• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanoparticle Migration in a Fully Developed Turbulent Pipe Flow Considering the Particle Coagulation*

    2012-03-22 10:10:34LINJianzhong林建忠LIUSong劉淞andCHANTatleung陳達良ChinaJiliangUniversityHangzhou0018China
    關(guān)鍵詞:毀滅性災變大浪淘沙

    LIN Jianzhong (林建忠)**, LIU Song (劉淞) and CHAN Tatleung (陳達良) China Jiliang University, Hangzhou 0018, China

    2 State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China

    3 Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

    1 INTRODUCTION

    Fluid flows containing nanoparticles occur in a wide range of natural and engineering problems [1-5].Mechanism of the motion of these nanoparticles is of interest and has been investigated during the past several decades. Nanoparticles suspended in pipes have lots of application, such as enhanced heat transfer with nanoparticles in micro heat exchangers, toxic particle transport in the human lung, contamination control of microelectronic manufacture, and control of surface fouling of microfluidic devices.

    There exists some literature addressing the motion of nanoparticles in the pipe flow. Ding and Wen [6]studied the particle migration in pressure-driven laminar pipe flows of relatively dilute suspension of nanoparticles. It is shown that particle concentration in the wall region can be much lower than that in the central core region. Jang et al. [7] performed experimental and theoretical investigation on the effective viscosity of mixture of Al2O3-water flowing through micrometer- and millimeter-sized circular tubes in the fully developed laminar flow regime. It is found that the effective viscosity of Al2O3-water increases nonlinearly with the volume concentration of nanoparticles even in the very low range and strongly depends on the ratio of the nanoparticle diameter to the tube diameter. Akbarinia and Behzadmehr [8] studied numerically fully developed laminar mixed convection of a suspension of water and Al2O3in a horizontal curved tube. The results showed that the nanoparticle volume fraction does not have a direct effect on the secondary flow, axial velocity and the skin friction coefficient. However, its effect on the entire fluid temperature could affect the hydrodynamic parameters when the order of magnitude of the buoyancy force becomes significant compared to the centrifugal force.Mirmasoumi and Behzadmehr [9] studied numerically laminar mixed convection of mixture of water and Al2O3in a horizontal tube. It is found that at the fully developed region the nanoparticle concentration does not have significant effects on the hydrodynamics parameters. However, its effects on the thermal parameters are important. Jwo et al. [10] experimentally studied the flow containing nanoparticles in the pipe with different mass fraction, flowing condition and the temperature associated with the pressure drop. The results demonstrate that the mixture of Al2O3/water increases the pressure drop, whereas an increase in temperature reduces the pressure drop. A new empirical equation for the friction factor in laminar flow was developed. Lin et al. [11] used a finite-volume code and the SIMPLE scheme to study the transport and deposition of nanoparticles in a rotating curved pipe for different angular velocities, Dean number and Schmidt number. The results show that when the Schmidt number is low, the nanoparticle distributions are mostly determined by the axial velocity. When the Schmidt number is many orders of magnitude higher than 1, the secondary flow will dominate the nanoparticle distribution. When the pipe rotates, the distribution of nanoparticle mass fraction is similar to that for the stationary case. Penget al. [12] investigated the effect of nanoparticle on the frictional pressure drop characteristics inside a horizontal smooth tube. The results showed that the frictional pressured drop increases with the increase of the mass fraction of nanoparticles,and the maximum enhancement of frictional pressure drop is 20.8%. Lin and Lin [13] studied the nanoparticle transport and deposition in bends with circular cross-section. The results showed that the particle transport patterns are similar and independent of particle size and other parameters when suspended nanoparticles flow in a straight tube. At the outside wall, particle deposition is the most intensive, while it is the weakest at the inside wall. Laiet al. [14] presented the relative viscosity for gamma-Al2O3nanoparticles in water and propylene glycol-water mixture based on pressure drop measurements of fluid flow containing nanoparticles. The results indicated that with constant wall heat flux, the relative viscosities of fluid decrease with increasing volume flow rate, and the viscosity can be explained in part by the aspect ratio of the aggregates. Qianet al. [15] investigated the motion of nanoparticles with the laser speckle velocimetry technique. It is found that the overall motion of nanoparticles was along the pipe flow direction. To a small extent,however, nanoparticle motion vectors deviated from the axial direction, and the deviations were random because of the Brownian motion of nanoparticles.

    Most of the studies mentioned above are focused on the effects of nanoparticles on the pressure drop and effective viscosity, or the deposition properties.However, the dynamic evolution due to nanoparticle coagulation is an important phenomenon and particularly interesting in applications. Nanoparticle coagulation will result in the variation of particle number concentration, particle cluster diameter and particle polydispersity along the radial direction in the pipe,which has not been found in the literature. Therefore,the present study investigates the evolution of particle number concentration, total particle mass, polydispersity, particle cluster diameter and geometric standard deviation considering the particle coagulation and dispersion in a pipe for different Schmidt numbers and Damk?hler numbers with the moment method.

    There are in general three approaches for simulating flows which contain the nanoparticles: the moment method, the Lagrangian method, and the discrete/sectional method. The moment method is based on the idea that the properties of interest can be determined from average measures of the properties of individual particles [16]. In the present study, this moment method is used because it requires a reduced set of additional transport equations, thus reducing the computational cost. Settumba and Garrick [17] performed a numerical simulation of nanoparticle coagulation in a temporal mixing layerviaa moment method, while the present study investigates nanoparticle migration in a fully developed turbulent pipe flow considering the particle coagulation.

    2 MATHEMATICAL FORMULATION

    Fluid containing nanoparticles flows from left to right through the pipe as shown in Fig. 1. The fluid flow is considered as steady-state and fully developed turbulent, and the mean velocity profile can be given as [18]

    whereuis the flow velocity,*uis the friction velocity,νis the fluid kinematic viscosity,Randrare shown in Fig. 1.

    Figure 1 Pipe flow and the coordinate system

    The nanoparticles undergo diffusion and coagulation in turbulent flow, and their clustering is governed by the general dynamic population balance equation [19]:

    wheren=n(v,x,t) is the particle size distribution function based on cluster volume,ujis the flow velocity,Dis the coefficient of diffusivity,βis the collision coefficient which is dependent on particle size,vandvare the two classes of particles of volumes. On the left-hand side of Eq. (2) the first term is the time rate of change of particle concentration and the second term represents the fluid transport. On the right-hand side the first term is the diffusion of particle, the second term represents the production rate of particles of volumevby collision of particles of volumesv, and the third term gives the disappearance rate of particle cluster having volumevby collisions with particles of all sizes.

    A moment method is employed to obtain the moments of the nanoparticle distribution using the solution of the general dynamic equation. The general moment of the nanoparticle distribution function,Mk,is defined as:vvand

    wherekis the order of the moment. Then the number of particles, dN, per unit volume of gas at a given position in space and time in the particle volume ranging from v to v+dv is dN=n(v, t)dv, and the volume of particles, dV, per unit volume of gas in the particle volume ranging from v to v+dv is dV=vn(v, t)dv.Therefore, the zero moment is:

    另一方面,本文也認為,喜歡遷移因而在多個地域留下后代的古人,也就在不同地區(qū)留下了他的基因,當一個地區(qū)發(fā)生突然毀滅性的災變時,其他地方的基因能得以流傳。也許這種事件發(fā)生的概率很小,但考慮到進化時間的漫長,這種看似微不足道的細小差異在大浪淘沙的漫長人類演進旅途中,由于其初始條件的敏感性,這種生存優(yōu)勢會起到重要的作用。所以喜歡遷移的古人繁殖、生存的機會更多。反之,由于自然選擇的作用,不喜歡移動的古人的基因則比較容易湮滅。

    which represents the cumulative particle number distribution and is the total concentration of particles of all volumes at a given point. The first moment is

    which represents the total volumes of particles of all volumes, and is proportional to the total particle mass for a definite particle density. The second moment is proportional to the light scattering by particles when they are much smaller than the wavelength of the incident light. A non-dimensionalized transport equation for the kth moment Mkis expressed as [17]

    In the present study, a unimodal lognormal particle size distribution is used [17]:

    where Npis the total particle number concentration; vgand σgare the geometric mean volume and standard deviation, respectively, and they are expressed as [20]

    where kBis the Boltzmann constant, T is the fluid temperature, ρgis the gas density,c and β are the mean thermal speed and accommodation coefficient,respectively. The fractional moment appearing in Eq.(6) is given by [20]

    The source termkMω˙ in Eq. (6) is expressed as [17]

    where L is the characteristic length scale, i.e., pipe diameter, Φ is the initial particle volume fraction,g,0v is determined by substituting,0kM into Eq. (8), the collision frequency A1is

    3 RESULTS AND DISCUSSION

    3.1 Validation of computation code and numerical parameters

    The computation grid is comprised of 40(r)×50(θ)×80(z)=160000 grid points in a cylindrical coordinate system as shown in Fig. 1. We made a computing program to solve above equations. The extensive tests and refinements of the independence and suitability of the grid size for the convergence results were performed, i.e., the relative difference between the numerical results of M0and M1for different grid resolution are less than 10-3when changing grid points from 30 to 50 in axial direction, 40 to 60 in circumferential and 70 to 90 in radial direction, respectively. The tests were performed with 50 time step.

    In order to validate the computation methods and codes, the numerical particle concentration distribution along the radial direction in the present study is compared with that given by Ding and Wen [6] as shown in Fig. 2. It can be seen that the two results are in agreement.

    Figure 2 Comparison of particle concentration distribution at Re=15000● present simulation; ■ Ding and Wen’s numerical simulation [6]

    The fluid is gas atT=293 K with the viscosityνand the densityρof 15×10-6m2·s-1and 1.205 kg·m-3,respectively. The flow Reynolds number is 15000. The Boltzmann constantkBis 1.38×10-23J·K-1, the mean thermal speedcis 500 m·s-1, the accommodation coefficientβis 0.9 [20]. The dimensionless time step Δtis kept constant as 0.05, which is 0.1 s. The flow is initially populated with the particles ofdp=1 nm(correspondingScM3.17) within the whole pipe. As the particle is initially monodisperse, the geometric standard deviation is initialized toσg,0=1, and each initial particle volume isv=π / 6 × 1 0-27m3. The

    g,0

    reference values of moments are determined byM0,0=Φ/vg,0,M1,0=ΦandM2,0=Φ×vg,0. The Damk?hler numberDais kept to be 1. The values of other parameters are listed in Table 1. Eq. (6) is solved using an explicit finite difference scheme which is first order accurate in time and second order accurate in space. The zero gradient boundary conditions are applied to the walls. Distributions of particle parameters are symmetric about the pipe center line, so only distributions in half cross-section are given.

    Table 1 Initial parameters

    3.2 Evolution of particle number concentration

    Figure 3 Evolution of particle number concentration along the radial direction with time (ScM=3.17 and Da=1)■ t=0 s; ● t=10 s; ▲ t=16 s; ▼ t=22 s; ◆ t=30 s

    The distribution of particle number concentration is affected by the particle coagulation and diffusion induced by Brownian motion and shear flow. The evolution of particle number concentration along the radial direction with time is shown in Fig. 3. A non-uniform distribution of particle number concentration is seen along the radial direction,i.e., the particle number concentration is larger than the initial value in the region from the pipe center tor/R=0.4,but less than the initial value in the region fromr/R=0.4 to the wall. This means that particles move to the pipe center. This phenomenon becomes more obvious as time goes by. The non-uniformity is mainly because of the stronger contributions of the shearinduced particle migration than that of the Brownian motion. The net result of the Brownian motion is redistribution of particles between higher concentration regions to lower concentration regions, which exhibits as diffusion. The particles in the regions near the wall undergo large shear-induced force because there exists larger velocity gradient. On the one hand, migration of particles to the pipe center makes the increase of particle number concentration. On the other hand, particle coagulation makes the decrease of particle number concentration. The net result of these two mechanisms makes the increase of particle number concentration as shown in Fig. 3 because the value of particle number concentration is larger than the initial value in the region from the pipe center tor/R=0.4. The particle number concentration in the region fromr/R=0.4 to the wall is less than the initial value because some particles move to the pipe center, and other particles coagulate. Lamet al. [22] investigated particle migration in concentrated suspensions of micro-sized particles, and found that particle concentration was the lowest at the wall, rapidly increased to the maximum atr/R~0.8-0.9, but decreased slightly towards the pipe center. Therefore, the migration properties for nano-sized particles are different from that for micro-sized particles.

    3.3 Evolution of total particle mass

    Figure 4 Evolution of total particle mass along the radial direction with time (ScM=3.17 and Da=1)■ t=0 s; ● t=10 s; ▲ t=16 s; ▼ t=22 s; ◆ t=30 s

    The radial variation of total particle mass at different times is shown in Fig. 4. In the present study no particle deposition is assumed, hence the total particle mass in the flow is conserved. A non-uniform distribution of total particle mass along the radial direction is obvious. The total particle mass increases from the wall to the pipe center. The non-uniformity tends to be obvious as time goes by, and the total particle mass in the whole flow remains unchanged even though the particles number concentration and particle diameter will change because of particle coagulation. Particles move to the pipe center, which results in an increase of total particle mass in the region from the pipe center tor/R=0.4 and a decrease in the region formr/R=0.4 to the wall. Total particle mass consists of flow velocity and mass density distribution. The flow velocity has a larger effect on the total particle mass because the total particle mass is proportional to the flow velocity while initial mass density distribution is homogeneous.

    3.4 Evolution of particle diameter

    Particle coagulation results in the growth of the particle cluster, which is quantified by the particle diameterdp:

    thendp=(M1/M0)1/3nm.

    In an initially monodisperse particle field, coagulation will produces particles of various sizes and increases the size of each particle. As the coagulation proceeds, therefore, particle diameter will increase throughout the flow domain. Fig. 5 shows the variation of the particle diameter along the radial direction. As time goes by particle diameterdpgrows from an initial value of 1 to the different values depending on the radial position. The largest particles are found in the pipe center because the migration of particles to the pipe center may encourage coagulation due to higher local concentration. These coagulated particles are less likely to be broken due to low shear rate in the region near the pipe center.

    Figure 5 Evolution of particle diameter along the radial direction with time (ScM=3.17 and Da=1)■ t=0 s; ● t=10 s; ▲ t=16 s; ▼ t=22 s; ◆ t=30 s

    3.5 Effect of Schmidt number on the particle number concentration and total particle mass

    The Schmidt numberScMrepresents the ratio of the gas molecular diffusion to the particle diffusion. In the present study, the related parameters are constant for gas, soScMis determined only by the particle diameterdp. Assumed that the flow is initially populated withdp=1, 1.5 and 2 nm within the pipe cross-sections,then the corresponding Schmidt numbersScMare 3.17,7.13 and 12.68, respectively. The geometric standard deviation is initialized toσg,0=1, and each initial particle volumevg,0is π/6×10-27, and 4π/3×10-27m3fordp=1, 1.5 and 2 nm, respectively. When the effect ofScMis considered,Dais kept to be 1, the initial particle volume fractionΦis approximately 1.8×10-11,5×10-11and 10-10fordp=1, 1.5 and 2 nm, respectively, based onDain Eq. (14). The values of other initial parameters are listed in Table 2.

    Figures 6 and 7 show the distribution of particle number concentration and total particle mass along the radial direction att=30 s with different Schmidt numbers. It can be seen that the particle number concentration and total particle mass decrease with the increase ofScMin the region near the pipe center. Thereason is that sinceScMrepresents the ratio of the gas molecular diffusion to the particle diffusion, largerScMcorresponds to the smaller particle diffusion,i.e.,fewer particles move to the pipe center. Besides, the collision frequency is inversely proportional to the particle inertial as shown in Eq. (16),i.e., probability of coagulation is less for large particles than for small particles, so that the nanoparticles with lower Schmidt number correspond to many different cluster sizes,i.e.more polydispersity.

    Table 2 Initial parameters

    Figure 6 Effect of Schmidt number on the particle number concentration at t=30 s (Da=1)◆ ScM=3.17; ● ScM=7.13; ▲ ScM=12.68

    Figure 7 Effect of Schmidt number on total particle mass at t=30 s (Da=1)◆ ScM=3.17; ● ScM=7.13; ▲ ScM=12.68

    Table 3 Initial parameters

    3.6 Effect of Damk?hler number on the particle diameter and geometric standard deviation

    IfScMis kept to be 3.17 for the particles withdp=1 nm, then the initial particle volumevg,0is π/6×10-27m3. The values of other parameters are listed in Table 3.

    Effect of the Damk?hler number can be quantified by considering the radial distribution of the moment variables att=30 s forDa=0.5, 1 and 2. Fig. 8 shows the distribution of particle diameter along the radial direction att=30 s for different Damk?hler numbers. It can be seen that the particle diameter increases with the increase ofDaat the same radial position. For three different Damk?hler numbers the particle diameter decreases slightly from the pipe center to the wall, which illustrates that larger particles accumulate near the pipe center. The effect of Damk?hler number on the geometric standard deviation is shown in Fig. 9. We can see that the geometric standard deviation also grows with the increase ofDaat the same radial position. The increase in geometric standard deviation reveals that there is increased difference in particle diameter because of the particle coagulation.

    Figure 8 Effect of the Damk?hler number on the distributions of particle diameter at t=30 s (ScM=3.17)● Da=0.5; ◆ Da=1; ▲ Da=2

    Figure 9 Effect of the Damk?hler number on the geometric standard deviation at t=30 s (ScM=3.17)● Da=0.5; ◆ Da=1; ▲ Da=2

    4 CONCLUSIONS

    Evolution of particle number concentration, total particle mass, particle diameter and particle polydispersity considering particle coagulation and dispersion in a fully developed turbulent pipe for different Schmidt numbers and Damk?hler numbers is studied with the moment method. The results show that particles move to pipe center and particle number concentration distributes non-uniformly along radial direction,which becomes more obvious as time goes by. The migration property for nano-sized particles is different from that for micro-sized particles. A non-uniform distribution of total particle mass along radial direction is also obvious. Total particle mass increases from the wall to the pipe center. The non-uniformity tends to be obvious. In an initially monodisperse particle field, coagulation will produces particles of various sizes and increases the size of each particle. As time progresses, particle diameter grows from an initial value to the different values depending on the radial position. The largest particles are found in the pipe center. Particle number concentration and total particle mass decrease with the increase of Schmidt number in the region near the pipe center. Probability of coagulation is less for large particles than for small particles so that the particles with lower Schmidt number are of many different sizes,i.e. more polydispersity. Particle diameter and geometric standard deviation increase with the increase of Damk?hler number at the same radial position. Increase in geometric standard deviation reveals that there is increased difference in particle diameter because of the particle coagulation.

    NOMENCLATURE

    Φinitial particle volume fraction

    1 Kittelson, D.B., “Engines and nanoparticles: A review”,J.Aerosol Sci., 29, 575-588 (1998).

    2 Yu, M.Z., Lin, J.Z., Chen, L.H., Chan, T.L., “Large eddy simulation of a planar jet flow with nanoparticle coagulation”,Acta Mech.Sinica, 22 (4), 293-300 (2006).

    3 Chan, T.L., Lin, J.Z., Zhou, K., Chan, C.K., “Simultaneous numerical simulation of nano and fine particle coagulation and dispersion in a round jet”,J.AerosolSci., 37, 1545-1561 (2006).

    4 Yu, M.Z., Lin, J.Z., Chan, T.L., “Numerical simulation of nanoparticle synthesis in diffusion flame reactor”,Powder Technology, 181,9-20 (2008).

    5 Yu, M.Z., Lin, J.Z., Chan, T.L., “Effect of precursor loading on non-spherical TiO2nanoparticle synthesis in a diffusion flame reactor”,Chem.Eng.Sci., 63, 2317-2329 (2008).

    6 Ding, W.L., Wen, D.S., “Particle migration in a flow of nanoparticle suspension”,Powder Technol., 149, 84-92 (2005).

    7 Jiang, S.P., Lee, J.H., Hwang, K.S., Choi, S.U.S., “Particle concentration and tube size dependence of viscosities of Al2O3-water nanofluids flowing through micro- and minitubes”,Appl.Phys.Lett., 91,243112 (2007).

    8 Akbarinia, A., Behzadmehr, A., “Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes”,Appl.Therm.Eng., 27, 1327-1337 (2007).

    9 Mirmasoumi, S., Behzadmehr, A., “Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model”,Appl.Therm.Eng., 28, 717-727 (2008).

    10 Jwo, C.S., Teng, T.P., Wu, D.J., Chang, H., Chen, S.L., “Research on pressure loss of alumina nanofluid flow in a pipe”,J.Chinese Soc.Mech.Eng., 30, 511-517 (2009). (in Chinese)

    11 Lin, J.Z., Lin, P.F., Chen, H.J., “Research on the transport and deposition of nanoparticles in a rotating curved pipe”,Physi.Fluids, 21,122001 (2009).

    12 Peng, H., Ding, G.L., Jiang, W.T., Hu, H.T., Gao, Y.F., “Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube”,Int.J.Refrig.Revue Int.Du Froid, 32, 1756-1764 (2009).

    13 Lin, P.F., Lin, J.Z., “Prediction of nanoparticle transport and deposition in bends”,Appl.Math.Mech.Eng.Ed., 30, 957-968 (2009).

    14 Lai, W.Y., Phelan, P.E., Prasher, R.S., “Pressure-drop viscosity measurements for gamma-Al2O3nanoparticles in water and PG-water mixtures (nanofluids)”,J.Nanosci.Nanotechnol., 10, 8026-8034 (2010).15 Qian, M., Yan, Q., Ni, X.W., Zheng, H.R., “Detection of nanoparticle Brownian motions in a nanofluid using laser speckle velocimetry”,Lasers Eng., 20, 117-128 (2010).

    16 Wright, D.L., Yu, S.C., Shaocai, Y., Kasibhatla, P.S., McGraw, R.,Schwartz, S.E., Saxena, V.K., Yue, G.K., “Retrieval of aerosol properties from moments of the particle size distribution for kernels involving the step function: Cloud droplet activation”,J.AerosolSci.,33, 319-337 (2002).

    17 Settumba, N., Garrick, S.C., “Direct numerical simulation of nanoparticle coagulation in a temporal mixing layerviaa moment method”,J.AerosolSci., 34, 149-167(2003).

    18 Hinze, J.O., Turbulence, McGraw-Hill, USA (1975).

    19 Friedlander, S.K., Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, Wiley, New York (2000).

    20 Pratsinis, S.E., “Simultaneous nucleation, condensation and coagulation in aerosol reactors”,J.Colloid Interface Sci., 124, 416-427(1988).

    21 Suh, S.M., Zachariah, M.R., Girshick, S.L., “Numerical modelling of silicon oxide particle formation and transport in a one-dimensional low-pressure chemical vapor deposition reactor”,J.Aerosol Sci., 33(6), 943-959 (2002).

    22 Lam, Y.C., Chen, X., Tan, K.W., Chai, J.C., Yu, S.C.M., “Numerical investigation of particle migration if Poiseuille flow of composite system”,Composites Science and Technology, 64, 1001-1010 (2004).

    猜你喜歡
    毀滅性災變大浪淘沙
    大浪淘沙,淺談荀況
    智慧、魅力,未有的補充以及“災變”
    雨花(2019年9期)2019-11-20 09:26:59
    灰災變多項式模型的小麥產(chǎn)量預測*
    大浪淘沙農(nóng)資電商何時破局?
    漠視氣候變化會造成“毀滅性”影響
    漠視氣候變化會造成“毀滅性”影響
    怕被人認出
    故事會(2016年21期)2016-11-10 21:15:15
    南充市主要糧油作物重大病蟲害發(fā)生流行及災變規(guī)律研究
    閑話酒吧憚——美國篇
    海外英語(2013年10期)2013-12-10 03:46:22
    閱讀理解
    乱人伦中国视频| 熟女少妇亚洲综合色aaa.| 午夜激情久久久久久久| 美国免费a级毛片| 一边摸一边做爽爽视频免费| 18+在线观看网站| 午夜福利乱码中文字幕| 中文字幕人妻丝袜制服| 最新中文字幕久久久久| 久久韩国三级中文字幕| 午夜精品国产一区二区电影| 另类亚洲欧美激情| av在线老鸭窝| 波多野结衣av一区二区av| videos熟女内射| 亚洲国产毛片av蜜桃av| 久久久久久久亚洲中文字幕| 亚洲,欧美精品.| 国产欧美亚洲国产| 久久精品国产亚洲av高清一级| 国产成人精品无人区| 亚洲av国产av综合av卡| 亚洲欧美精品自产自拍| 国产有黄有色有爽视频| 精品酒店卫生间| 国产又色又爽无遮挡免| 国产色婷婷99| 蜜桃国产av成人99| 日韩伦理黄色片| 永久网站在线| 国产有黄有色有爽视频| 国产又爽黄色视频| 久久精品久久久久久久性| 午夜福利视频精品| 热99国产精品久久久久久7| 99久久精品国产国产毛片| 亚洲美女搞黄在线观看| 夫妻性生交免费视频一级片| 女人精品久久久久毛片| 综合色丁香网| 99久久综合免费| 制服人妻中文乱码| av免费在线看不卡| 十八禁网站网址无遮挡| 少妇被粗大的猛进出69影院| 伊人久久国产一区二区| 国产成人一区二区在线| 婷婷色综合大香蕉| 少妇猛男粗大的猛烈进出视频| 999精品在线视频| 久久亚洲国产成人精品v| 纵有疾风起免费观看全集完整版| 日韩av在线免费看完整版不卡| videos熟女内射| 精品人妻熟女毛片av久久网站| 国产日韩欧美亚洲二区| 女的被弄到高潮叫床怎么办| 2021少妇久久久久久久久久久| 亚洲国产欧美日韩在线播放| 欧美在线黄色| 国产白丝娇喘喷水9色精品| 视频在线观看一区二区三区| 七月丁香在线播放| 亚洲成国产人片在线观看| 国产一区二区 视频在线| 99久久综合免费| 少妇熟女欧美另类| 91成人精品电影| 99re6热这里在线精品视频| videosex国产| 电影成人av| 亚洲欧洲国产日韩| 极品人妻少妇av视频| 国产激情久久老熟女| 久久97久久精品| 人人澡人人妻人| 亚洲国产av影院在线观看| 亚洲av欧美aⅴ国产| 波多野结衣一区麻豆| 免费在线观看黄色视频的| 国产女主播在线喷水免费视频网站| 精品国产一区二区久久| 亚洲激情五月婷婷啪啪| 成人二区视频| 免费久久久久久久精品成人欧美视频| 国产精品偷伦视频观看了| 日韩一区二区视频免费看| 精品人妻熟女毛片av久久网站| 国产精品 国内视频| 午夜av观看不卡| 一本—道久久a久久精品蜜桃钙片| 成人漫画全彩无遮挡| 亚洲四区av| 美女视频免费永久观看网站| 在线观看免费视频网站a站| 国产伦理片在线播放av一区| 人人妻人人澡人人爽人人夜夜| 母亲3免费完整高清在线观看 | 亚洲伊人色综图| h视频一区二区三区| 蜜桃在线观看..| 熟女电影av网| 一级片免费观看大全| 国产一区二区三区av在线| 久久久国产一区二区| 亚洲av免费高清在线观看| 蜜桃国产av成人99| 亚洲欧洲国产日韩| 1024香蕉在线观看| 波多野结衣av一区二区av| 日韩一区二区视频免费看| 制服丝袜香蕉在线| 日韩不卡一区二区三区视频在线| 十分钟在线观看高清视频www| 丰满迷人的少妇在线观看| 丰满少妇做爰视频| 最近手机中文字幕大全| 亚洲精品成人av观看孕妇| 丝袜喷水一区| 亚洲精品一二三| 精品人妻偷拍中文字幕| 国产极品天堂在线| 青草久久国产| 日韩三级伦理在线观看| 91在线精品国自产拍蜜月| 亚洲欧美一区二区三区国产| av线在线观看网站| 老汉色av国产亚洲站长工具| 欧美日韩综合久久久久久| 免费观看在线日韩| 天天操日日干夜夜撸| 久久久亚洲精品成人影院| 精品亚洲乱码少妇综合久久| 精品少妇黑人巨大在线播放| 丝袜人妻中文字幕| 国产高清国产精品国产三级| 免费在线观看视频国产中文字幕亚洲 | 九色亚洲精品在线播放| 欧美日韩精品网址| 欧美 日韩 精品 国产| 日韩一区二区视频免费看| 伦理电影大哥的女人| 丝袜人妻中文字幕| 天堂8中文在线网| 久久久久久久大尺度免费视频| 90打野战视频偷拍视频| 2018国产大陆天天弄谢| 亚洲三区欧美一区| 大陆偷拍与自拍| 一本—道久久a久久精品蜜桃钙片| 曰老女人黄片| 国产欧美亚洲国产| 又粗又硬又长又爽又黄的视频| 日韩 亚洲 欧美在线| 久久av网站| 欧美bdsm另类| 性色avwww在线观看| 久久狼人影院| 国产极品天堂在线| 春色校园在线视频观看| 一区福利在线观看| 国产极品粉嫩免费观看在线| 一本久久精品| 午夜福利,免费看| 国产欧美日韩综合在线一区二区| 精品卡一卡二卡四卡免费| 欧美日韩精品网址| 午夜av观看不卡| 亚洲av日韩在线播放| 超色免费av| 亚洲国产av新网站| 观看av在线不卡| 国产熟女午夜一区二区三区| 久久久久精品久久久久真实原创| 最黄视频免费看| 一区二区av电影网| 国产精品亚洲av一区麻豆 | 亚洲欧美一区二区三区黑人 | 精品久久蜜臀av无| 人妻 亚洲 视频| 另类亚洲欧美激情| 国产精品不卡视频一区二区| 9热在线视频观看99| 国产亚洲av片在线观看秒播厂| videosex国产| 日韩人妻精品一区2区三区| 亚洲精品,欧美精品| 午夜激情久久久久久久| 精品午夜福利在线看| 日韩成人av中文字幕在线观看| 午夜激情av网站| 国产老妇伦熟女老妇高清| 涩涩av久久男人的天堂| 黄片小视频在线播放| 成人手机av| 天天躁日日躁夜夜躁夜夜| 亚洲人成网站在线观看播放| 日本wwww免费看| 亚洲一区中文字幕在线| 亚洲男人天堂网一区| 国产97色在线日韩免费| 97精品久久久久久久久久精品| 捣出白浆h1v1| 亚洲精品国产色婷婷电影| 久久人人97超碰香蕉20202| 亚洲欧美一区二区三区黑人 | 久久久久久免费高清国产稀缺| 国产午夜精品一二区理论片| 亚洲欧美成人综合另类久久久| 不卡av一区二区三区| 熟女av电影| 国产精品秋霞免费鲁丝片| 国产老妇伦熟女老妇高清| 91精品三级在线观看| 少妇的丰满在线观看| 在线免费观看不下载黄p国产| 五月开心婷婷网| 在线观看三级黄色| 99久久人妻综合| 不卡视频在线观看欧美| 色94色欧美一区二区| 免费大片黄手机在线观看| 色网站视频免费| 婷婷色综合大香蕉| 国产亚洲最大av| 男女高潮啪啪啪动态图| 久久精品久久精品一区二区三区| 各种免费的搞黄视频| 人人澡人人妻人| 国产 精品1| 女人高潮潮喷娇喘18禁视频| 寂寞人妻少妇视频99o| 成人18禁高潮啪啪吃奶动态图| www.自偷自拍.com| 91aial.com中文字幕在线观看| 日韩欧美精品免费久久| 国产精品国产av在线观看| 免费播放大片免费观看视频在线观看| 亚洲三区欧美一区| 老鸭窝网址在线观看| 国精品久久久久久国模美| 久久婷婷青草| 99热网站在线观看| 国产精品久久久久久精品古装| 欧美xxⅹ黑人| 国产成人a∨麻豆精品| 日韩一区二区视频免费看| 亚洲欧洲国产日韩| 丝袜在线中文字幕| 日产精品乱码卡一卡2卡三| 99九九在线精品视频| 久久久久久久大尺度免费视频| 午夜免费观看性视频| 国产一区二区激情短视频 | 男女午夜视频在线观看| 亚洲激情五月婷婷啪啪| 国产片特级美女逼逼视频| 欧美日本中文国产一区发布| 国产片内射在线| 日韩制服丝袜自拍偷拍| 一区在线观看完整版| 亚洲一区中文字幕在线| 免费观看av网站的网址| av国产久精品久网站免费入址| 在线观看免费视频网站a站| 亚洲人成77777在线视频| 国产女主播在线喷水免费视频网站| 婷婷色综合大香蕉| 丰满迷人的少妇在线观看| 中文乱码字字幕精品一区二区三区| 飞空精品影院首页| 久久久久久久国产电影| 亚洲国产毛片av蜜桃av| 亚洲成色77777| 最黄视频免费看| 亚洲 欧美一区二区三区| 一二三四在线观看免费中文在| 久久女婷五月综合色啪小说| 观看美女的网站| 亚洲三级黄色毛片| 视频区图区小说| 一级黄片播放器| 寂寞人妻少妇视频99o| 久久国产亚洲av麻豆专区| av视频免费观看在线观看| 18禁裸乳无遮挡动漫免费视频| 国产精品蜜桃在线观看| 免费人妻精品一区二区三区视频| a 毛片基地| 成人亚洲精品一区在线观看| 日本av手机在线免费观看| 精品视频人人做人人爽| 在线观看三级黄色| 少妇精品久久久久久久| 国产97色在线日韩免费| 亚洲图色成人| 中文字幕人妻熟女乱码| 丰满饥渴人妻一区二区三| 满18在线观看网站| av不卡在线播放| 90打野战视频偷拍视频| 国产免费视频播放在线视频| 精品少妇黑人巨大在线播放| 天堂8中文在线网| 两个人免费观看高清视频| 七月丁香在线播放| 女人高潮潮喷娇喘18禁视频| 极品人妻少妇av视频| 晚上一个人看的免费电影| 男女边摸边吃奶| 在现免费观看毛片| 黄频高清免费视频| 美国免费a级毛片| 女性生殖器流出的白浆| 久久 成人 亚洲| 熟女av电影| 欧美国产精品一级二级三级| 欧美在线黄色| 久久久久视频综合| 久久久久久久亚洲中文字幕| 国产成人免费观看mmmm| 精品人妻一区二区三区麻豆| 亚洲av成人精品一二三区| 久热久热在线精品观看| 亚洲天堂av无毛| 在线免费观看不下载黄p国产| 久久精品国产亚洲av高清一级| 午夜91福利影院| 日韩,欧美,国产一区二区三区| 亚洲av电影在线观看一区二区三区| 久久精品aⅴ一区二区三区四区 | 超碰97精品在线观看| 视频在线观看一区二区三区| 侵犯人妻中文字幕一二三四区| 天堂中文最新版在线下载| 美女福利国产在线| 亚洲经典国产精华液单| 一二三四中文在线观看免费高清| 日本黄色日本黄色录像| 久久97久久精品| 亚洲在久久综合| 亚洲精品国产色婷婷电影| 亚洲精品久久成人aⅴ小说| 大码成人一级视频| 亚洲国产毛片av蜜桃av| 精品午夜福利在线看| 久久久a久久爽久久v久久| 性少妇av在线| 精品亚洲成国产av| av免费在线看不卡| 涩涩av久久男人的天堂| 一本色道久久久久久精品综合| 久久人人97超碰香蕉20202| 美女主播在线视频| 黄色 视频免费看| 亚洲人成电影观看| 热re99久久精品国产66热6| 18在线观看网站| 在线免费观看不下载黄p国产| 久久久久久久久久久久大奶| 人妻少妇偷人精品九色| 精品福利永久在线观看| 欧美日韩av久久| 欧美xxⅹ黑人| 亚洲国产色片| 一级,二级,三级黄色视频| 水蜜桃什么品种好| freevideosex欧美| 人妻系列 视频| 汤姆久久久久久久影院中文字幕| 亚洲五月色婷婷综合| 亚洲精品自拍成人| 久久人人爽人人片av| 亚洲精品日韩在线中文字幕| 国产亚洲一区二区精品| 欧美精品一区二区免费开放| 性色av一级| 91aial.com中文字幕在线观看| 久久久精品区二区三区| 婷婷色综合大香蕉| 日韩制服丝袜自拍偷拍| av免费在线看不卡| 欧美在线黄色| www.熟女人妻精品国产| 久久毛片免费看一区二区三区| 精品一区在线观看国产| 黄片小视频在线播放| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av涩爱| 免费观看性生交大片5| 91精品三级在线观看| 久久青草综合色| 在线精品无人区一区二区三| 久久精品久久精品一区二区三区| 久久久国产精品麻豆| 久久午夜福利片| 国产精品一区二区在线观看99| 91精品伊人久久大香线蕉| 精品酒店卫生间| 色播在线永久视频| 精品国产露脸久久av麻豆| 中文字幕精品免费在线观看视频| 寂寞人妻少妇视频99o| 久久久久网色| 日韩av不卡免费在线播放| 水蜜桃什么品种好| 久久99蜜桃精品久久| 国产亚洲一区二区精品| 99热国产这里只有精品6| 亚洲精品国产av蜜桃| 国产精品秋霞免费鲁丝片| videos熟女内射| av又黄又爽大尺度在线免费看| 国产精品麻豆人妻色哟哟久久| 一本色道久久久久久精品综合| 日本欧美视频一区| 男女边吃奶边做爰视频| 国产毛片在线视频| 91在线精品国自产拍蜜月| 国产白丝娇喘喷水9色精品| 国产精品久久久久久av不卡| 免费观看av网站的网址| 狂野欧美激情性bbbbbb| 免费人妻精品一区二区三区视频| 久久久久久人人人人人| 亚洲美女视频黄频| 午夜福利视频在线观看免费| 又粗又硬又长又爽又黄的视频| 精品人妻在线不人妻| 国产片内射在线| 国产精品二区激情视频| 亚洲国产成人一精品久久久| 国产成人免费观看mmmm| 久久这里有精品视频免费| 欧美少妇被猛烈插入视频| 久久国产精品男人的天堂亚洲| 欧美精品国产亚洲| 欧美老熟妇乱子伦牲交| 国产成人免费无遮挡视频| 亚洲成人av在线免费| 搡老乐熟女国产| 熟妇人妻不卡中文字幕| 国产成人精品无人区| 夫妻午夜视频| 久久久久久人妻| 国产成人精品久久二区二区91 | 制服丝袜香蕉在线| 少妇猛男粗大的猛烈进出视频| 久久毛片免费看一区二区三区| 亚洲国产欧美在线一区| 十八禁高潮呻吟视频| 国产熟女午夜一区二区三区| 韩国av在线不卡| 午夜福利在线观看免费完整高清在| 在线 av 中文字幕| 久久精品亚洲av国产电影网| 纯流量卡能插随身wifi吗| 一二三四在线观看免费中文在| 男女啪啪激烈高潮av片| 性色av一级| 又大又黄又爽视频免费| 免费少妇av软件| 免费av中文字幕在线| 久久精品国产亚洲av涩爱| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av高清一级| 免费黄色在线免费观看| 26uuu在线亚洲综合色| 精品人妻一区二区三区麻豆| √禁漫天堂资源中文www| 中文字幕人妻丝袜一区二区 | 熟妇人妻不卡中文字幕| 亚洲国产欧美在线一区| 国产毛片在线视频| 午夜91福利影院| 交换朋友夫妻互换小说| 美女视频免费永久观看网站| 最近最新中文字幕免费大全7| 秋霞伦理黄片| 久久97久久精品| 中文字幕另类日韩欧美亚洲嫩草| 九色亚洲精品在线播放| 欧美日韩一级在线毛片| av在线老鸭窝| 亚洲国产精品一区三区| 久久国产精品大桥未久av| 色婷婷久久久亚洲欧美| 只有这里有精品99| 女人高潮潮喷娇喘18禁视频| 男女高潮啪啪啪动态图| 伦理电影大哥的女人| 欧美国产精品va在线观看不卡| 美女大奶头黄色视频| 热re99久久精品国产66热6| 精品一区二区免费观看| 成年女人在线观看亚洲视频| 啦啦啦中文免费视频观看日本| 香蕉丝袜av| 狂野欧美激情性bbbbbb| 日韩精品有码人妻一区| 国产又爽黄色视频| 校园人妻丝袜中文字幕| 丝袜美腿诱惑在线| 在线免费观看不下载黄p国产| 国产欧美日韩综合在线一区二区| 精品国产一区二区三区四区第35| 两个人看的免费小视频| 波野结衣二区三区在线| 狂野欧美激情性bbbbbb| 一区二区av电影网| 考比视频在线观看| 亚洲成人手机| 麻豆av在线久日| 中文字幕亚洲精品专区| 欧美日韩亚洲国产一区二区在线观看 | 国产视频首页在线观看| 国产精品一区二区在线观看99| 人妻少妇偷人精品九色| 国产欧美日韩综合在线一区二区| 日韩电影二区| 日日摸夜夜添夜夜爱| 成人毛片60女人毛片免费| 性色av一级| 日韩大片免费观看网站| 人人妻人人爽人人添夜夜欢视频| 午夜老司机福利剧场| 婷婷色麻豆天堂久久| 久久人人97超碰香蕉20202| 国产男女内射视频| 欧美日本中文国产一区发布| 久久久久网色| 99热国产这里只有精品6| 国产精品香港三级国产av潘金莲 | www.精华液| 日本黄色日本黄色录像| 成年人午夜在线观看视频| 街头女战士在线观看网站| 高清在线视频一区二区三区| www.熟女人妻精品国产| 老司机影院毛片| 精品少妇一区二区三区视频日本电影 | 麻豆av在线久日| 亚洲av在线观看美女高潮| 国产精品三级大全| 人人妻人人澡人人爽人人夜夜| 国产精品免费视频内射| 亚洲伊人久久精品综合| 熟女av电影| 一本大道久久a久久精品| 中文欧美无线码| 国产亚洲精品第一综合不卡| 亚洲情色 制服丝袜| 日本-黄色视频高清免费观看| 成人二区视频| 久久久国产一区二区| 国产在线免费精品| 一级a爱视频在线免费观看| 日韩制服骚丝袜av| 久久亚洲国产成人精品v| 亚洲精品国产av成人精品| 欧美亚洲 丝袜 人妻 在线| 亚洲国产精品国产精品| 久久热在线av| 寂寞人妻少妇视频99o| 久久久久久人人人人人| 夫妻午夜视频| 欧美日韩综合久久久久久| 人妻系列 视频| 成人国产av品久久久| 精品人妻在线不人妻| 久久热在线av| 最近最新中文字幕大全免费视频 | 国产乱来视频区| av免费在线看不卡| 国产探花极品一区二区| 女性被躁到高潮视频| 男人操女人黄网站| 97在线人人人人妻| 2018国产大陆天天弄谢| 日日爽夜夜爽网站| a级片在线免费高清观看视频| 男女国产视频网站| 国产一区二区三区综合在线观看| 亚洲,一卡二卡三卡| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩av久久| 哪个播放器可以免费观看大片| 亚洲伊人色综图| 中文精品一卡2卡3卡4更新| 高清视频免费观看一区二区| 好男人视频免费观看在线| 电影成人av| 女人被躁到高潮嗷嗷叫费观| 亚洲av.av天堂| 午夜免费男女啪啪视频观看| 亚洲情色 制服丝袜| 亚洲成色77777| 水蜜桃什么品种好| 免费在线观看黄色视频的| 巨乳人妻的诱惑在线观看| 亚洲精品国产色婷婷电影| 深夜精品福利| 嫩草影院入口| 亚洲激情五月婷婷啪啪| www.自偷自拍.com| 国产精品免费大片| 欧美人与善性xxx| 高清欧美精品videossex| 91国产中文字幕| 精品亚洲乱码少妇综合久久| 久久久精品94久久精品| av有码第一页| 亚洲欧美中文字幕日韩二区| 国产精品一国产av| 一级爰片在线观看|