the two opposite c-planes meet in the center of the V-groove and their growth is hindered due to a geometrical limitation. After that,semi-polar MQWs grow on the top of the filled trench as shown in Fig.3(b). According to the relationship between the planes in the hexagonal GaN, it can be known that the semi-polar plane is the (1ˉ101)plane, which is similar to the result reported previously.[42]As shown in Fig.3(c),there is an angle between(1ˉ101)plane and Si (100) plane, precursor concentration decreases along the surface slightly,causing the width of MQWs on the semipolar plane to gradually decrease from the middle to the two sides. When the stripe width is smaller than 3μm, the quantum well width variation along the surface is too small to be detected,thereby exhibiting a relatively narrow emission peak as shown in Ref. [35]. When the V-groove width increases to 10 μm in our case, the effect of precursor concentration turns much more obvious, the width of the quantum well decreases from the middle to the sides,which is the main reason for broad spectrum emission.

    Fig. 2. Cross-sectional SEM images of (a) array of (111)-plane V-grooves in a Si(100)substrate and(b)as-grown epilayer from panel(a). Plan-view SEM images of(c)as-grown epilayer and(d)cross-section of SEM epilayer in V-groove. (e)Schematic cross-section of micro-stripe.

    Fig.3. Schematic epitaxial growth showing(a)c-plane AlN/AlGaN buffer growth on Si(111)planes on Si(100)substrate,(b)GaN growth on trench,and(c)semi-polar growth.

    To explore the nature of the wideband LED, the crosssectional TEM images are taken on the (1ˉ101) plane, and shown in Fig.4. Figures 4(a)and 4(b)show the high-magnification cross-sectional TEM images of InGaN/GaN MQWs,and the bright and dark layers indicate the InGaN quantum wells and GaN quantum barriers, respectively. Figure 3(a)corresponds to the center of the stripe, while figure 4(b) corresponds to the side of the stripe. More information about the width related to the embedded MQWs can be obtained from Figs.4(a)and 4(b). In Fig.4(a),the width of the InGaN QWs is 3.45 nm, whereas that of the InGaN QWs in Fig. 4(b) is 1.57 nm. Figure 4(c) shows the positions at which the images in panels (a) and (b) are acquired. The width of the In-GaN/GaN MQWs decreases gradually along the [1ˉ101]zone axis. Figure 4(c) shows the MQW portion of the epitaxial layer;the dashed lines indicate the boundaries of the MQWs,showing how the width of the surface MQWs changes from the center to the side of the(1ˉ101)plane. As shown in Fig.4(c),the width of the MQWs decreases from the center to the side.Besides,many black quantum dots appear in InGaN/GaN MQWs. After EDX analysis,it is found that the compositions of these black spots are all indium and the indium phase separation may be used to explain their formation.[43]Figure 4(d)shows the TEM-EDX line scan analysis, and it is interesting that the indium content in the center is much higher than that on the side. The result shows that the indium concentration at the center position is about 10%higher than that on the side.Wider QWs and more indium precipitation in the center of stripe causes the different indium content along the stripe.The MQWs with different indium content may be responsible for the wideband emissions.

    Fig.4. (a)and(b)High-magnification cross-sectional TEM images of MQW portion, which corresponds to different parts (red squares) of panel (c). (c)TEM of MQWs portion revealing individual InGaN/GaN QWs.Dashed lines indicate the boundaries of the MQWs. (d) TEM-EDX lines scanning in direction perpendicular to QW: Line a and line b representing the center and the side of the stripe,respectively.

    We also study the optical properties of semi-polar LED structures by cathodoluminescence (CL) spectroscopy. As shown in Fig.5,the origins of individual spectral peaks within an LED structure grown on patterned Si (100) are identified.Figure 5(d) shows 1-μm-resolution CL spot scanning along the white dots denoted respectively as A, B, C, D, and E in Fig.5(a).The emission wavelengths undergo a blue-shift from the center (A) to the side (E) of the (1ˉ101) plane. The dualcolor emission peaks appear in the center region,whereas only blue emission appears in the remaining side. We apply the CL-image to a single groove with an acceleration voltage of 5 kV at room temperature to obtain the spatial distribution of the indium content as well as the emission wavelengths.These results are shown in Figs.5(b)and 5(c),where the dotted red line represents the merging area in the center, further demonstrate the characteristic of the dependence of QW stripe emission on position:uniform emission occurs over the whole stripe for λ =450 nm.Conversely,the emission comes mainly from the center of the stripe for λ =560 nm. The nonuniform emission is attributed to the nonuniform InGaN MQWs on the semi-polar(1ˉ101)plane,which contains various indium content. These results are consistent with the above TEM results and demonstrate the nature of the wideband emission LEDs. One should believe that there are several reasons for the wideband emission. Firstly, the angle between the semipolar(1ˉ101)plane and the Si(100)direction is measured to be 7°,the width of the MQWs portion and indium content in In-GaN/GaN MQWs gradually decrease along the (1ˉ101) plane(as shown in Fig. 4). Secondly, the short-wavelength emission on the side may be attributed to lattice-pulling effects.[44]When the n-GaN grows,the strain is generated and gathers in the lateral zones. This effect leads to a lower indium incorporation in these areas. What is more, the indium-riched points exist in these wells as shown in Figs.4(c)and 5(c),the strain relaxation of thicker InGaN in the center region is responsible for the indium-riched points,which cause the surface morphology and InGaN/GaN wells to degrade.

    Fig. 5. (a) SEM images of single stripe from the center (a) to the side (e).Monochromatic CL mapping images at wavelengths of (b) 450 nm and (c)560 nm. (d)Normalized emission intensity from points A-E in panel(a).

    To investigate the electrical properties of the LED structures, we fabricate the lateral-LED devices as shown in the inset (i) of Fig. 6(a). Upon the injection of 350-mA forward current, the white light is obtained by the mixing of the two emission peaks as clearly seen in the inset (ii) of Fig. 6(a).Due to the strong light absorption of silicon substrate, the LED light intensity is relatively weak. Figure 6(a)shows the electroluminescence spectra of semi-polar white LED. Each curve is composed of a strong peak in short wavelength(peak 1, 525 nm-550 nm) and a weak shoulder peak in long wavelength (peak 2, around 575 nm). When the current increases from 50 mA to 80 mA, peak 1 has a rapid blue shift from 570 nm to 530 nm. Such a big blue shift of peak 1 should be due to the band filling of the carrier localization states.[45]In the case of low current, the carriers are injected into the high indium content region (the center of V-groove) and re-combined with each other; as the current increases, the carriers gradually fill the low indium content region (the side of V-groove), thereby leading to a large blue-shift. Then, as the current further increases to 90 mA, peak 1 is basically stable at around 525 nm. As the current increases from 50 mA to 90 mA,peak 2 slowly increases from 575 nm to 580 nm. Figure 6(b)shows the CIE color coordinates taken from the LEDs driven with 350 mA/cm2. The CIE x-and y-chromaticity coordinates are 0.24 and 0.34,respectively. This point is close to white light emission. There are some differences between the EL of our white light LED and the previously reported white light LED.[46]The emissions from our white LEDs are located near the green region,which should be due to a relatively small luminescence area of the high indium content MQW in the center of the V-groove and correspondingly a low proportion in long wavelength emission between 575 nm-600 nm.

    Fig. 6. (a) EL spectra with inset (i) exhibiting reference array of LEDs for various injected current densities,and inset(ii)showing a photograph of LED with injection current of 350 mA/cm2. (b) Typical CIE color coordinates taken from the LEDs driven with 350 mA/cm2.

    4. Conclusions

    In this work, we obtain wideband emission by growing semi-polar InGaN/GaN MQWs on a patterned micro-striped Si (100) substrate and realize monolithic near white lightemitting diodes. The MQWs are angled with respect to the plane, causing the indium content of the MQWs to gradually vary. The difference in indium content,caused by the variable width of MQWs and indium phase separation,plays a decisive role in determining the characteristics of the monolithic semipolar white InGaN/GaN LED, which uses no luminophores.From a CL analysis, we find the blue emission from the side of the(1ˉ101)plane and yellow emission from the center of the(1ˉ101)plane. The wide EL emission and CIE results are well explained by comparing with the CL results. This proposed structure is a promising advance for the fabrication of monolithic semi-polar InGaN/GaN-based near white light-emitting devices without luminophores on Si(100)substrates.

    猜你喜歡
    張璐王琦
    Stability and Convergence of Non-standard Finite Difference Method for Space Fractional Partial Differential Equation
    會爬樹的“青蛙”
    Stability of Linear θ-Method for Delay Partial Functional Differential Equations with Neumann Boundary Conditions
    張璐攝影作品欣賞
    參花(下)(2021年1期)2021-12-26 06:27:52
    幫接孩子遇意外
    Briefly Talking About Methods Of Infiltrating Mental Health Education In Ideological And Political Teaching
    Pf- D mrt4, a potential factor in sexual development in the pearl oyster Pinctada f ucata*
    作品八
    Research Paper on PepsiCo, Inc.
    智富時代(2018年1期)2018-03-26 12:14:26
    《皇帝的新裝》后傳
    熟妇人妻不卡中文字幕| 亚洲成人av在线免费| 欧美日韩视频精品一区| 久久影院123| 天天一区二区日本电影三级| 欧美少妇被猛烈插入视频| 欧美最新免费一区二区三区| 亚洲最大成人手机在线| 亚洲无线观看免费| 亚洲精品成人av观看孕妇| 久久久久久伊人网av| 永久免费av网站大全| videos熟女内射| 天美传媒精品一区二区| 不卡视频在线观看欧美| 亚洲av电影在线观看一区二区三区 | 精品久久久久久久久亚洲| 内射极品少妇av片p| 国产一级毛片在线| 成人无遮挡网站| 久久精品久久久久久噜噜老黄| 别揉我奶头 嗯啊视频| 听说在线观看完整版免费高清| 欧美激情久久久久久爽电影| av又黄又爽大尺度在线免费看| 中文在线观看免费www的网站| 七月丁香在线播放| av黄色大香蕉| 99热网站在线观看| 蜜桃久久精品国产亚洲av| 久久99精品国语久久久| 国语对白做爰xxxⅹ性视频网站| 亚洲av成人精品一区久久| 精品久久国产蜜桃| 麻豆乱淫一区二区| 亚洲av欧美aⅴ国产| 一区二区三区免费毛片| 日韩在线高清观看一区二区三区| 777米奇影视久久| 蜜桃亚洲精品一区二区三区| 激情五月婷婷亚洲| 日韩av不卡免费在线播放| 国产亚洲av片在线观看秒播厂| 麻豆国产97在线/欧美| 国产免费一级a男人的天堂| 嘟嘟电影网在线观看| 亚洲精品色激情综合| 永久免费av网站大全| 欧美潮喷喷水| 久久国内精品自在自线图片| 男女无遮挡免费网站观看| 卡戴珊不雅视频在线播放| 久久久久久久久大av| av福利片在线观看| 小蜜桃在线观看免费完整版高清| 建设人人有责人人尽责人人享有的 | 免费观看a级毛片全部| 91狼人影院| 新久久久久国产一级毛片| 久久久久网色| 2018国产大陆天天弄谢| 街头女战士在线观看网站| 免费观看av网站的网址| 搡老岳熟女国产| 99久久99久久久精品蜜桃| 国产精品一区二区在线不卡| 国产有黄有色有爽视频| 亚洲av成人不卡在线观看播放网 | 搡老乐熟女国产| 日本一区二区免费在线视频| 男女下面插进去视频免费观看| 午夜影院在线不卡| 午夜福利影视在线免费观看| 天美传媒精品一区二区| 黑人猛操日本美女一级片| 久久这里只有精品19| 婷婷色麻豆天堂久久| 99香蕉大伊视频| 可以免费在线观看a视频的电影网站 | 亚洲精品乱久久久久久| 精品久久久久久电影网| 精品一区二区三区四区五区乱码 | 亚洲精品久久成人aⅴ小说| 国产无遮挡羞羞视频在线观看| 人人澡人人妻人| 精品久久蜜臀av无| 少妇的丰满在线观看| 两性夫妻黄色片| 亚洲av国产av综合av卡| 亚洲七黄色美女视频| 亚洲av日韩在线播放| 欧美日韩视频精品一区| 国产一区二区在线观看av| 99香蕉大伊视频| 国产成人免费观看mmmm| 爱豆传媒免费全集在线观看| 日韩一卡2卡3卡4卡2021年| 久久精品久久久久久噜噜老黄| 69精品国产乱码久久久| 婷婷色麻豆天堂久久| 天天躁夜夜躁狠狠久久av| 哪个播放器可以免费观看大片| 99热国产这里只有精品6| av网站在线播放免费| 亚洲av福利一区| 国产精品人妻久久久影院| 亚洲成国产人片在线观看| 观看av在线不卡| 日本一区二区免费在线视频| 熟女少妇亚洲综合色aaa.| 菩萨蛮人人尽说江南好唐韦庄| 日韩精品有码人妻一区| 国产成人91sexporn| 少妇人妻 视频| 日日撸夜夜添| 中国三级夫妇交换| 免费人妻精品一区二区三区视频| 亚洲av日韩精品久久久久久密 | 两个人看的免费小视频| av网站在线播放免费| 欧美少妇被猛烈插入视频| www.熟女人妻精品国产| 可以免费在线观看a视频的电影网站 | 成人漫画全彩无遮挡| 91精品国产国语对白视频| 亚洲精品国产色婷婷电影| 亚洲国产精品一区三区| 99久久综合免费| 日韩免费高清中文字幕av| 日韩欧美精品免费久久| 国产欧美日韩一区二区三区在线| 国产淫语在线视频| 伦理电影大哥的女人| 亚洲人成电影观看| e午夜精品久久久久久久| 亚洲精品一二三| 欧美老熟妇乱子伦牲交| 免费高清在线观看日韩| 中文欧美无线码| 亚洲美女黄色视频免费看| 操出白浆在线播放| 人人妻人人澡人人爽人人夜夜| 亚洲,欧美精品.| 亚洲精华国产精华液的使用体验| 老汉色∧v一级毛片| 国产免费一区二区三区四区乱码| 国产亚洲一区二区精品| 亚洲中文av在线| 男女午夜视频在线观看| 最近2019中文字幕mv第一页| 日本av手机在线免费观看| 成人三级做爰电影| 亚洲美女视频黄频| 亚洲激情五月婷婷啪啪| 成人毛片60女人毛片免费| 日本av免费视频播放| 伦理电影免费视频| 中文字幕高清在线视频| 亚洲精品成人av观看孕妇| 久久狼人影院| 波野结衣二区三区在线| 男女边摸边吃奶| 国产一区二区在线观看av| 青青草视频在线视频观看| 一级毛片我不卡| 婷婷成人精品国产| 亚洲精品久久成人aⅴ小说| 在线天堂中文资源库| 国产成人精品久久久久久| 免费在线观看黄色视频的| 欧美精品av麻豆av| 丰满少妇做爰视频| 啦啦啦啦在线视频资源| 国产欧美日韩一区二区三区在线| 女人高潮潮喷娇喘18禁视频| 在线观看免费视频网站a站| 久久婷婷青草| 91精品三级在线观看| 精品国产露脸久久av麻豆| 最黄视频免费看| 综合色丁香网| 亚洲精品第二区| 亚洲视频免费观看视频| 国产熟女欧美一区二区| 丝袜人妻中文字幕| 各种免费的搞黄视频| 亚洲欧洲日产国产| 黑人猛操日本美女一级片| 久久热在线av| 午夜激情久久久久久久| av片东京热男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产色婷婷电影| 丝袜美足系列| 国语对白做爰xxxⅹ性视频网站| 秋霞在线观看毛片| 亚洲伊人色综图| 日韩欧美一区视频在线观看| kizo精华| 精品人妻在线不人妻| 午夜福利免费观看在线| 亚洲人成77777在线视频| 男女床上黄色一级片免费看| 天堂俺去俺来也www色官网| 亚洲国产最新在线播放| 欧美久久黑人一区二区| 亚洲免费av在线视频| 男女免费视频国产| 啦啦啦 在线观看视频| 成年人免费黄色播放视频| 亚洲视频免费观看视频| 日韩精品免费视频一区二区三区| 热re99久久精品国产66热6| 久久精品久久精品一区二区三区| 日韩大码丰满熟妇| 午夜日本视频在线| 永久免费av网站大全| 亚洲七黄色美女视频| 国产黄色免费在线视频| 如日韩欧美国产精品一区二区三区| 中文天堂在线官网| 伊人亚洲综合成人网| 美女大奶头黄色视频| 日本wwww免费看| 久久综合国产亚洲精品| 亚洲精品在线美女| 久久毛片免费看一区二区三区| 成年美女黄网站色视频大全免费| 亚洲av成人精品一二三区| 亚洲av电影在线观看一区二区三区| 久久久久国产精品人妻一区二区| 在线观看免费视频网站a站| 一级,二级,三级黄色视频| 亚洲国产精品一区三区| 青春草国产在线视频| 99热网站在线观看| 两个人看的免费小视频| 少妇人妻精品综合一区二区| 欧美97在线视频| 制服丝袜香蕉在线| 各种免费的搞黄视频| 女人爽到高潮嗷嗷叫在线视频| 国产爽快片一区二区三区| 不卡视频在线观看欧美| 亚洲精品aⅴ在线观看| 中文字幕色久视频| 亚洲情色 制服丝袜| 亚洲欧美激情在线| 国产精品久久久av美女十八| 久久国产精品大桥未久av| 成人黄色视频免费在线看| 男女高潮啪啪啪动态图| 亚洲一区中文字幕在线| 国产精品久久久av美女十八| 久久女婷五月综合色啪小说| 亚洲美女黄色视频免费看| 国产亚洲最大av| 中文乱码字字幕精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 欧美激情 高清一区二区三区| 国产精品国产三级专区第一集| 免费久久久久久久精品成人欧美视频| 婷婷色综合www| 精品亚洲乱码少妇综合久久| a级片在线免费高清观看视频| 美女大奶头黄色视频| 亚洲成国产人片在线观看| 最近中文字幕高清免费大全6| www.自偷自拍.com| 你懂的网址亚洲精品在线观看| 亚洲欧洲国产日韩| 欧美日韩视频高清一区二区三区二| 国产精品免费视频内射| h视频一区二区三区| 亚洲七黄色美女视频| 日韩一卡2卡3卡4卡2021年| 最近中文字幕高清免费大全6| 久久久久久免费高清国产稀缺| 久久久欧美国产精品| 欧美精品人与动牲交sv欧美| 在线观看三级黄色| 午夜91福利影院| 九九爱精品视频在线观看| 91精品三级在线观看| 国产黄频视频在线观看| 欧美国产精品一级二级三级| av不卡在线播放| 国产亚洲精品第一综合不卡| 午夜福利免费观看在线| 日韩不卡一区二区三区视频在线| 青春草亚洲视频在线观看| 一区二区三区激情视频| 少妇被粗大的猛进出69影院| 免费高清在线观看视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲成人av在线免费| 国产精品无大码| 午夜免费鲁丝| 老汉色∧v一级毛片| 国产精品av久久久久免费| 欧美日韩视频精品一区| 亚洲精品久久午夜乱码| 美女视频免费永久观看网站| 亚洲成av片中文字幕在线观看| 国产一区二区三区av在线| 搡老乐熟女国产| 狂野欧美激情性bbbbbb| 国产精品久久久人人做人人爽| 日韩熟女老妇一区二区性免费视频| 国产国语露脸激情在线看| 黄色毛片三级朝国网站| 成年av动漫网址| 久久鲁丝午夜福利片| 日韩不卡一区二区三区视频在线| 亚洲,一卡二卡三卡| 亚洲精品国产区一区二| 午夜福利在线免费观看网站| 精品一区二区三区四区五区乱码 | 男人操女人黄网站| 制服人妻中文乱码| 国产乱来视频区| 午夜福利,免费看| 丝袜人妻中文字幕| 亚洲国产中文字幕在线视频| 女性被躁到高潮视频| 巨乳人妻的诱惑在线观看| 精品免费久久久久久久清纯 | 精品亚洲成国产av| 国产高清不卡午夜福利| 国产成人免费观看mmmm| 一本大道久久a久久精品| 波多野结衣av一区二区av| 国产伦人伦偷精品视频| 一本色道久久久久久精品综合| 91精品国产国语对白视频| 纯流量卡能插随身wifi吗| 人妻 亚洲 视频| 两性夫妻黄色片| 亚洲精品日本国产第一区| 精品视频人人做人人爽| 老鸭窝网址在线观看| 久久热在线av| 女的被弄到高潮叫床怎么办| 国产一区二区激情短视频 | 黄色 视频免费看| 在线精品无人区一区二区三| 欧美精品一区二区免费开放| 日韩成人av中文字幕在线观看| 18禁观看日本| 天天添夜夜摸| 777米奇影视久久| 国产黄色视频一区二区在线观看| 欧美老熟妇乱子伦牲交| 视频区图区小说| 美女扒开内裤让男人捅视频| 一边摸一边做爽爽视频免费| 国产欧美亚洲国产| 成人国产麻豆网| 一边摸一边抽搐一进一出视频| 午夜免费观看性视频| 国产精品久久久久久人妻精品电影 | 亚洲成人国产一区在线观看 | 最近的中文字幕免费完整| 亚洲av综合色区一区| 伊人久久国产一区二区| 国产精品国产av在线观看| 国产成人精品在线电影| 久久久亚洲精品成人影院| 街头女战士在线观看网站| 国产精品秋霞免费鲁丝片| 伦理电影免费视频| 亚洲一区中文字幕在线| 欧美精品高潮呻吟av久久| 秋霞伦理黄片| 1024香蕉在线观看| 人妻 亚洲 视频| 在线天堂最新版资源| 在线观看免费日韩欧美大片| 亚洲国产av影院在线观看| 伦理电影免费视频| 丝袜脚勾引网站| 欧美黄色片欧美黄色片| 国产国语露脸激情在线看| 老司机影院成人| 国产午夜精品一二区理论片| 国产精品无大码| 色播在线永久视频| 人人妻,人人澡人人爽秒播 | 国产精品麻豆人妻色哟哟久久| 一级片免费观看大全| 成人国产av品久久久| 免费观看性生交大片5| 女人高潮潮喷娇喘18禁视频| 亚洲精品久久久久久婷婷小说| 啦啦啦中文免费视频观看日本| 国产又色又爽无遮挡免| 狂野欧美激情性xxxx| 亚洲精品成人av观看孕妇| 啦啦啦 在线观看视频| 桃花免费在线播放| 亚洲国产精品成人久久小说| 精品人妻在线不人妻| 少妇被粗大猛烈的视频| 午夜福利影视在线免费观看| 午夜福利乱码中文字幕| 又大又黄又爽视频免费| 五月天丁香电影| 90打野战视频偷拍视频| 色综合欧美亚洲国产小说| 国产精品一二三区在线看| 人人妻人人澡人人爽人人夜夜| 亚洲av福利一区| 亚洲成人一二三区av| 欧美日韩亚洲综合一区二区三区_| 高清av免费在线| 久久久久久免费高清国产稀缺| 人人妻人人澡人人爽人人夜夜| 色吧在线观看| 女性被躁到高潮视频| 亚洲第一青青草原| 精品一区二区免费观看| 九色亚洲精品在线播放| 久久久久精品人妻al黑| 亚洲一级一片aⅴ在线观看| 少妇人妻精品综合一区二区| 五月开心婷婷网| 激情五月婷婷亚洲| 老汉色∧v一级毛片| 国产成人精品久久久久久| 丰满迷人的少妇在线观看| 日日啪夜夜爽| 婷婷色麻豆天堂久久| 国产免费一区二区三区四区乱码| 国产一区有黄有色的免费视频| 99国产综合亚洲精品| 亚洲色图 男人天堂 中文字幕| 大香蕉久久网| 日韩中文字幕欧美一区二区 | 啦啦啦中文免费视频观看日本| 国产精品一区二区精品视频观看| 国产亚洲精品第一综合不卡| 日韩熟女老妇一区二区性免费视频| 99热国产这里只有精品6| 久久久久人妻精品一区果冻| 少妇 在线观看| 欧美黑人精品巨大| 免费女性裸体啪啪无遮挡网站| 久久久久精品国产欧美久久久 | 国产在线免费精品| 国产精品三级大全| 天天躁夜夜躁狠狠躁躁| 伊人亚洲综合成人网| 中文字幕高清在线视频| 成人午夜精彩视频在线观看| 精品国产乱码久久久久久小说| 美女国产高潮福利片在线看| 99国产精品免费福利视频| 自拍欧美九色日韩亚洲蝌蚪91| av.在线天堂| 精品午夜福利在线看| 啦啦啦啦在线视频资源| 叶爱在线成人免费视频播放| 久久人人爽av亚洲精品天堂| 在线观看免费视频网站a站| 久久性视频一级片| 亚洲自偷自拍图片 自拍| 十八禁网站网址无遮挡| 国产一区亚洲一区在线观看| 超碰97精品在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产一区二区 视频在线| 久久久久久人妻| 婷婷色麻豆天堂久久| 最近手机中文字幕大全| 捣出白浆h1v1| 午夜久久久在线观看| 精品亚洲乱码少妇综合久久| 欧美日韩成人在线一区二区| 老司机深夜福利视频在线观看 | 嫩草影院入口| 日韩熟女老妇一区二区性免费视频| 久久久久人妻精品一区果冻| 国产成人系列免费观看| 午夜老司机福利片| 久久久精品区二区三区| 母亲3免费完整高清在线观看| av电影中文网址| 美女高潮到喷水免费观看| 男女边吃奶边做爰视频| 乱人伦中国视频| 亚洲熟女精品中文字幕| 日韩 亚洲 欧美在线| 免费观看人在逋| 久久国产亚洲av麻豆专区| 99国产精品免费福利视频| 大片电影免费在线观看免费| 欧美日韩亚洲高清精品| 最新的欧美精品一区二区| 咕卡用的链子| 波野结衣二区三区在线| 精品一区二区三区av网在线观看 | 一级黄片播放器| 亚洲成人av在线免费| 丁香六月欧美| 亚洲国产精品999| 男女边吃奶边做爰视频| 日本91视频免费播放| 国产欧美日韩综合在线一区二区| 建设人人有责人人尽责人人享有的| 亚洲av日韩在线播放| 午夜福利影视在线免费观看| av有码第一页| 久久人人爽av亚洲精品天堂| 黄片小视频在线播放| 免费av中文字幕在线| 巨乳人妻的诱惑在线观看| 最新在线观看一区二区三区 | 高清不卡的av网站| 中文字幕人妻丝袜一区二区 | 日韩 欧美 亚洲 中文字幕| 一本色道久久久久久精品综合| 久久久久久人妻| 亚洲天堂av无毛| 精品少妇一区二区三区视频日本电影 | 欧美黑人欧美精品刺激| av天堂久久9| 日本91视频免费播放| 超色免费av| 国产成人a∨麻豆精品| 亚洲视频免费观看视频| 精品久久久久久电影网| 在线免费观看不下载黄p国产| 欧美日韩综合久久久久久| 国产成人啪精品午夜网站| 丝袜在线中文字幕| 大陆偷拍与自拍| 国产精品免费大片| 免费看av在线观看网站| 亚洲人成77777在线视频| 最近最新中文字幕免费大全7| 亚洲精品第二区| 久久精品人人爽人人爽视色| 亚洲国产欧美在线一区| 久久精品久久久久久久性| 色网站视频免费| 男女国产视频网站| 纯流量卡能插随身wifi吗| 亚洲欧美精品自产自拍| 制服人妻中文乱码| 丝袜喷水一区| 欧美精品一区二区免费开放| 美国免费a级毛片| 日本欧美视频一区| 精品国产乱码久久久久久小说| a 毛片基地| 亚洲成色77777| 制服人妻中文乱码| 欧美老熟妇乱子伦牲交| 91老司机精品| 欧美黄色片欧美黄色片| 国产男人的电影天堂91| 久久精品久久久久久久性| 国产精品无大码| 男人舔女人的私密视频| 成人国产av品久久久| 国产又爽黄色视频| 精品午夜福利在线看| 80岁老熟妇乱子伦牲交| 我的亚洲天堂| 九草在线视频观看| 亚洲婷婷狠狠爱综合网| 国产熟女欧美一区二区| 亚洲欧美中文字幕日韩二区| 十八禁人妻一区二区| 妹子高潮喷水视频| 久久精品亚洲av国产电影网| 久久久久精品性色| 亚洲精品日韩在线中文字幕| 在线免费观看不下载黄p国产| 超色免费av| 妹子高潮喷水视频| 黄片无遮挡物在线观看| 纯流量卡能插随身wifi吗| 日韩制服骚丝袜av| 欧美精品高潮呻吟av久久| 国产精品欧美亚洲77777| 两个人免费观看高清视频| 精品午夜福利在线看| 免费看不卡的av| av国产精品久久久久影院| 99精国产麻豆久久婷婷| 99久久99久久久精品蜜桃| 欧美日韩一区二区视频在线观看视频在线| 嫩草影院入口| 久久精品人人爽人人爽视色| 在线观看免费高清a一片| 在线天堂中文资源库| 成人漫画全彩无遮挡| a级片在线免费高清观看视频| 欧美中文综合在线视频| 久久av网站| 久久 成人 亚洲| 日韩熟女老妇一区二区性免费视频| 高清不卡的av网站| 亚洲av电影在线进入| 亚洲精品国产av成人精品| 国产精品 国内视频| 欧美成人精品欧美一级黄| 日韩av不卡免费在线播放| 如何舔出高潮| av片东京热男人的天堂| 丝袜喷水一区| 国产成人啪精品午夜网站| 亚洲男人天堂网一区| 久久99热这里只频精品6学生|