• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule

    2022-08-31 09:56:48YongLiu劉勇LuLuLi李露露LiDanXiao肖利丹andBingYan閆冰
    Chinese Physics B 2022年8期
    關(guān)鍵詞:劉勇

    Yong Liu(劉勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(閆冰)

    Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    Keywords: SbH,transition properties,radiative lifetimes

    1. Introduction

    The significance of the relativistic effect on the accurate descriptions of the transition properties of atoms and molecules containing heavy elements is well known in the quantum chemistry field.[1–3]With the increase in atomic number,the relativistic effects increase gradually. One example is the electronic triple-single transition that is forbidden by the electric dipole selection rule but becomes allowed in the heavy counterpart because of the spin–orbit coupling.

    The spin-forbidden transitions in the low-lying states of group V hydrides have attracted considerable research interest because of the···(π?)2electron configuration. With regard to the antimony hydride molecule (SbH) as an example, early experiments were mainly focused on the spinallowed transition A3Π←X3Σ?,and obtained accurate spectroscopic information of the ground state X3Σ?via analysis of the absorption spectrum,[4]rotation spectrum,[5,6]and infrared spectrum.[7–9]Limited by the technology, the spinforbidden transitions b1Σ+/a1?–X3Σ?were not investigated until 1996. The vibration–rotation spectrum of the a2–X21 and b1Σ+0+–X3Σ?xof the SbH molecule were observed with a high-resolution Fourier transform spectrometer[9,10]and the spectroscopic constants of the X3Σ?, a1?, and b1Σ+states were determined. Shestakovet al.[11]measured the b1Σ+–X3Σ?transition of SbH using a laser-induced fluorescence spectrum,and obtained the radiative lifetime(τ=173±3μs),the electric dipole transition moment (μ0=±0.014ea0andμ1=?0.023ea0) and the magnetic dipole transition moments (|M| = 1.62 Bohr magnetons) of this transition. On the theoretical side, most of the research has focused on valence and Rydberg states. It is worth noting that Alekseyevet al.[12]utilized the MRD-CI method to calculate the transitions of SbH and obtained the electric transition dipole moments of the b0+–X10+and b0+–X21 transitions (0.00409ea0and?0.02682ea0)and the radiative lifetime of the b1Σ+(υ′=0)state (104 μs). The computedμ1agrees well with the experimental value, while theμ0value and the radiative lifetime deviate greatly from the experimental values.

    Very recently, our group studied the electronic structure of the low-lying states of the SbH molecule, including spectroscopic and transition properties, with state of the artab initiocalculations using the internally contracted multireference configuration interaction method plus the Davidson correction (icMRCI+Q).[13]It showed that the radiative lifetime of the b1Σ+state should be between 55 μs and 153 μs.There, we took account of spin–orbit coupling via the socalled state-interacting method. With the inclusion of several high-lying spin-free states,the calculated result is 153μs;this is in reasonable agreement with the experimental value of 173±3 μs,[11]while the deviation from the experiment still exists.

    In most of the non-relativistic calculations on light atoms or molecules,[14–18]the use of the state-interacting method to account for spin–orbit coupling works quite well. It is nevertheless quite difficult dealing with the elements at the bottom of the periodic table because of the nature of perturbation theory, which is sensitive with regard to the number of spin-free (non-perturbated) states that participate in the computation. On the other hand, it is well known that the most straightforward method to consider the relativistic effect is to directly solve the 4-component Dirac equations. To double check our previous results and provide a benchmark for the spin-forbidden transitions b1Σ+–X3Σ?of SbH theoretically,here, we reconsider the radiative lifetimes of the b1Σ+state using the non-perturbated approach to deal with the relativistic effect,including both scalar correction and spin–orbit coupling, based on the exact 2-component (X2C) equation that can be derived from 4-component Dirac equations.

    This paper is organized as follows. The computational method is described in Section 2. In Section 3 we present the computational results and discussions on the electronic transitions of SbH.Finally,a summary is presented in Section 4.

    2. Computational details

    In the present work,we performed the MRCI calculations based on the X2C Hamiltonians[19–23]for the electronic states of the SbH molecule with the DIRAC2019 code.[24,25]

    For the Sb atom, we employed uncontracted corevalence Dyall basis sets: double-ζ(dyall.acv2z), triple-ζ(dyall.acv3z),and quadruple-ζ(dyall.acv4z).[26,27]For the hydrogen,we used Dyall’s triple-ζ(dyall.v3z)and quadruple-ζ(dyall.v4z)basis sets.[28]The first set of calculations was carried out using the two-component Hartree–Fock method. Subsequently, the MRCI calculations, which are implemented in the KRCI module of DIRAC,[29–32]were performed.

    Details of the settings of the generalized active spaces(GAS) used are listed in Table 1. The Sb 5σ1/2,σ1/2,π1/2,andπ3/2and the antibondingσ?1/2were placed in a complete active space(GAS II),yielding a distribution of six electrons in five Kramers pairs (6 in 5). Core–valence and core–core correlations were included by allowing up to two holes in the 4d shell (GAS I) of Sb. Finally, the electronic dynamic correlation is considered by the singles and doubles excitations from the combined spaces of GAS I and GAS II into the virtual spinor space(GAS III)corresponding to the energy thresholds of 1Ehand 5Eh(Hartree), respectively. We keep the remaining 36 electrons frozen; this means that we cause them to be occupied during the CI procedure.

    The expressions of the complete basis set(CBS)limit are presented below:[33–37]

    According to the potential energy curves (PECs) of the?states,the corresponding spectroscopic constants of the bound states were determined by resolving the one-dimensional nuclear Schr¨odinger equation with the aid of the LEVEL program,[38]including the excitation energyTe, the equilibrium internuclear distanceRe,vibrational constantsωeand the rotation constantBe. The electric transition dipole moments(TDMs) were computed. Finally, the spontaneous radiative lifetimes of the several lowest energy transitions could be predicted.

    Table 1. Generalized active spaces and occupation constraints for the SbH molecule in the symmetry double group C∞v.

    aTriple-ζbasis set:m=30(1Ehthreshold)and 50(5Ehthreshold).bQuadruple-ζbasis set:m=50(1Ehthreshold)and 110(5Ehthreshold).

    3. Results and discussion

    3.1. Spectroscopic constants of ? states

    We calculated the single-point energies of the lowest four states (X3Σ+0+[X10+], X3Σ+0+[X21], a1?2[a2], and b1Σ+0+[b0+])in the Franck–Condon region using the MRCI method;the corresponding PECs are depicted in Fig.1,and the data are listed in the supplementary material(Table I).These?states are deep well-bound states. From the computed energies of the?states,the corresponding spectroscopic constants of the bound states were determined. These results are tabulated in Table 2 together with available experimental and theoretical values for comparison.

    It indicates that the spectroscopic constants tend to be more accurate with the increase in the cutoff energy and the improvement of the basis set. Taking Dyall’s quadruple-ζbasis set and the cutoff energy 5 a.u.as an example,theRevalues for the X10+and X21 states are calculated to be 1.6947 ?A and 1.6937 ?A,which are 0.0053 ?A and 0.0082 ?A smaller than the experimental values,[10,39]respectively. After considering the basis set extrapolations,theRevalue of the X10+state can be close to 1.701 ?A.The spin-splitting energy of the X3Σ?state is 623.1 cm?1, which is only 37 cm?1underestimated from the experimental value of 660 cm?1.[5]The spectroscopic constants of the X10+and X21 states are much closer to the experimental values than those calculated using our previous method.[13]The calculated values ofRefor the a2 and b0+states are 0.02407 ?A (1.4%) and 0.02045 ?A (1.2%) smaller than the experimental values,[10,11]and the errors of the correspondingTecalculated value are 782.6 cm?1(11.4%) and 625.2 cm?1(4.6%),respectively.

    Fig. 1. The PECs for the X10+, X21, a2, and b0+ states with the Dyall’s quadruple-ζ basis set and the cutoff energy 5 a.u.

    Table 2. Computed spectroscopic constants of the ? states for the X10+,X21,a2,and b0+ states.

    3.2. Analysis of the transition properties

    Based on the above statements, we calculated the electric transition dipole moments of the b0+–X10+and b0+–X21 transitions and the results are depicted in Fig.2. The data presented in this paper are included in the supplementary material(Tables II and III). As illustrated in Fig. 2, we found that the trends for two transitions are nearly linear with the changes in the internuclear distance.

    For the b0+–X10+transition, the change of transition dipole moments obtained by the state interaction methods(a)–(d)is relatively slow with the increase in the internuclear distance, while those calculated using the relativistic methods(e)–(f) increase relatively rapidly. And from the curves from the relativistic method,the TDM values of the b0+–X10+transition are sensitive and improved with the increase in the basis set under the same cutoff energy of 1 a.u. (lines e and f in the upper panel of Fig.2),while they are insensitive and with small improvement for the b0+–X21 transition;also,when the value reaches 5 a.u., the cutoff threshold greatly reduces the uncertainty of the basis sets.The above results indicate the stability and convergence of the present computational scheme.Thus, the basis set extrapolation and the effect of the cutoff threshold are necessary for consideration.

    Table 3. The energy difference (cm?1) and transition dipole moments (a.u.) of the b0+–X10+ (μ0) and b0+–X21 (μ1) transitions at Re and the radiative lifetime τ (μs)of the b1Σ+ (v′=0)for the different methods.

    The TDM values of the b0+–X10+and b0+–X21 transitions atReand the corresponding radiative lifetimes for the b1Σ+(υ′=0)state are listed in Table 3.According to Table 3,the values ofμ0reported using our previous calculations[13]and other theoretical calculations[12]are about a factor of two to three lower than the experimental value,while theirμ1values agree well with the experimental value.[11]AtRe,the transition dipole moments of the b0+–X21 (μ1) transition with a cutoff energy of 5 a.u. are?0.0331 a.u. and?0.0336 a.u.,respectively,with different basis sets;the best estimated value averaged with formulas(1)and(2)is?0.031±0.005,which is only about 0.001 a.u.overestimated when compared with the experimental value(?0.0325 a.u.). For the b0+–X10+transition, the best estimated value ofμ0is in excellent agreement with the experimental value,[11]and all experimental significant digits are reproduced. The total radiative lifetimeτof the b1Σ+–X3Σ?transition is obtained according to the following formula:

    whereτ1andτ2represent the radiative lifetimes of the b0+–X10+and b0+–X21 branch transitions,respectively,andτrepresents the radiative lifetimes of the b1Σ+–X3Σ?transition;that is,the spontaneous radiative lifetimes of the b1Σ+state.

    Considering the incompleteness of the basis sets,the twoparameter and three-parameter basis set extrapolation formulas are used to extrapolate the energies and TDM,and obtain the radiative lifetime range(163.5±0.5μs). The two extrapolation schemes (formulas (1) and (2)) determine the uncertainty arising from the basis sets. The detailed data are presented in Table 3. Next,we proceed with uncertainty analysis,and here we mainly consider the influence of the truncated threshold on the energy difference (?E) and TDM. For the b0+–X10+transition, the uncertainties of ?Eand TDM are 46 cm?1and 0.0001 a.u.while,for the b0+–X21 transition,the uncertainties are 57 cm?1and 0.0005 a.u.,respectively.Due to the propagation of the uncertainty of the energy difference and TDM, we determined that the error bars of the radiative lifetime for the b1Σ+(υ′=0)state are 7μs. Taking the averaged values of the two extrapolation results as the reference value,the combinations of this value and the uncertainties caused by the extrapolation and truncation threshold are selected as‘best estimated values’. Among these values,the best radiative lifetime of the b1Σ+(υ′=0)state is 163.5±7.5μs,which is in reasonable agreement with the experimental value(173±3μs)measured by Shestakovet al.[11]The present work improves 10μs(~7%)and 60μs(~60%)values of the total lifetime of the b1Σ+(υ′=0)state compared with our previous and other theoretical computations and, more importantly, predicts reasonable electric dipole moment values of branch transitions.

    Table 4. The transition dipole moments (a.u.) and the radiative lifetime τ(s)of the X10+–X21 and X21–a2 transitions at Re.

    Fig.2.The transition dipole moments of the b0+–X10+and b0+–X21 transitions for SbH.(a)The results of all-electron basis set calculations for the state interaction technique;(b)the results of pseudopotential basis set calculations for the state interaction technique; (c) the same as (a), but with high-lying states included; (d) the same as (b), but with high-lying states included; (e)the results of Dyall’s 3-ζ basis set and energy threshold of 1 Hartree for the relativistic method; (f) the results of Dyall’s 4-ζ basis set and energy threshold of 1 Hartree for the relativistic method;(g)the same as(e),but the energy threshold is 5 Hartree;(h)the same as(f),but the energy threshold is 5 Hartree.

    Based on the reasonable results of the b0+–X10+and b0+–X21 transitions using the(g)–(h)computational schemes,we also analyzed the transition dipole moments and the corresponding radiative lifetimes of the X10+–X21 and X21–a2 transitions. The results are shown in Fig. 3 and Table 4, and detailed data of the transition dipole moments are included in the supplementary material(Table IV and Table V).As shown in Fig. 3,the transition strength decreases with the increase in the bond distance. AtRe,the transition dipole moments of the X10+–X21 transition are 0.00638 a.u.and 0.00660 a.u.under the Dyall’s triple-ζand quadruple-ζbasis sets,and the corresponding spontaneous radiative lifetimes of the X21 (υ′=0)state are obtained as 58.2 s and 48.6 s,respectively. These two values are about half of the theoretical result of 105 s obtained by Alekseyev.[12]However, since the radiative lifetime of the b1Σ+state obtained by this group has a difference of about 40%from the experimental value,[11]our results have certain credibility based on this analysis. Furthermore, the spontaneous radiative lifetimes for the a2(υ′=0)state are calculated to be~8 ms.

    Fig.3. The transition dipole moments of the X10+–X21 and X21–a2 transitions for SbH. The meanings of the symbols c, d, g, and h in the figure are the same as those of the remarks in Fig.2.

    4. Conclusion

    Calculations on the transition properties of the first three states of the SbH molecule were performed under the relativistic framework with the aid of the exact two-component Hamiltonians(X2C).The spectroscopic constants for the first four?excited states were determined and compared with the previous values. In terms of transitions,the radiative lifetimes of the b1Σ+(υ′=0)state were calculated. The best result of 163.5±7.5μs is in reasonable agreement with the experimental value(173±3μs). The spontaneous radiative lifetimes of the X21 (υ′=0) and a2 (υ′=0) states are calculated to be 48.6 s and~8 ms, respectively. The present work predicts not only the value of the total lifetime of the b1Σ+(υ′=0)state but also the reasonable electric dipole moment values of branch transitions.The present work is a benchmark computation of the electric dipole moments and lifetime of transitions in the SbH molecule, and is of great theoretical significance for the selection of computational schemes in further transition properties investigations in heavy elements containing molecular systems.

    Data availability statement

    The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.11922/sciencedb.j00113.00018.

    Acknowledgments

    We are grateful for the computational support from the High Performance Computing Center (HPCC) of Jilin University and the high performance computing cluster Tiger@IAMP.Project supported by the National Natural Science Foundation of China(Grant No.11874177).

    猜你喜歡
    劉勇
    Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
    Dispersion and damping rate of Langmuir wave in space plasma with regularized Kappa distributed electrons
    2021年高考數(shù)學(xué)模擬試題(三)
    2021年高考數(shù)學(xué)模擬試題(五)
    Configuration interaction study on low-lying states of AlCl molecule*
    開小灶
    故事會(huì)(2021年6期)2021-03-18 04:47:36
    劉勇:捕獲“天溢”的北極光靈感
    更 正
    電子科技(2014年1期)2014-03-22 10:17:07
    市長的畫
    雜文選刊(2012年11期)2012-05-08 04:51:46
    Phenol Oxidation by Combined Cavitation Water Jet and Hydrogen Peroxide*
    丰满人妻一区二区三区视频av| 亚洲欧美一区二区三区黑人 | 午夜免费鲁丝| 这个男人来自地球电影免费观看 | 黄色视频在线播放观看不卡| 国产成人免费无遮挡视频| 精品久久国产蜜桃| 久久久精品94久久精品| 99久久中文字幕三级久久日本| 中文字幕人妻丝袜制服| 高清在线视频一区二区三区| 大片免费播放器 马上看| 亚洲精品色激情综合| 黄片无遮挡物在线观看| 精品国产露脸久久av麻豆| 午夜免费观看性视频| 五月开心婷婷网| av专区在线播放| 超碰97精品在线观看| 国产成人a∨麻豆精品| 精品久久久久久久久亚洲| 天天躁夜夜躁狠狠久久av| 午夜免费男女啪啪视频观看| 在线观看人妻少妇| 香蕉精品网在线| 久久久久久久国产电影| 免费看av在线观看网站| 99九九在线精品视频 | 精品少妇内射三级| 人人妻人人澡人人看| 免费av不卡在线播放| 又爽又黄a免费视频| 成人无遮挡网站| 日韩成人av中文字幕在线观看| 国产极品粉嫩免费观看在线 | 亚洲欧美中文字幕日韩二区| 精品国产乱码久久久久久小说| a级片在线免费高清观看视频| 国产乱来视频区| 九色成人免费人妻av| 免费观看av网站的网址| 一级爰片在线观看| 亚洲精品第二区| 少妇裸体淫交视频免费看高清| 3wmmmm亚洲av在线观看| 亚洲欧美精品自产自拍| 一级毛片aaaaaa免费看小| 又黄又爽又刺激的免费视频.| 精品亚洲成a人片在线观看| 亚洲精品中文字幕在线视频 | 乱人伦中国视频| 最后的刺客免费高清国语| √禁漫天堂资源中文www| 国产一区二区三区av在线| 日产精品乱码卡一卡2卡三| 国产真实伦视频高清在线观看| 中文天堂在线官网| 黄色配什么色好看| 成人综合一区亚洲| h视频一区二区三区| 另类亚洲欧美激情| 国产欧美日韩精品一区二区| 久久鲁丝午夜福利片| 男女免费视频国产| 亚洲欧美一区二区三区黑人 | 国产欧美亚洲国产| 熟女av电影| 一级毛片aaaaaa免费看小| a级片在线免费高清观看视频| 91精品一卡2卡3卡4卡| 在线播放无遮挡| 国产91av在线免费观看| 少妇熟女欧美另类| 亚洲精品乱码久久久v下载方式| 少妇人妻精品综合一区二区| 亚洲人与动物交配视频| 热re99久久精品国产66热6| 久久人人爽人人片av| 国产91av在线免费观看| 国产亚洲av片在线观看秒播厂| 80岁老熟妇乱子伦牲交| 日韩,欧美,国产一区二区三区| 日韩精品免费视频一区二区三区 | 男女无遮挡免费网站观看| 80岁老熟妇乱子伦牲交| 欧美97在线视频| 亚洲精品456在线播放app| 好男人视频免费观看在线| 亚洲欧洲日产国产| 亚洲精品乱久久久久久| .国产精品久久| a级一级毛片免费在线观看| 中文字幕人妻熟人妻熟丝袜美| 99热全是精品| 亚洲欧美清纯卡通| 男女国产视频网站| 亚洲国产av新网站| 国产一区二区在线观看日韩| 国产免费一级a男人的天堂| 亚洲第一av免费看| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久久大奶| 黄色一级大片看看| 久久鲁丝午夜福利片| 欧美97在线视频| 亚洲av不卡在线观看| 水蜜桃什么品种好| 国产黄片视频在线免费观看| 国产亚洲欧美精品永久| 少妇人妻 视频| 日韩人妻高清精品专区| h视频一区二区三区| 中文字幕免费在线视频6| 亚洲国产色片| 人人澡人人妻人| 国产精品国产三级国产av玫瑰| 汤姆久久久久久久影院中文字幕| 不卡视频在线观看欧美| 国产亚洲av片在线观看秒播厂| 亚洲av综合色区一区| 夜夜骑夜夜射夜夜干| 少妇裸体淫交视频免费看高清| 一级毛片 在线播放| 久久99精品国语久久久| 国产精品一区二区三区四区免费观看| 日韩视频在线欧美| 一级黄片播放器| 欧美性感艳星| 精品午夜福利在线看| 婷婷色综合大香蕉| 精品人妻偷拍中文字幕| 国产男女超爽视频在线观看| 国产成人freesex在线| 久久亚洲国产成人精品v| 少妇的逼水好多| 日韩在线高清观看一区二区三区| 一级爰片在线观看| 国产日韩欧美亚洲二区| 亚洲三级黄色毛片| 日本91视频免费播放| 欧美3d第一页| 中文字幕精品免费在线观看视频 | 日韩欧美精品免费久久| 亚洲va在线va天堂va国产| 亚洲国产色片| 亚洲精品成人av观看孕妇| 性色av一级| 一区二区三区免费毛片| 好男人视频免费观看在线| 一区二区三区乱码不卡18| 成人无遮挡网站| 老司机亚洲免费影院| 午夜福利视频精品| 最近中文字幕高清免费大全6| 国产精品免费大片| 亚洲精品国产成人久久av| 国内揄拍国产精品人妻在线| 亚洲精品自拍成人| 日本-黄色视频高清免费观看| 美女中出高潮动态图| 特大巨黑吊av在线直播| 国产免费又黄又爽又色| 亚洲经典国产精华液单| 国产欧美日韩精品一区二区| 老熟女久久久| 亚洲精品国产av蜜桃| 国产视频内射| 亚洲国产最新在线播放| 一二三四中文在线观看免费高清| 亚洲欧洲国产日韩| av免费观看日本| 免费人妻精品一区二区三区视频| 欧美三级亚洲精品| av天堂中文字幕网| 久久女婷五月综合色啪小说| 日韩成人伦理影院| 精品一区二区三卡| 精品视频人人做人人爽| 国产深夜福利视频在线观看| 亚洲精品国产av蜜桃| 丝瓜视频免费看黄片| 超碰97精品在线观看| 国产69精品久久久久777片| 午夜激情福利司机影院| 日韩一区二区三区影片| 人妻系列 视频| 在线 av 中文字幕| 夜夜骑夜夜射夜夜干| 国产亚洲精品久久久com| 一区二区三区乱码不卡18| 日韩欧美精品免费久久| 国产黄色免费在线视频| 五月开心婷婷网| 久热这里只有精品99| 亚洲人成网站在线观看播放| 人人妻人人看人人澡| 午夜福利,免费看| 免费看不卡的av| 少妇被粗大的猛进出69影院 | videos熟女内射| 成年av动漫网址| 如何舔出高潮| 狂野欧美激情性bbbbbb| 亚洲不卡免费看| 久久狼人影院| 国产午夜精品一二区理论片| 精品视频人人做人人爽| 亚洲久久久国产精品| 亚洲av日韩在线播放| 一级毛片 在线播放| 高清不卡的av网站| 热re99久久精品国产66热6| 十八禁高潮呻吟视频 | 夜夜看夜夜爽夜夜摸| 精品国产露脸久久av麻豆| 免费av不卡在线播放| 伊人久久精品亚洲午夜| 少妇的逼水好多| 国产欧美日韩精品一区二区| 亚洲av在线观看美女高潮| 亚洲人成网站在线播| 嘟嘟电影网在线观看| 亚洲图色成人| 国产亚洲一区二区精品| 男人狂女人下面高潮的视频| 国产视频内射| 国产一级毛片在线| 免费看av在线观看网站| 久久久久久人妻| 国产爽快片一区二区三区| 亚洲国产成人一精品久久久| 18禁动态无遮挡网站| 天堂俺去俺来也www色官网| 99热全是精品| 日本黄色片子视频| 中文字幕免费在线视频6| 久久国产精品男人的天堂亚洲 | 日韩av在线免费看完整版不卡| 欧美xxⅹ黑人| av网站免费在线观看视频| 婷婷色麻豆天堂久久| 黄片无遮挡物在线观看| 国产熟女午夜一区二区三区 | 男女免费视频国产| 日本黄大片高清| 欧美精品一区二区大全| 只有这里有精品99| 免费播放大片免费观看视频在线观看| 视频区图区小说| 日本wwww免费看| 一本—道久久a久久精品蜜桃钙片| 又粗又硬又长又爽又黄的视频| 黑人猛操日本美女一级片| 欧美国产精品一级二级三级 | 91精品国产九色| 特大巨黑吊av在线直播| 国产欧美日韩一区二区三区在线 | 最近手机中文字幕大全| 黄色视频在线播放观看不卡| 一级爰片在线观看| 日韩在线高清观看一区二区三区| 精品国产露脸久久av麻豆| 在线观看免费日韩欧美大片 | 国产极品天堂在线| 一级毛片 在线播放| 少妇的逼好多水| 卡戴珊不雅视频在线播放| 中文乱码字字幕精品一区二区三区| 曰老女人黄片| 成年av动漫网址| 国产伦精品一区二区三区四那| av有码第一页| 亚洲一区二区三区欧美精品| 99热网站在线观看| 黑人猛操日本美女一级片| 精品久久国产蜜桃| 综合色丁香网| 99久国产av精品国产电影| 国产欧美日韩精品一区二区| 国产成人精品无人区| 免费不卡的大黄色大毛片视频在线观看| 中国三级夫妇交换| 一级片'在线观看视频| 免费观看无遮挡的男女| 国产精品一二三区在线看| 日本91视频免费播放| 尾随美女入室| 高清欧美精品videossex| 日本黄色片子视频| 亚洲精华国产精华液的使用体验| 大话2 男鬼变身卡| 国产欧美另类精品又又久久亚洲欧美| 午夜91福利影院| 亚洲不卡免费看| av有码第一页| 欧美bdsm另类| 久久ye,这里只有精品| 国产黄色视频一区二区在线观看| 久久狼人影院| 欧美精品一区二区大全| 国国产精品蜜臀av免费| 国产 精品1| 久久久精品免费免费高清| 男女啪啪激烈高潮av片| 国产成人精品婷婷| 亚洲欧美中文字幕日韩二区| 久久狼人影院| 国产女主播在线喷水免费视频网站| 亚洲自偷自拍三级| 久久国内精品自在自线图片| 少妇精品久久久久久久| 免费观看在线日韩| 成人国产av品久久久| 国产免费视频播放在线视频| 青春草国产在线视频| 日韩欧美一区视频在线观看 | 国产中年淑女户外野战色| 亚洲在久久综合| 国产极品粉嫩免费观看在线 | 精品午夜福利在线看| 观看美女的网站| 多毛熟女@视频| 嫩草影院入口| 亚洲精品中文字幕在线视频 | 久久人妻熟女aⅴ| 菩萨蛮人人尽说江南好唐韦庄| 91精品国产国语对白视频| 涩涩av久久男人的天堂| 成年人免费黄色播放视频 | 亚洲自偷自拍三级| 中文字幕av电影在线播放| 日日啪夜夜爽| 久久久久久久久久久久大奶| 丰满迷人的少妇在线观看| 国产一级毛片在线| 色网站视频免费| 国产国拍精品亚洲av在线观看| 熟女人妻精品中文字幕| 久久精品国产亚洲av涩爱| 亚洲精品视频女| 男女国产视频网站| 亚洲欧美一区二区三区国产| 国产免费又黄又爽又色| 国产av码专区亚洲av| 国产欧美另类精品又又久久亚洲欧美| 曰老女人黄片| 国产成人精品福利久久| 少妇丰满av| 中文字幕av电影在线播放| 涩涩av久久男人的天堂| 精品熟女少妇av免费看| 国产国拍精品亚洲av在线观看| 日韩一区二区三区影片| 九草在线视频观看| 最近最新中文字幕免费大全7| 国产精品国产三级国产专区5o| 国产熟女欧美一区二区| 一级毛片电影观看| 国产在线一区二区三区精| 日韩一本色道免费dvd| 少妇猛男粗大的猛烈进出视频| 欧美变态另类bdsm刘玥| 亚洲伊人久久精品综合| 亚洲综合精品二区| 少妇被粗大的猛进出69影院 | 秋霞在线观看毛片| 九九在线视频观看精品| 高清不卡的av网站| 免费人成在线观看视频色| 五月伊人婷婷丁香| 人妻少妇偷人精品九色| 黑丝袜美女国产一区| 国国产精品蜜臀av免费| 高清在线视频一区二区三区| 国产真实伦视频高清在线观看| 一本久久精品| 亚洲精华国产精华液的使用体验| 欧美日韩视频精品一区| 久久国内精品自在自线图片| 久久久a久久爽久久v久久| 国产精品偷伦视频观看了| 国产老妇伦熟女老妇高清| 免费看光身美女| av免费在线看不卡| 国产精品国产三级国产专区5o| 国产熟女欧美一区二区| 综合色丁香网| 精品一区二区三卡| 久久热精品热| 人妻人人澡人人爽人人| 国产色爽女视频免费观看| 久久国产乱子免费精品| 国产片特级美女逼逼视频| 三级经典国产精品| a级毛片免费高清观看在线播放| 纯流量卡能插随身wifi吗| 国产成人精品久久久久久| 国产免费视频播放在线视频| 久久女婷五月综合色啪小说| 高清欧美精品videossex| 大话2 男鬼变身卡| 少妇 在线观看| 婷婷色麻豆天堂久久| 亚洲精品成人av观看孕妇| 只有这里有精品99| 女的被弄到高潮叫床怎么办| 精品久久久久久电影网| 免费少妇av软件| 日本猛色少妇xxxxx猛交久久| 日韩一区二区视频免费看| 男女边吃奶边做爰视频| 尾随美女入室| 亚洲欧美日韩卡通动漫| 人体艺术视频欧美日本| 国产淫片久久久久久久久| 高清黄色对白视频在线免费看 | 国内少妇人妻偷人精品xxx网站| 最近的中文字幕免费完整| 亚洲av国产av综合av卡| 在线观看www视频免费| 亚洲天堂av无毛| 国产91av在线免费观看| 免费播放大片免费观看视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美成人综合另类久久久| 精品亚洲乱码少妇综合久久| 777米奇影视久久| 日韩精品免费视频一区二区三区 | 精品人妻偷拍中文字幕| 热re99久久精品国产66热6| 午夜av观看不卡| 国产91av在线免费观看| 国产精品国产三级国产av玫瑰| 中文字幕久久专区| 精品一区在线观看国产| 国产探花极品一区二区| 99九九在线精品视频 | 国产视频内射| 最黄视频免费看| 自线自在国产av| 十分钟在线观看高清视频www | 99久久精品热视频| 夜夜爽夜夜爽视频| 青春草亚洲视频在线观看| 免费看光身美女| 99久久综合免费| 国产精品久久久久久久电影| 人妻少妇偷人精品九色| 91aial.com中文字幕在线观看| 中文字幕免费在线视频6| 国产成人免费观看mmmm| 亚洲丝袜综合中文字幕| 欧美日韩视频高清一区二区三区二| 黄色配什么色好看| 插阴视频在线观看视频| 天天躁夜夜躁狠狠久久av| 在线观看www视频免费| 久久精品久久久久久噜噜老黄| 丁香六月天网| 多毛熟女@视频| 国产精品99久久久久久久久| 亚洲婷婷狠狠爱综合网| 我的老师免费观看完整版| 少妇熟女欧美另类| 26uuu在线亚洲综合色| 老女人水多毛片| 亚洲欧洲日产国产| 国产一区二区三区综合在线观看 | 精品少妇久久久久久888优播| 中文字幕制服av| 久久国产精品男人的天堂亚洲 | 国产精品嫩草影院av在线观看| 国产探花极品一区二区| 国国产精品蜜臀av免费| av在线老鸭窝| 少妇人妻久久综合中文| 一级av片app| 精品人妻偷拍中文字幕| 欧美精品亚洲一区二区| 国产av精品麻豆| 午夜免费鲁丝| 国产日韩欧美在线精品| 蜜臀久久99精品久久宅男| 国产淫片久久久久久久久| 精品酒店卫生间| 免费大片18禁| 国产又色又爽无遮挡免| 国产亚洲欧美精品永久| 天堂俺去俺来也www色官网| 女性被躁到高潮视频| 观看免费一级毛片| 久久精品久久久久久噜噜老黄| 久久 成人 亚洲| 亚洲人成网站在线观看播放| 少妇丰满av| 91久久精品国产一区二区三区| 免费av中文字幕在线| 亚洲精品日本国产第一区| av福利片在线观看| 卡戴珊不雅视频在线播放| 国产精品99久久久久久久久| 国产精品欧美亚洲77777| 中文字幕久久专区| 啦啦啦在线观看免费高清www| 国产成人精品一,二区| 18禁裸乳无遮挡动漫免费视频| 久久精品国产a三级三级三级| 少妇丰满av| 亚洲国产成人一精品久久久| 亚洲精品日韩av片在线观看| 啦啦啦啦在线视频资源| 十八禁网站网址无遮挡 | 色视频在线一区二区三区| 欧美+日韩+精品| 丰满迷人的少妇在线观看| 国产欧美亚洲国产| videossex国产| 欧美xxⅹ黑人| 国产精品久久久久久精品电影小说| 边亲边吃奶的免费视频| a 毛片基地| 天天躁夜夜躁狠狠久久av| 99热全是精品| 国产真实伦视频高清在线观看| 亚洲国产欧美日韩在线播放 | 亚洲精品第二区| 男女啪啪激烈高潮av片| 婷婷色综合www| 日本免费在线观看一区| 日韩人妻高清精品专区| 亚洲国产精品成人久久小说| 交换朋友夫妻互换小说| av女优亚洲男人天堂| 一级毛片黄色毛片免费观看视频| 少妇猛男粗大的猛烈进出视频| 九草在线视频观看| 丰满乱子伦码专区| 精品一区二区三卡| 免费久久久久久久精品成人欧美视频 | 亚洲四区av| 天天操日日干夜夜撸| 国产淫片久久久久久久久| 亚洲国产精品一区二区三区在线| 女性被躁到高潮视频| av网站免费在线观看视频| 国产亚洲精品久久久com| 高清黄色对白视频在线免费看 | 人妻夜夜爽99麻豆av| 丝袜脚勾引网站| 91午夜精品亚洲一区二区三区| 少妇人妻精品综合一区二区| 日日啪夜夜撸| 欧美丝袜亚洲另类| 91aial.com中文字幕在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产日韩一区二区三区精品不卡 | 男人舔奶头视频| 高清在线视频一区二区三区| 我要看日韩黄色一级片| 99精国产麻豆久久婷婷| 久久精品久久久久久久性| 日韩三级伦理在线观看| 精品人妻熟女毛片av久久网站| 国产亚洲精品久久久com| 一区在线观看完整版| 精品久久久噜噜| 亚洲,一卡二卡三卡| 精品人妻偷拍中文字幕| 亚洲国产精品国产精品| 亚洲情色 制服丝袜| 国产免费福利视频在线观看| 亚洲国产成人一精品久久久| 97在线视频观看| 色网站视频免费| 国产伦精品一区二区三区四那| 久久人人爽av亚洲精品天堂| 天堂中文最新版在线下载| 欧美 日韩 精品 国产| 有码 亚洲区| 成人亚洲精品一区在线观看| 麻豆乱淫一区二区| 日韩三级伦理在线观看| 看免费成人av毛片| 人妻少妇偷人精品九色| 亚洲伊人久久精品综合| 人人妻人人爽人人添夜夜欢视频 | 黄色日韩在线| 日韩一区二区三区影片| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产日韩一区二区| 日韩 亚洲 欧美在线| 菩萨蛮人人尽说江南好唐韦庄| 男女无遮挡免费网站观看| 九色成人免费人妻av| 亚洲精华国产精华液的使用体验| 啦啦啦中文免费视频观看日本| 夜夜看夜夜爽夜夜摸| 少妇人妻精品综合一区二区| 婷婷色综合大香蕉| 在线观看人妻少妇| 免费av中文字幕在线| 国产探花极品一区二区| 亚洲婷婷狠狠爱综合网| 高清午夜精品一区二区三区| 女性被躁到高潮视频| 蜜臀久久99精品久久宅男| 如何舔出高潮| 黄片无遮挡物在线观看| 亚洲精品第二区| 自拍偷自拍亚洲精品老妇| 国产91av在线免费观看| 一本色道久久久久久精品综合| 一级毛片aaaaaa免费看小| 91久久精品国产一区二区三区| 精品视频人人做人人爽|