• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phenol Oxidation by Combined Cavitation Water Jet and Hydrogen Peroxide*

    2012-02-14 08:25:38LUYiyu盧義玉LIUYong劉勇XIABinwei夏彬偉andZUOWeiqin左偉芹
    關鍵詞:劉勇

    LU Yiyu (盧義玉), LIU Yong (劉勇),3,**, XIA Binwei (夏彬偉) and ZUO Weiqin (左偉芹),3

    1 State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China

    2 State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing University, Chongqing 400044, China

    3 College of Safety Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China

    1 INTRODUCTION

    Phenol as one of the most common organic water pollutants is highly toxic even in low concentrations.Besides, phenol leads further to the generation of substituted compounds during disinfection and oxidation processes in natural water. Phenol is also relevant in the field of environmental research, because it has been chosen frequently as a model pollutant and many data are available on its removal and destruction in particular with respect to wastewater treatment [1].

    Phenol exists in all industrial wastewater, such as refineries (6-500 mg·L-1), coke making operations(28-3900 mg·L-1), coal processing (9-6800 mg·L-1),and manufacture of petrochemicals (2.8-1220 mg·L-1).Phenol is also the main organic constituents exist in condensate streams of coal gasification and liquefaction. What is more, phenol exists in waste water of pharmaceutical, plastics, wood products, paint, and pulp and paper industries (0.1-1600 mg·L-1).

    Phenol-containing wastewater may not be conducted into open water without treatment because of the toxicity of phenol. It also contributes to off-flavours in drinking and food processing water. Thus, lots of abatement technologies for phenol from wastewater were developed, whose primary mechanisms are separation and destruction. For the separations, Tumakaka et al. [2] have developed the solid-liquid-vapor state diagram for the water-phenol system to distillate the phenol contamination. A commercial process for phenol extraction from water using methyl-isobutylketone(MIBK) was reported recently [3]. Fierro et al. [4]recently investigated the adsorption of phenol on commercial activated carbons (ACs) and on highly microporous ACs prepared from chemical activation of Kraft lignin with sodium hydroxide (AC-Na), potassium hydroxide (AC-K) or phosphoric acid (apparent surface areas 940-2340 m2·g-1). And for the destruction, Zimmerman has first developed and applied water air oxidation (WAO) as a commercial process,which is a well-established technique of importance for wastewater treatment, especially when these are too dilute to incinerate and too toxic to biotreat [5].Bhargava and Luck [6-8] have reported catalytic wet air oxidation (CWAO) of phenol as object of many investigations in recent years and these studies have also been reviewed recently. Chedeville and Kamenev have reported oxidation with ozone and hydrogen to be active in the wet total oxidation of phenol in water solution, respectively [9, 10].

    Cavitation water jet provides high pressure, high temperature, intense turbulence and liquid circulation currents when cavitation bubbles collapse [11], which play a positive role for producing high reactive free radicals. Besides, it is effectively and wildly used in wastewater treatment [12]. However, it is rare that using cavitation water jet technology to degrade phenol-containing water, through plenty of technologies developed for removal of phenol.

    The paper presents laboratory experiment method and results of phenol oxidizing by combined cavitation water jet and H2O2. What’s more the intermediate and final products of degradation of phenol removal are analyzed using high performance liquid chromatograph (HPLC). Finally, based on the mechanism of reaction, dynamic models of phenol degradation have been developed.

    Figure 1 Sketch of cavitation nozzle

    Table 1 Lists of major instruments

    2 EXPERIMENTAL

    2.1 Apparatus and experimental procedure

    The most important experiment instrument is cavitation nozzle (as shown in Fig. 1), which decides to cavtiation water jet quality. When water flows to outlet from inlet of cavitation nozzle at high speed,two low pressure zones would be developed. One of them is clipping zone when jets is developing, the other is eddyzone when jet is flowing to static fluid.The pressure of the two zones is lower than stable pressure of bubble, which will grow because of injecting vapor. Then the bubble will collapse when it flows to high pressure zone with jet. The bubble’s collapse can lead to enormous energy, high temperature (10000 K) and strong impact force.

    High pressure pump conveys the fluid in the water tank to outlet of cavitation nozzle at high speed.The test pump flow is 10 L·min-1, so it needs about 60 min to complete six cycles when the fluid in water tank is 64L. what’s more, pressure gauges, controller panel and safety valve is necessary in the experiment.Fig. 2 is schematic representation of the experimental setup and major instruments used in the experiment are shown in Table 1.

    Figure 2 Schematic representation of the experimental setup

    The main experiment reagent is phenol-containing wastewater, which is 64 liters laboratory-made wastewater mixed with H2O2(300 mg·L-1unless specified otherwise) for a time period of 1-1.5 h at temperature of (30±5) °C. The other experiment reagent is solution of sulphuric acid, which is diluted with sodium hydroxide in order to adjust pH. All samples are analyzed using HPLC.

    When all the experiment apparatuses and reagents are prepared, injecting 64 liters phenol-containing wastewater in water tank. Then high pressure pump conveys the solution to cavitator through cavitation nozzle, which degrades partially the phenol by cavitation water jet. Then, the partially degraded solution regurgitates water tank, over and over again till 60 minutes later. During the degradation, the pressure of pump and pressure in cavitator are critical and adjustable. The velocity of water jet, which is one of key parameters of cavitation effect, depends on pump pressure, and pump pressure is adjusted willfully by safety valve between 0-30 MPa. Pressure in cavitator,named confining pressure, is adjusted by control valve between 0-20 MPa. Confining pressure is another critical parameter of cavitation effect.

    2.2 Sample analysis and methods used

    The intermediates and final products were analyzed by HPLC. Among the analyses, cavitation solution was diluted with methanol (1∶1) and injected into HPLC-system (Agilent 1100; ±1×10-5Au, 254 nm; relative standard deviation <0.3%) equipped with an UV-detector (270 nm) and Hypersil Octadecylsilyl C18Nautilus column (250 mm×5.0 mm; 5 μm particle size). Initially, the samples were filtered through a PE membrane with a pore size of 0.2 μm to eliminate the catalysts and particles. The cavitation sample solution is consisted of 30% water and 70% methanol. The flow rate was 0.5 ml·min-1.

    3 RESULTS AND DISCUSSION

    3.1 Effect of pH

    Figure 3 Effect of pH value of solution on removal ratio of phenol1—pH=3; 2—pH=4; 3—pH=5; 4—pH=6

    Generally, the removal rate decreases when pH increases as shown in Fig. 3. When pH is 3.0, about 95% of phenol is removed in 30 minutes. When cavitation time is 60 minutes, 100% of phenol is removed.And if pH increases to 4.0, removal rate of phenol decreases to about 90% when cavitation time is 30 minutes. Removal rate of phenol remains at about 90% even cavitation time is 60 minutes. Furthermore,only about 27.6% of phenol is removed when pH is 6.0. Thus, it can be concluded that acid greatly accelerates phenol removal. If solution is acidic, phenol molecules in the bulk-solution are oxidized rapidly by·OH when they diffuse into liquid-vapor interface of cavitation bubbles. Besides, when phenol molecules diffuse into cavitation bubbles, they could be degraded by high pressure and high temperature created by the bubble collapse. On condition that solution is neutral or alkaline, most of the phenol can not diffuse into cavitation bubbles, and then, the degradation rate is low. Besides, ·OH is hard to degraded if the solution is neutral or alkaline [13].

    3.2 Effect of initial concentration of H2O2

    Up to 92.3% of phenol is removed in 60 minutes when H2O2concentration is 150 mg·L-1, as shown in Fig. 4. And removal rate increases to 99.12% when H2O2concentration enhances to 300 mg·L-1. However,further increase of H2O2concentration results in decreasing of the phenol removal.

    Figure 4 Relationship between H2O2 concentration and removal rate of phenol1—150 mg·L-1; 2—300 mg·L-1; 3—450 mg·L-1; 4—600 mg·L-1

    Generally, the higher the H2O2concentration is,the more ·OH will be produced, which is positive for removal of phenol. However, when H2O2concentration is overmuch, there is no better effect on removal of phenol. It can be explained that excessive H2O2reacts with ·OH and generates H2O, O2and HO2· [14].Comparatively, oxidation potential of HO2· is weak and then less effect on the removal of phenol when H2O2is superfluous.

    3.3 Effect of pump pressure

    Figure 5 Relation between pump pressure and removal rate of phenol1—5 MPa; 2—10 MPa; 3—15 MPa; 4—20 MPa

    As shown in Fig. 5, the removal rate of phenol increases as pump pressure when pump pressure is below 10 MPa. Once the pump pressure is higher than 10 MPa or cavitation time is more than 60 minutes,the increase of pump pressure has less or no effect on phenol removal. When pump pressures are 5 MPa and 20 MPa, the removal rate of phenol are 92.1% and 99.85% respectively. It can be explained that high pressure can promote the circulation of solution, and then more phenol containing wastewater will involve in action. However, low pump pressure cannot do it.

    3.4 Effect of initial phenol concentration

    Preparing four groups phenol solution whose volume are all 64 liters and initial concentration are 100 mg·L-1, 200 mg·L-1, 400 mg·L-1and 800 mg·L-1respectively. And then mixing them with H2O2, until the concentration of H2O2is 300 mg·L-1. Resetting the pH of solution with sulfuric acid to 3.0.

    As shown in Fig. 6, initial phenol concentration greatly influences the removal ratio of phenol. The removal rate is 99.12% after 60 minutes of cavitation time when the initial phenol concentration is 100 mg·L-1. The removal ratio decreases to 47.68% when the initial phenol concentration rises to 800 mg·L-1.With increases of phenol concentration, the removal ratio of phenol will decrease although the total amounts of removal phenol increase.

    Figure 6 Relation between initial concentration and removal rate of phenol1—100 mg·L-1; 2—200 mg·L-1; 3—400 mg·L-1; 4—500 mg·L-1

    Because of phenol is volatile, phenol molecules diffuse into the cavitation bubble easily and are oxidized by the high temperature and high pressure when cavitation bubbles collapse [15]. However, when initial phenol concentration is too high, not all of the phenol molecules can enter in cavitation bubbles, thus the removal ratio of phenol decreases.

    3.5 Effect of confining pressure

    Figure 7 shows the relation between confining pressure and removal ratio of phenol. Removal ratio is 99% after 60 minutes of cavitation time when confining pressure is 0.5 MPa. The rate reduces to 88.7% in the same cavitation time when the confining pressure increases to 2 MPa. It can be concluded that the removal ratio decrease with the increase of confining pressure. It can be explained by when confining pressure is low, local steam pressure in cavitator will decrease sharply, and then cavitation will be stronger,which can promote the removal of phenol.

    Figure 7 Relation between confining pressure and removal of phenol1—0.5 MPa; 2—1.0 MPa; 3—1.5 MPa; 4—2.0 MPa

    4 ANALYSES OF DEGRADATION PRODUCTS

    The test of phenol removal by combined cavitation water jet and hydrogen peroxide shows that removal rate is high. But whether or not the solution after processing can meet discharge standard of water pollutants is not sure. So detecting intermediate products and end products is necessary, then we detected by HPLC based on phenol molecular structures. Table 2 shows the chromatogram nature of relative model substance.

    Figure 8 shows the chromatogram nature of sample in different times. By comparison of the specific absorption peaks with chromatogram nature of relative model substance, intermediate substances can be obtained and reaction mechanism of the cavitation degradation with H2O2can be drawn.

    Table 2 Chromatogram nature of relative model substance

    Figure 8 HPLC chromatograms of different reaction times

    In the early stage of reaction, main products are pyrocatechol, hydroquinone and benzoquinone, which proves that hydroxyl radical is existent. In the second stage, benzene ring is further oxidized, and then maleic acid and acetic acid are produced even after 60 minutes of cavitation time. That means phenol is oxidized into aliphatic compound, and it will be more difficult for phenol to be decomposed into CO2and H2O2. Thus, hydroxyl radical is in the center of reaction and the whole reactive process is as follows.

    5 DYNAMIC MODEL OF PHENOL OXIDIZED BY COMBINATION CAVITATION WATER JET WITH H2O2

    5.1 Kinetic model development

    The kinetic model of phenol oxidized by combined cavitation water jet with H2O2is composed of three first-order reactions. The first is phenol oxidized by cavitation water jet, then followed by H2O2, the last is phenol oxidized by combined cavitation water jets and H2O2.

    (1) Phenol oxidized by cavitation water jet

    Cavitation water jet can create extreme physical environment, such as high temperature and high pressure, which will react or transform organics C into C*,and finally transforms into C1.

    Reaction of degradation of phenol can be expressed as:

    Supposing C*is stable, then,

    Reaction velocity of degradation phenol can be obtained by Eqs. (2) and (3) only on the condition of cavitation water jet.

    (2) Phenol oxidized by H2O2

    Phenol (C) can be oxidized into organics C2by H2O2

    Reaction of degradation of phenol can be expressed as,

    Because of [H2O2]≌[H2O2]0, the constant of apparent rate can be expressed as,

    (3) Phenol oxidized by combined cavitation water jet and H2O2

    Cavitation water jet reacts with H2O2to produce hydroxyl radical, which promotes phenol (C) to be transformed into C3

    Reaction of degradation of phenol can be expressed as,

    In this action H2O2is excess, thus there should be some side effects in this reaction system.

    Supposing activated ·OH and HO2? is stable, then:

    Through [H2O2]>[C] in the experiment, thenk8<k5[16-19]. Thus, Eq. (13) can be expressed as,

    Removal speed of phenol can be expressed as,

    5.2 Acquisition of kinetic parameters

    If the initial concentration of the phenol remains unchanged, and initial concentration of H2O2is variable, then

    When initial phenol concentration is 100 mg·L-1and initial concentration of H2O2is 50 mg·L-1, 150 mg·L-1and 300 mg·L-1, respectively. Then, we fit the dataviaEq. (17) and fitted rate constants can be developed, as shown in Fig. 9 an in Table 3.

    Figure 9 Kinetics rate constants when initial hydrogen peroxide concentration changed1—300 mg·L-1; 2—150 mg·L-1; 3—50 mg·L-1

    Table 3 Fitted rate constants when initial hydrogen peroxide concentration changed

    It can be concluded that correlation coefficient is 0.99 from Fig. 10, which means that the Eq. (19) is right in the range of investigations.

    Then it is obtained thatK=8.38×10-5s-1.

    As shown in Fig.10, H2O2greatly affects the removal rate of phenol. H2O2can distinctively improve the removal rate of phenol even in Small amount. It is primarily because that H2O2is transformed into hydroxyl radical, which has strong oxidability by combined with cavitation water jet. However, only small amount of phenol could be removed if cavitation water jet is used only. Generally, the more H2O2is, the more hydroxyl radical will be produced, so the effect on the removal of phenol is better. But if H2O2is excessive, H2O2has no or even adverse effects on removal of phenol. Excessive H2O2reacts with ·OH to produce H2O,O2and HO2·, and HO2· has weak oxidation potential.

    Figure 10 Relation between apparent rate constant and initial H2O2 concentration

    If the initial concentration of H2O2remains unchanged, and is initial concentration of the phenol variable, then, Eq. (16) transforms into:

    When initial concentration of H2O2is 300 mg·L-1and initial phenol concentration is 100 mg·L-1, 200 mg·L-1and 400 mg·L-1respectively. Then Eq. (20) can be shown as Fig. 11. Fitted rate constants are shown in Table 4.

    Figure 11 Relation between apparent rate constant and initial phenol concentration1—100 mg·L-1; 2—200 mg·L-1; 3—400 mg·L-1

    Table 4 Fitted rate constants when initial phenol concentration changed

    It can be concluded that correlation coefficient is 0.99 from Fig. 12, which shows that Eq. (22) simulates the result well.

    According to the analysis results,K″=1.03×10-4s-1and Eq. (23) can be obtained by solving Eq. (22)

    From Fig. 12,k3[H2O2]0can be solved to be 7.9685×10-7s-1·mol·L-1, and thenk3=9.031×10-5s-1.Removal speed of phenol can be expressed as,

    Figure 12 Relation between apparent rate constants and initial phenol concentration

    6 CONCLUTIONS

    The following conclusions can be drawn from the theoretical and experimental investigations on degrading phenol by combined H2O2oxidation with cavitation water jets:

    (1) The technology of phenol oxidizing OR oxidization by combined cavitation water jet with H2O2is feasible, because phenol can be oxidized into organics which is easily degraded, such as quinine.

    (2) When pH is 3.0, initial concentration of H2O2is 300 mg·L-1, initial phenol concentration is 100 mg·L-1, confining pressure is 0.5 MPa, cavitation time is 60 min, and pump pressure is 20 MPa, 99.85% of phenol can be mineralized, which is the best condition of removal phenol.

    (3) The mechanism of reaction of H2O2oxidative degradation combined with cavitation water jets on phenol has also been confirmedviaHPLC. In the first stage, catechol, hydroquinone andp-benzoquinone are produced, which confirmed the existence of ·OH. In the second stage, maleic acid and acetic acid were produced which was the result of phenyl oxidation.

    (4) There is synergetic effect between cavitation and H2O2in the technology of phenol oxidation by combination of cavitation water jet with H2O2. The promoted factor of phenol degradation rate constant is about 38.41. A simplified mechanistic model of removal of phenol is developed, which is

    1 Busca, G., Berardinelli, S., Resini, C., Arrighi, L., “Technologies for the removal of phenol from fluid streams: A short review of recent developments”, J. Hazard. Mater., 160, 265-288 (2008)

    2 Tumakaka, F., Prikhodko, I.V., Sadowski, G., “Modeling of solid-liquid equilibria for systems with solid-complex phase formation”, Fluid Phase Equilib., 260, 98-104 (2007).

    3 QVF Engineering Gmbh, Recovery of High Boiling Solvents from Waste Water (Phenol), http://www.qvf.com/en/processsystems_3/Recovery%20Units/Phenol.shtml.

    4 Fierro, V., Torne-Fernandez, V., Montane, D., Celzard, A., “Adsorption of phenol onto activated carbons having different textural and surface properties”, Micropor. Mesopor. Mater., 111, 276-284 (2008).

    5 Zimmerman, F.J., “Wet air oxidation of hazardous organics in wastewater”, U.S. Pat., 2665249 (1950).

    6 Bhargava, S.K., Tardio, J., Prasad, J., Fo1ger, K., Akolekar, D.B.,Grocott, S.C., “Wet oxidation and catalytic wet oxidation”, Ind. Eng.Chem. Res., 45, 1221-1258 (2006).

    7 Luck, F., “Wet air oxidation: past, present and future”, Catal. Today,53, 81-91 (1999).

    8 Luck, F., “A Review of industrial catalytic wet air oxidation processes”,Catal. Today, 27, 195-202 (1996).

    9 Chedeville, O., Debacq, M., Ferrante Almanza, M., Porte, C., “Use of an ejector for phenol containing water treatment by ozonation”,Sep. Purif. Technol., 57, 201-208 (2007).

    10 Kamenev, S., Kallas, J., Munter, R., Trapido, M., “Chemical oxidation of biologically treated phenolic effluents”, Waste Manag., 15,203-208 (1995).

    11 Vonel, A., Lanterborn, W., Timm, R., “Optical and acoustic investigation of the dynamics of laser produce cavitation bubbles near a solid boundary”, J. Fluid Mechine, 208, 209-308 (1998).

    12 Kalumuck, K.M., Chahine, G.L., “The use of cavitation jets to oxidze or ganic compounds in water”, Journal of Fluids Engineering,122, 465-470 (2000).

    13 Zrncevic, S., Gomzi, Z., “CWPO: An environmental solution for pollutant removal from wastewater”, Ind. Eng. Chem. Res., 44,6110-6114 (2005).

    14 Nanzai, B., Okitsu, K., Takenaka, N., Bandow, H., Maeda, Y.,“Sonochemical degradation of various monocyclic aromatic compounds: Relation between hydrophobicities of organic compounds and the decomposition rates”, Ultrason. Sonochem., 15, 478-483 (2008).

    15 Chakinala, A.G., Bremner, D.H., Gogate, P.R., “Multivariate analysis of phenol ineralisation by combined hydrodynamic cavitation and heterogeneous advanced Fenton processing”, Applied Catalysis B:Environmental, 78, 11-18 (2008).

    16 Chamarro, E., Marco, A., Esplugas, S., “Use of fenton reagent to improve organic chemical biodegradability”, Wat. Res., 35,1047-1051 (2001)

    17 Pignatello, J., “Dark and photoassisted Fe3+-catalyed degradation of chlorophenoxy herbicides by hydrogen peroxide”, Environ. Sci.Technol., 26, 944-951 (1992).

    18 Sawyer, D.T., Oxygen Chemistry: The International Series of Monograghs on Chemistry, Oxford University Press, New York (1991).

    19 Pitter, P., “Determination of biological degradability of organic substance”, Water Res., 10, 231-235 (1976).

    猜你喜歡
    劉勇
    Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
    Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
    Dispersion and damping rate of Langmuir wave in space plasma with regularized Kappa distributed electrons
    2021年高考數(shù)學模擬試題(三)
    2021年高考數(shù)學模擬試題(五)
    Configuration interaction study on low-lying states of AlCl molecule*
    開小灶
    故事會(2021年6期)2021-03-18 04:47:36
    劉勇:捕獲“天溢”的北極光靈感
    更 正
    電子科技(2014年1期)2014-03-22 10:17:07
    市長的畫
    雜文選刊(2012年11期)2012-05-08 04:51:46
    丝袜美足系列| 成熟少妇高潮喷水视频| 午夜老司机福利片| 精品国产一区二区三区久久久樱花| 精品国产一区二区三区久久久樱花| 色精品久久人妻99蜜桃| 欧美乱妇无乱码| 精品一区二区三区四区五区乱码| 午夜成年电影在线免费观看| 国产人伦9x9x在线观看| 黄色a级毛片大全视频| 免费看十八禁软件| 亚洲五月婷婷丁香| 99热网站在线观看| 欧洲精品卡2卡3卡4卡5卡区| 精品国产乱子伦一区二区三区| 丝袜美足系列| 女同久久另类99精品国产91| 嫩草影视91久久| 国产精品香港三级国产av潘金莲| 亚洲视频免费观看视频| 亚洲男人天堂网一区| 免费少妇av软件| 巨乳人妻的诱惑在线观看| 每晚都被弄得嗷嗷叫到高潮| 女性被躁到高潮视频| 天堂中文最新版在线下载| 动漫黄色视频在线观看| 黄色丝袜av网址大全| 国产激情久久老熟女| 人人妻人人添人人爽欧美一区卜| 香蕉久久夜色| 久久国产精品影院| 亚洲精品在线观看二区| 久久香蕉精品热| 中文字幕人妻丝袜制服| 午夜激情av网站| 18禁黄网站禁片午夜丰满| 成人亚洲精品一区在线观看| 少妇 在线观看| 美女 人体艺术 gogo| 亚洲第一青青草原| 一级a爱视频在线免费观看| av一本久久久久| 欧美日韩一级在线毛片| 最近最新中文字幕大全免费视频| 久久中文看片网| tube8黄色片| 亚洲精品在线美女| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇裸体淫交视频免费看高清 | 午夜精品久久久久久毛片777| 狠狠婷婷综合久久久久久88av| 欧美老熟妇乱子伦牲交| 午夜免费成人在线视频| 亚洲五月色婷婷综合| 色播在线永久视频| 午夜成年电影在线免费观看| 热99re8久久精品国产| 免费看十八禁软件| 久久人妻福利社区极品人妻图片| 宅男免费午夜| 91成人精品电影| 国产xxxxx性猛交| 99re在线观看精品视频| 日本精品一区二区三区蜜桃| 久久中文字幕人妻熟女| 亚洲精华国产精华精| 日韩有码中文字幕| 成人18禁在线播放| 国产成人免费无遮挡视频| 亚洲色图av天堂| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩一区二区三| 亚洲成av片中文字幕在线观看| 免费女性裸体啪啪无遮挡网站| 香蕉国产在线看| 国产男女内射视频| 亚洲午夜理论影院| 国产精品一区二区精品视频观看| 亚洲伊人色综图| 99re6热这里在线精品视频| 午夜亚洲福利在线播放| 免费观看人在逋| 老鸭窝网址在线观看| 欧美日韩成人在线一区二区| 久久久久久久久久久久大奶| 国产精品久久久av美女十八| 久久国产精品影院| 国产成人av教育| 日韩熟女老妇一区二区性免费视频| 免费人成视频x8x8入口观看| 精品无人区乱码1区二区| 精品第一国产精品| 老司机亚洲免费影院| 三上悠亚av全集在线观看| 国产欧美日韩一区二区三| 久久久精品免费免费高清| 久久香蕉精品热| 成人国语在线视频| 亚洲av电影在线进入| 纯流量卡能插随身wifi吗| 9热在线视频观看99| 亚洲精品在线美女| 美女午夜性视频免费| av有码第一页| 亚洲全国av大片| 黄色a级毛片大全视频| 久久性视频一级片| 国产精品 国内视频| 久久精品人人爽人人爽视色| 亚洲av美国av| 黄色女人牲交| 精品国产一区二区三区四区第35| 日韩制服丝袜自拍偷拍| 女人被躁到高潮嗷嗷叫费观| 在线观看免费视频日本深夜| 亚洲午夜精品一区,二区,三区| 亚洲欧美一区二区三区久久| av国产精品久久久久影院| www.熟女人妻精品国产| 成人三级做爰电影| 三级毛片av免费| 啦啦啦在线免费观看视频4| www.熟女人妻精品国产| 91麻豆av在线| 精品一区二区三区四区五区乱码| 两性夫妻黄色片| 视频在线观看一区二区三区| 99精国产麻豆久久婷婷| 欧美日本中文国产一区发布| 精品国产美女av久久久久小说| 亚洲精品美女久久av网站| avwww免费| 国产日韩欧美亚洲二区| 飞空精品影院首页| 老司机靠b影院| 精品人妻1区二区| 捣出白浆h1v1| 一边摸一边抽搐一进一小说 | 高清欧美精品videossex| 国产精品国产高清国产av | 男女下面插进去视频免费观看| 国产精品av久久久久免费| 国产精品国产av在线观看| 一级黄色大片毛片| 正在播放国产对白刺激| a在线观看视频网站| 高清毛片免费观看视频网站 | 欧美 日韩 精品 国产| 国产精品国产av在线观看| 亚洲精品中文字幕在线视频| 亚洲成人免费av在线播放| 亚洲av日韩精品久久久久久密| 欧美精品人与动牲交sv欧美| 日韩有码中文字幕| 国产人伦9x9x在线观看| 高清欧美精品videossex| 女同久久另类99精品国产91| av欧美777| 99国产精品一区二区蜜桃av | 国产一区有黄有色的免费视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产黄色免费在线视频| 少妇的丰满在线观看| 黄色怎么调成土黄色| 亚洲精品一卡2卡三卡4卡5卡| 搡老岳熟女国产| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品亚洲av一区麻豆| 免费观看精品视频网站| 天堂俺去俺来也www色官网| 热99久久久久精品小说推荐| 免费观看人在逋| 日本撒尿小便嘘嘘汇集6| 国产99久久九九免费精品| 亚洲三区欧美一区| 精品乱码久久久久久99久播| 男人操女人黄网站| 怎么达到女性高潮| 国产精品综合久久久久久久免费 | 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产综合久久久| 一区二区三区激情视频| 飞空精品影院首页| 国产不卡av网站在线观看| 18禁裸乳无遮挡免费网站照片 | 国产av又大| 可以免费在线观看a视频的电影网站| 人人妻人人添人人爽欧美一区卜| 国产精品免费视频内射| 日韩精品免费视频一区二区三区| 精品久久久久久久毛片微露脸| 99香蕉大伊视频| 最新美女视频免费是黄的| av免费在线观看网站| 精品亚洲成国产av| 日韩熟女老妇一区二区性免费视频| 大香蕉久久成人网| av一本久久久久| 水蜜桃什么品种好| 午夜福利乱码中文字幕| 免费人成视频x8x8入口观看| 久久久国产一区二区| 国产精品99久久99久久久不卡| 久久久久精品人妻al黑| 大片电影免费在线观看免费| 少妇粗大呻吟视频| 久久精品成人免费网站| 在线十欧美十亚洲十日本专区| 午夜福利,免费看| 日本vs欧美在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 女人久久www免费人成看片| 亚洲精品国产一区二区精华液| 久久婷婷成人综合色麻豆| 久久人妻熟女aⅴ| 人人妻人人添人人爽欧美一区卜| av视频免费观看在线观看| 国产国语露脸激情在线看| 欧美日韩av久久| 亚洲中文av在线| 欧洲精品卡2卡3卡4卡5卡区| 大型黄色视频在线免费观看| 久久九九热精品免费| 国产单亲对白刺激| 午夜精品国产一区二区电影| 欧美亚洲 丝袜 人妻 在线| 91在线观看av| 久久香蕉国产精品| 国产日韩一区二区三区精品不卡| 日韩精品免费视频一区二区三区| 一进一出抽搐动态| 精品一区二区三区视频在线观看免费 | av视频免费观看在线观看| x7x7x7水蜜桃| 12—13女人毛片做爰片一| 久久99一区二区三区| 国精品久久久久久国模美| av欧美777| 日本wwww免费看| 变态另类成人亚洲欧美熟女 | 捣出白浆h1v1| 日韩欧美在线二视频 | 欧美日韩亚洲国产一区二区在线观看 | 亚洲熟妇熟女久久| 亚洲欧洲精品一区二区精品久久久| 精品人妻1区二区| 大香蕉久久成人网| 美女国产高潮福利片在线看| 99国产综合亚洲精品| 50天的宝宝边吃奶边哭怎么回事| 巨乳人妻的诱惑在线观看| 久久香蕉激情| 超碰97精品在线观看| av网站免费在线观看视频| 9191精品国产免费久久| 国产欧美亚洲国产| 淫妇啪啪啪对白视频| 美女午夜性视频免费| 午夜老司机福利片| 曰老女人黄片| 日本精品一区二区三区蜜桃| 母亲3免费完整高清在线观看| 国产激情久久老熟女| 手机成人av网站| 久久亚洲精品不卡| 69av精品久久久久久| 在线播放国产精品三级| 黑人巨大精品欧美一区二区mp4| 亚洲av成人av| 老司机午夜十八禁免费视频| 又黄又粗又硬又大视频| 啦啦啦免费观看视频1| 一边摸一边抽搐一进一小说 | 欧美激情 高清一区二区三区| 成人黄色视频免费在线看| 丁香六月欧美| 国产一区有黄有色的免费视频| 亚洲五月天丁香| 精品国产乱子伦一区二区三区| 婷婷精品国产亚洲av在线 | 少妇粗大呻吟视频| 欧美日韩成人在线一区二区| 少妇 在线观看| а√天堂www在线а√下载 | 99riav亚洲国产免费| 色婷婷久久久亚洲欧美| 香蕉丝袜av| 啦啦啦在线免费观看视频4| 亚洲精品一二三| 99久久综合精品五月天人人| 极品少妇高潮喷水抽搐| 很黄的视频免费| 精品国产亚洲在线| 久久天堂一区二区三区四区| 午夜精品在线福利| 天天躁日日躁夜夜躁夜夜| 80岁老熟妇乱子伦牲交| 精品久久久久久电影网| 国产视频一区二区在线看| 国产成人精品在线电影| 制服人妻中文乱码| 欧美亚洲日本最大视频资源| 久久久久久久精品吃奶| 欧美国产精品va在线观看不卡| 一个人免费在线观看的高清视频| 99国产精品99久久久久| 国产三级黄色录像| 国产精品电影一区二区三区 | 校园春色视频在线观看| 国产高清视频在线播放一区| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕最新亚洲高清| 国产男靠女视频免费网站| 99riav亚洲国产免费| 国产成人av激情在线播放| 老熟女久久久| 天天操日日干夜夜撸| 欧美精品av麻豆av| 伊人久久大香线蕉亚洲五| 亚洲av熟女| 亚洲在线自拍视频| 韩国精品一区二区三区| 性色av乱码一区二区三区2| 欧美精品av麻豆av| 日韩制服丝袜自拍偷拍| cao死你这个sao货| 国产99久久九九免费精品| 啦啦啦免费观看视频1| 久久午夜亚洲精品久久| 高清欧美精品videossex| 免费在线观看完整版高清| 夜夜夜夜夜久久久久| 一边摸一边抽搐一进一出视频| 一二三四社区在线视频社区8| 大码成人一级视频| 色在线成人网| 99久久综合精品五月天人人| 午夜福利欧美成人| 狂野欧美激情性xxxx| 新久久久久国产一级毛片| 久久这里只有精品19| 好男人电影高清在线观看| 欧美色视频一区免费| 亚洲欧美精品综合一区二区三区| 视频在线观看一区二区三区| 久久香蕉精品热| 色精品久久人妻99蜜桃| 亚洲一区中文字幕在线| 最近最新中文字幕大全免费视频| 欧美不卡视频在线免费观看 | 精品久久久久久电影网| 新久久久久国产一级毛片| 黄色片一级片一级黄色片| 12—13女人毛片做爰片一| 久久午夜亚洲精品久久| 亚洲精品国产区一区二| 午夜精品在线福利| 每晚都被弄得嗷嗷叫到高潮| bbb黄色大片| 精品电影一区二区在线| 无人区码免费观看不卡| 亚洲少妇的诱惑av| 成年女人毛片免费观看观看9 | 亚洲人成电影免费在线| 黑人巨大精品欧美一区二区蜜桃| 亚洲成a人片在线一区二区| 韩国精品一区二区三区| 美女 人体艺术 gogo| 日韩制服丝袜自拍偷拍| 最新在线观看一区二区三区| 久久国产精品男人的天堂亚洲| 中文字幕人妻熟女乱码| 在线观看66精品国产| 亚洲国产精品一区二区三区在线| av不卡在线播放| 十八禁网站免费在线| 老司机福利观看| 巨乳人妻的诱惑在线观看| 精品国产美女av久久久久小说| 女人精品久久久久毛片| 丁香欧美五月| 熟女少妇亚洲综合色aaa.| 亚洲国产看品久久| 男女高潮啪啪啪动态图| 日韩欧美三级三区| 欧美最黄视频在线播放免费 | 少妇裸体淫交视频免费看高清 | 99精品欧美一区二区三区四区| 很黄的视频免费| 精品国产国语对白av| 亚洲国产精品sss在线观看 | 亚洲片人在线观看| 51午夜福利影视在线观看| 一进一出抽搐动态| 久久国产精品人妻蜜桃| 精品福利观看| 亚洲精品久久成人aⅴ小说| 黄色片一级片一级黄色片| 国产精品一区二区免费欧美| 777久久人妻少妇嫩草av网站| 久久狼人影院| 免费女性裸体啪啪无遮挡网站| 操美女的视频在线观看| 国产精品1区2区在线观看. | 精品久久久久久久毛片微露脸| 男人的好看免费观看在线视频 | 国产午夜精品久久久久久| 亚洲av欧美aⅴ国产| 搡老熟女国产l中国老女人| 欧美激情 高清一区二区三区| 日韩欧美在线二视频 | 又大又爽又粗| 曰老女人黄片| 久久国产精品大桥未久av| xxxhd国产人妻xxx| 久久亚洲精品不卡| 久99久视频精品免费| 国产精品1区2区在线观看. | 99热国产这里只有精品6| 亚洲一区二区三区不卡视频| 80岁老熟妇乱子伦牲交| 亚洲人成电影免费在线| 亚洲专区字幕在线| 免费看a级黄色片| av福利片在线| 国产无遮挡羞羞视频在线观看| 日韩人妻精品一区2区三区| 在线观看舔阴道视频| 欧美激情极品国产一区二区三区| 免费av中文字幕在线| 日本欧美视频一区| 黄色片一级片一级黄色片| 黄色 视频免费看| 嫁个100分男人电影在线观看| 老司机在亚洲福利影院| 天堂中文最新版在线下载| 91九色精品人成在线观看| 国产午夜精品久久久久久| 国产成人av激情在线播放| 一进一出好大好爽视频| 亚洲欧美激情综合另类| 国产精品1区2区在线观看. | bbb黄色大片| 国产无遮挡羞羞视频在线观看| 在线永久观看黄色视频| 99精品久久久久人妻精品| 一级黄色大片毛片| 久久久久久久精品吃奶| 看免费av毛片| 99精品欧美一区二区三区四区| 伦理电影免费视频| 欧美在线黄色| 午夜老司机福利片| 欧美成人午夜精品| 在线天堂中文资源库| 成人国语在线视频| 老司机靠b影院| 男女下面插进去视频免费观看| 91在线观看av| av在线播放免费不卡| 欧美精品一区二区免费开放| 精品高清国产在线一区| 美女午夜性视频免费| 99久久国产精品久久久| 黄网站色视频无遮挡免费观看| 亚洲国产欧美一区二区综合| 久久精品亚洲熟妇少妇任你| 久久中文字幕人妻熟女| 99久久99久久久精品蜜桃| 黄色视频不卡| 法律面前人人平等表现在哪些方面| 婷婷精品国产亚洲av在线 | 国产精品电影一区二区三区 | 精品熟女少妇八av免费久了| 在线国产一区二区在线| 1024香蕉在线观看| 精品熟女少妇八av免费久了| 香蕉久久夜色| 午夜免费观看网址| 欧美日韩福利视频一区二区| 免费在线观看视频国产中文字幕亚洲| 人妻 亚洲 视频| 欧美日韩福利视频一区二区| 麻豆乱淫一区二区| 一个人免费在线观看的高清视频| 国产99久久九九免费精品| 成年人免费黄色播放视频| 丁香六月欧美| 日韩三级视频一区二区三区| 我的亚洲天堂| 亚洲熟妇中文字幕五十中出 | av一本久久久久| 成年动漫av网址| 法律面前人人平等表现在哪些方面| 一区二区日韩欧美中文字幕| 99久久国产精品久久久| 搡老熟女国产l中国老女人| 女性生殖器流出的白浆| 国产成人免费无遮挡视频| 亚洲第一av免费看| 亚洲人成伊人成综合网2020| 不卡一级毛片| 青草久久国产| 一本大道久久a久久精品| 天堂√8在线中文| av天堂久久9| 欧美黑人精品巨大| 国产成人av教育| 午夜激情av网站| 欧美在线一区亚洲| 老司机深夜福利视频在线观看| 人妻一区二区av| 老司机午夜福利在线观看视频| 国产高清视频在线播放一区| 亚洲五月婷婷丁香| 好看av亚洲va欧美ⅴa在| 女人被躁到高潮嗷嗷叫费观| 欧美激情高清一区二区三区| 久久国产精品人妻蜜桃| 久久狼人影院| 成人国语在线视频| 国产男靠女视频免费网站| 欧美丝袜亚洲另类 | 国产又爽黄色视频| 亚洲色图 男人天堂 中文字幕| 91在线观看av| 99精品欧美一区二区三区四区| 99久久综合精品五月天人人| 18禁观看日本| 91国产中文字幕| 亚洲一区中文字幕在线| 成年人免费黄色播放视频| 国产片内射在线| 欧美在线黄色| 免费在线观看亚洲国产| 老汉色∧v一级毛片| 最新的欧美精品一区二区| 又黄又爽又免费观看的视频| 99国产综合亚洲精品| 亚洲欧美一区二区三区久久| 捣出白浆h1v1| av国产精品久久久久影院| 国产一区二区三区在线臀色熟女 | 欧美国产精品va在线观看不卡| 99国产精品一区二区蜜桃av | 久久亚洲真实| 岛国在线观看网站| 久久人妻福利社区极品人妻图片| av国产精品久久久久影院| 国产免费av片在线观看野外av| 成人三级做爰电影| 一a级毛片在线观看| √禁漫天堂资源中文www| 在线观看一区二区三区激情| 性少妇av在线| 亚洲专区中文字幕在线| 日韩有码中文字幕| 欧美日韩亚洲高清精品| 中文欧美无线码| 午夜两性在线视频| 亚洲一区二区三区欧美精品| 老司机在亚洲福利影院| 免费女性裸体啪啪无遮挡网站| 亚洲欧美一区二区三区久久| 成人免费观看视频高清| 国产99久久九九免费精品| 亚洲熟妇中文字幕五十中出 | 色尼玛亚洲综合影院| 久久狼人影院| 亚洲精品国产色婷婷电影| 天堂√8在线中文| 天天躁日日躁夜夜躁夜夜| 精品福利永久在线观看| 久久香蕉精品热| 一进一出抽搐动态| 波多野结衣av一区二区av| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩精品亚洲av| 亚洲av成人一区二区三| 国产精品自产拍在线观看55亚洲 | 国产精品九九99| 亚洲av成人一区二区三| 国产精品自产拍在线观看55亚洲 | 久久香蕉国产精品| 久久国产亚洲av麻豆专区| 90打野战视频偷拍视频| 精品国产国语对白av| 精品国产乱码久久久久久男人| 一本综合久久免费| 日韩欧美免费精品| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看免费高清a一片| 国产有黄有色有爽视频| 国产精品久久久久成人av| 亚洲国产精品一区二区三区在线| 国产精品一区二区精品视频观看| 男人的好看免费观看在线视频 | 日本撒尿小便嘘嘘汇集6| 大型黄色视频在线免费观看| 在线观看免费午夜福利视频| 精品亚洲成国产av| 性少妇av在线| 天天影视国产精品| 国产成人啪精品午夜网站| 另类亚洲欧美激情| 亚洲在线自拍视频| 国产亚洲欧美在线一区二区| 色播在线永久视频| 亚洲av第一区精品v没综合| 亚洲色图av天堂| 久久精品亚洲av国产电影网| 国产成人欧美| 日本vs欧美在线观看视频|