• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three Dimensional Numerical Simulation of Convection-Condensation of Vapor with High Concentration Air in Tube with Inserts*

    2012-03-22 10:10:34CUIYongzhang崔永章TIANMaocheng田茂誠ZHANGLinhua張林華LIGuangpeng李廣鵬andZHUJianbin朱建賓KeyLaboratoryofBuildingEnergyConservationTechniqueofShandongProvinceSchoolofThermalEngineeringShandongJianzhuUniversityJinan500China
    關(guān)鍵詞:李廣

    CUI Yongzhang (崔永章)**,TIAN Maocheng (田茂誠), ZHANG Linhua (張林華)LI Guangpeng (李廣鵬) and ZHU Jianbin (朱建賓) Key Laboratory of Building Energy Conservation Technique of Shandong Province, School of Thermal Engineering, Shandong Jianzhu University, Jinan 500 China

    2 School of Energy & Power Engineering, Shandong University, Jinan 250061, China

    1 INTRODUCTION

    Vapor condensation with high concentration air plays an important role in the heat transfer processes[1-5], such as condensation of wet flue gas and sea water desalting with saturated moist air. It is known that air markedly reduces the condensation rate, since the air moves to the surface and accumulates there as an air-rich layer. The vapor must diffuse through the air layer and condense at the wall surface at dew point temperature, releasing both sensible and latent heats.Thus the process is a combined heat and mass transfer problem governed by mass, momentum and energy balance equations for the mixture and diffusion equation for vapor species.

    As condensation acts as a sink of mass and energy,it influences physical phenomena over the entire flow domain. Three approaches are usually used to model vapor condensation with or without air: (1) models based on experimental correlations [6-8], (2) mechanistic models based on the heat and mass transfer analogy[8-11], and (3) other mechanistic models aiming to solve the governing equations in the diffusion boundary and film [12-18].

    Models based on experimental correlations [6, 7]are applied to the cells adjacent to the condensation surface, with some physical variables pertaining to the bulk flow. One of the problems is to select appreciate values of the bulk flow parameters and cell width. Ivo et al. [7] examined the influence of cell width adjacent to condensation surface.

    Model of heat and mass transfer analogy avoids the governing equation in boundary layer. Martin et al. [8]compared four film condensation models, and showed that models based on correlation works badly under their experimental conditions, while mechanism models based on the diffusion layer theory work well under numerous conditions, but the algorithm is very complicated. Volchkov et al. [9] concluded that the Reynolds analogy is valid under flow core xv<0.2. At higher vapor concentration the analogy is violated and the assumption of Le=1 can no longer be used. Shripad et al. [10] used an average condensation velocity to describe interfacial velocity. Krzysztof et al. [11]used diffusion layer approximation to simplify control conservation equations, and employed the low Reynolds turbulent model to resolve the near-interface region and to allow for detailed modeling the interfacial mass, momentum and energy transfer.

    Two-phase numerical simulation models [12-18]employed fully coupled boundary layer equations of film and mixture. Automatic adaption was used by Groff et al. [12] to change the film thickness. Chen and Lin [13] proposed a two-phase model considering inertia, pressure gradient and turbulent influences. Riad and Salim [14] developed a condensation rate procedure applying the Fick’s law. Rao et al. [15] simulated the effect of relative humidity, Re and pressure on the gas-liquid interface temperature.

    To enhance condensation heat transfer, a tube with edgefold-twisted-tape (ETT) inserts was used and studied experimentally [19, 20]. This study presents three dimensional numerical models for convection condensation thermal-hydraulics of vapor with high concentration of air under transition flow, especially condensation model of vapor condensation on the wall. The effects of parameters are studied with numerical simulation.

    2 MATHEMATICAL MODELING

    2.1 Physical model

    Steady condensation of mixture of vapor and air in a tube with ETT inserts is illustrated schematically in Fig. 1. As superheated mixture flows through the tube, the vapor condenses and forms a thin condensate layer of thicknessδ(x) on tube surface. For small condensation flux and high swirl flow, the thickness of condensation layer is assumed to be as diameter reduction. Other assumptions are made to simplify the problem: (1) the air and water vapor forms ideal binary mixture, and physical properties are function of composition and temperature;(2) the liquid-mixture interface is under saturation conditions; (3) tube temperature is constant, inserts surface is adiabatic so that condensation does not occur; (4) the pressure is assumed to be constant in the across-section of the channel but varies inzdirection due to friction and momentum losses;(5) turbulent momentum losses in vapor condensation is negligible.

    2.2 Governing equations and boundary conditions

    For transient turbulent flow, the equations for continuity, momentum, energy, and species equation in the fluid can be expressed as follows:Mass equation:

    Sis defined as the source term of mass, energy and vapor species for vapor condensates on condensing wall, so condensation model is introduced into the governing equation with user defined function (UDF).

    For accounting for low Reynolds number, mildly swirling flow and the flow near the wall, Realizablek-εmodel and enhanced wall treatment are adopted[21]. The air condition at the inlet is the inlet boundary condition for mass flow rate, while that at the outlet is pressure outlet boundary condition. Tube wall temperature is constant and inserts surface is insulated.The near-wall mesh is created fine enough to resolve down to the laminar sub-layer (y+≈1). The first layer cells are started at 0.1mm from the wall, which are meshed with hexahedron or wedge cells, while the cells in other regions are meshed with tetrahedron cells [19].The grid-dependence of the numerical solution has been checked carefully to ensure the accuracy and validity of the numerical results.

    2.3 Condensation model

    When vapor condensation occurs, there is a net flow of mixture towards the interface, resulting in a convective flow to the interface. According to the mass balance of vapor at the interface between mixture and condensation film, the condensation flux equals to the vapor transported with mixture motion and diffusion transport (Fig. 2). For the condensation flux at the wall isni, which is the bulk flow of mixture to the interface, the flux of vapor transported with the bulk flow isniWw. The flux of vapor transported with diffusive isgm(W-Ww). Then, the vapor mass fluxes at the condensing interface can be calculated by

    If the layer of cells near the wall is sufficiently thin, the mass transfer coefficient of vapor species reduces to that in a laminar flow,

    where the diffusion coefficientDof air and vapor

    Figure 1 Convection-condensation heat transfer in a tube with edgefold-twisted-tape inserts 1—condensation film; 2—tape insert; 3—tube wall

    Figure 2 Cells near the condensing wall

    mixture can be calculated by

    The mass fraction of vapor at the interface is calculated from the vapor pressure at the interface.The Antoine equation is used to describe the vapor pressure as a function of the interfacial temperature.

    For hexahedron cells and wedge cells (Fig. 2)near the condensing wall,Wcan be replaced byWcell,so Eq. (6) is rewritten as

    Thus the mass source of mixture with vapor condensation can be calculated by

    According to the mass source, the energy source for vapor condensation is

    The procedure for UDF of mass and energy sources is outlined as follows: (1) Determine the condensation surface in all cells, (2) If the temperature at cell center is higher than that of condensation wall,homogeneous condensation occurs, (3) Calculate vapor pressure, if vapor fraction at cell center is higher than that at wall, evaporation occurs, (4) Calculate the distance between the wall and cell center, mass diffusion and transfer coefficient, cell volume and condensation surface area, (5) Calculate mass source and solve differential equation, (6) Calculate latent heat of vapor and energy source, and solve differential equation.

    3 RESULTS AND DISCUSSION

    For evaluating the condensation model, a 360 mm long tube is used for simulation and experimental test [20]. The edgefold length is 20 mm, twist angle is 15 degree, tape width is 10 mm, and inner diameter is 12 mm. To simulate thermal hydrodynamic performance, the tube is divided into six sections with equal length. Tubes with inner diameter of 11 mm and 13 mm are selected to compare the effect of gap between tube wall and tape edge.

    3.1 Condensation model validation

    Condensation mass flux predicted by the condensation model, heat and mass analogy model and experiment are illustrated in Fig. 3. Condensation mass fluxes from the condensation model are 5.5%-10.7%lower than experimental results, because of the effects of coarse condensation layer and water accumulation at inserts and wall. The condensation mass flux from the heat and mass transfer analogy is 43%-62% higher than experimental results, due to the variation of mixture composition and velocity along the tube. The calculatedPrandScof mixture along the tube length are illustrated in Fig. 4, and the vapor fraction is showed in Fig. 5.

    Figure 3 Comparison of condensation mass flux■ condensation model; ● heat and mass analogy; ▲ experiment

    Figure 4 Pr and Sc along tube lengthPr: ■ condensation model; ● heat and mass analogy Sc: ▲ condensation model; ▼ heat and mass analogy

    Figure 5 Vapor volume fractions along tube length

    Pressure drops from the condensation model,heat and mass analogy and experiment are illustrated in Fig. 6. The pressure drop from condensation model is 30-41 Pa lower than experimental results, since the water layer accumulated at the surface increases turbulent loss in the experiment. The pressure drop from heat and mass transfer analogy is higher than experimental results, due to the decrease of flux mass along the tube length.

    Figure 6 Comparison of pressure drop■ condensation model; ● heat and mass analogy; ▲ experiment

    3.2 Condensation layer thickness

    As assumed in physical model, the condensation layer is in equivalent thickness and as a diameter reduction. The experimental condensate layer profile is shown in Fig. 7 (a). According to the sectional condensation mass flux and condensate velocity along the tube length, the thickness of condensate layer can be simply calculated. From the experimental measurement, water velocity changed from 0.005 m·s-1to 0.02 m·s-1, so the average valve is assumed as 0.01 m·s-1.Under conditions ofuin=3-11 m·s-1,Tw=303 K, andTin=373 K,xv,in=0.15, the thickness of water layer from simulation is shown in Fig. 8. The thickness is between 0.02 mm and 0.16 mm. With the assumption that the condensation water drips to the tube base such as in Fig. 7 (b), the thickness is from 0.1 mm to 0.6 mm.

    Figure 7 Condensate profile in tube

    Figure 8 Condensate thicknesses at different vapor mass fraction■ 0.15%; ● 0.18%; ▲ 0.21%; ▼ 0.24%; ◆ 0.27%

    3.3 Gap width between tape and tube

    Figure 9 shows the effect of the gap width between tap and tube on heat transfer performance under simulation conditions:uin=3-11 m·s-1,Tw=303 K,andTin=373 K,xv,in=0.15. Asbincreases,qconvandqtotincreases initially and then decreases, whileqcondincreases sharply and then decrease slightly, due to the increase of velocity passing through the gap and the decrease of main velocity asbincreases. Fig. 10 shows thatqcond/qtotincreases asbincreases, sinceqconvdecreases whilesqcondchanges little. From condensation and total heat transfer, gap width of 1 mm is an optimal gap width.

    Figure 9 Convection, condensation and total heat with different gap widthconvective heat: ▼ 0.5 mm; ◆ 1.0 mm; 1.5 mmcondensation heat: ■ 0.5 mm; ● 1.0 mm; ▲ 1.5 mmtotal heat: 0.5 mm; ☆ 1.0 mm; ★ 1.5 mm

    Figure 10 Ratio of condensation and total heat for different gap width■ 0.5 mm; ● 1.0 mm; ▲ 1.5 mm

    For different gap widthb, the pressure drop ΔPat differentuinis showed in Fig. 11. Asuinincreases, ΔPincreases. Whenbincreases from 0.5 mm to 1.0 mm,the velocity through the gap increases, so the pressure drop increases at tape tip. Whenbchanges from 1.0 mm to 1.5 mm, the velocity decreases, so the pressure drop decreases.

    Figure 11 Pressure drop versus mixture inlet velocity for different gap width■ 0.5 mm; ● 1.0 mm; ▲ 1.5 mm

    3.4 Operating parameters

    3.4.1Vapor fraction

    For simulation conditions:uin=5 m·s-1,Tw=303 K,Tin=373 K, andxv,in=0.15-0.27. Fig. 12 showsqtotandqcond/qtot. Whenqconvchanges from 26.2 W to 27.7 W,qcondchanges from 71.8 W to 159.7 W, andqcond/qtotchanges from 73% to 85%.xv,inhas a significant effect onqcondbut has little effect onqconv. Fig. 13 shows that ΔPchanges from 94.6 Pa to 74.8 Pa, whiles friction factorfis constantly 0.22, since the flow velocity decreases when vapor condensation mass increases withxv,in.

    Figure 12 Ratio of condensation and total heat for different vapor inlet fractions■ total; ● ratio of condensation and total heat

    Figure 13 Pressure drop and friction factor for different inlet vapor factions■ pressure drop; ● friction factor

    3.4.2Wall temperature

    With simulation conditions:uin=5 m·s-1,xv,in=0.15 andTin=373 K,Tw=303-323 K,qtotandqcond/qtotat different wall temperatures are shown in Fig. 14. AsTwincreases,qconvandqconddecrease, andqcond/qtotdecreases from 78% to 72%. ThusTwhas a significant effect on vapor condensation.

    Figure 14 Total heat and ratio of condensation and total heat at different wall temperature■ total; ● ratio of condensation and total heat

    3.4.3Inlet temperature of mixture

    For simulation conditions:uin=5 m·s-1,xv,in=0.18 andTw=303 K,Tin=363-393 K, the effect of inlet temperature of mixture on the heat transfer is showed in Fig. 15. Whenqconvchanges from 22.8 W to 38.1 W,qcondchanges from 88.7 W to 97.1 W,qcond/qtotdecreases 80%-72%. WhenTinis increased 5 K,qconvrises 7%-10.2%, butqcondrise only 0.6%-2.1%. ThusTinmainly affectsqconvunder the conditions.

    Figure 15 Condensation and total heat at different inlet mixture temperatures★ convective; condensation; ▲ total; ● ratio of condensation and total

    4 CONCLUSIONS

    The numerical solution of vapor surface condensation is presented with UDF of mass and energy sources, and compared with heat and mass transfer analogy and experiment test. The following conclusions can be drawn in the present study.

    (1) The condensation model based on laminar species transport theory can be used to simulate vapor condensation with high concentration air. The condensation mass flux from condensation model is 5.5%-10.7% lower than experimental results. The pressure drop is between the results of experiment and heat and mass transfer analogy.

    (2) As the gap width between the insert and tube increases, convection and condensation heat transfer increase first and then decrease, but the convection heat transfer increases sharply and then decreases slightly. From condensation and total heat transfer, the gap width of 1 mm is an optimal gap width.

    (3) Increasing vapor fraction has a significant effect on condensation heat transfer while it has little effect on the convective heat transfer. Both convection and condensation heat decreases, the ratio of condensation and total heat decreases dramatically with the increase of wall temperature. Mixture inlet temperature mainly affects convection heat transfer.

    NOMENCLATURE

    Asurface or interface area, m2

    bgap width between insert and wall, m

    Ddiffusion coefficient, m2·s-1

    ffriction factor

    gmass transfer coefficient, kg·m-2·s-1

    Hlatent heat of condensation, J·kg-1

    hheat transfer coefficient, W·m-1·K-1

    Jdiffusion flux, kg·m-2·s-1

    llength of tube, m

    Mmolecular mass, kg·mol-1

    nvapor condensation flux, kg·m-2·s-1

    Ppressure, Pa or kPa

    qheat flux, W

    Seenergy source

    Sispecies mass source

    Smmass source

    Ttemperature, K

    umixture velocity, m·s-1

    Vcell volume, m3

    Wvapor mass fraction, %

    xvapor volume fraction, %

    ydistance from cell center to the wall, m

    δcondensate thickness, mm

    λeffective condensation conductivity, W·m-1·K-1τshear stress

    Subscripts

    ave average

    b bold

    cond condensation

    conv convection

    i interface

    in inlet

    m mixture

    out outlet

    sat saturated

    v vapor

    w wall

    1 Jia, L., Peng, X.F., Yan, Y., Sun, J.D., Li, X.P., “Effects of water vapor condensation on the convection heat transfer of wet flue gas in a vertical tube”,Int.J.Heat Mass Transfer, 44 (2), 4257-4265 (2001).

    2 Brouwers, H.J.H, Van, C.W.M., “Heat transfer, condensation and fog formation in cross flow plastic heat exchangers”,Int.J.Heat Mass Transfer, 39 (2), 391-405 (1996).

    3 Ajmal, S., Imran, R.C., Mansoor, H.I., “Numerical simulation of direct-contact condensation from a supersonic steam jet in subcooled water”,Chin.J.Chem.Eng., 18 (4), 577-587 (2010).

    4 Ma, X.H., Chen, J.B., Xu, D.Q., Lin, J.F., “Heat transfer characteristics of dropwise condensation of steam on vertical polymer coated plates”,Chin.J.Chem.Eng., 9 (1), 17-21 (2001).

    5 Wang, C.Y., Tu, C.J., Cai, L., Yan, L., “Condensation heat transfer of vapor-gas mixture in turbulent flow through an annulus”,Chin.J.Chem.Eng., 4 (2), 275-285 (1989).

    6 Wen, L., Liang, M.Z., Zhang, H.W., Cheng, X.H., “Numerical simulation of steam condensation in vertical tube with the presence of non-condensable gas”,J.Shanghai JiaotongUniv., 43 (2), 299-303(2009).

    7 Ivo, K., Miroslav, B., Borut, M., Ivan, B., “Modeling of containment atmosphere mixing and stratification experiment using a CFD approach”,Nuc.Eng.Des., 236 (14), 1682-1692 (2006).

    8 Martin, F., Fernandez, J.A., Benitez, “Comparison of film condensation models in presence of non-condensable gas implemented in a CFD code”,Heat Mass Transfer, 41 (11), 961-976 (2005).

    9 Volchkov, E.P., Terekhov, V.V., Terekhov, V.I., “A numerical study of boundary-layer heat and mass transfer in a forced flow of humid air with surface steam condensation”,Int.J.Heat and Mass Transfer,47 (6), 1473-1481 (2004).

    10 Revankar, S.T., Pollock, D., “Laminar film condensation in a vertical tube in the presence of noncondensable gas”,Applied Mathematical Modeling, 29 (4), 341-359 (2005).

    11 Krzysztof, K., “Mechanistic modeling of water vapor condensation in presence of noncondensable gases”, Ph.D. Thesis, Stockholm Univ., Sweden (2007).

    12 Groff, M.K., Orimiston, S.J., Soliman, H.M., “Numerical solution of film condensation from turbulent flow of vapor-gas mixtures in vertical tubes”,Int.J.Heat and Mass Transfer, 50 (19), 3899-3912 (2007).

    13 Chen, C.K., Lin, Y.T., “Turbulent film condensation in the presence of non-condensable gases over a horizontal tube”,Int.J.Ther.Sci.,48 (9), 1777-1785 (2009).

    14 Riad, B., Salim, M., “Numerical analysis of filmwise condensation in a plate fin-and-tube heat exchanger in presence of non-condensable gas”,Heat Mass Transfer, 45 (12), 1561-1573 (2009).

    15 Rao, V.D., Krishna, V.M., Sharma, K.V., Rao, P.V.J.M., “Convective condensation of vapor in the presence of a non-condensable gas of high concentration in a laminar flow in a vertical pipe”,Int.J.Heat and Mass Transfer, 51 (25), 6090-6101 (2008).

    16 Yu, H., Zhu, J.H., Du, H.M., Xia, S.L., Guan, G.P., “Modeling and simulation of condensation and dehumidifying of high humidity industrial exhaust gases”,J.Chem.Ind.Eng., 56 (8), 1386-1389 (2005).(in Chinese)

    17 Chen, Y.P., Wu, J.F., Shi, M.H., Zhang, C.B., Xiao, C.M., “Three dimension simulation for steady annular condensation in rectangular microchannels”,J.Chem.Ind.Eng., 59 (8), 1923-1929 (2005). (in Chinese)

    18 Siow, E.C., Orimiston, S.J., Soliman, H.M., “A two-phase model for laminar film condensation from steam-air mixtures in vertical parallelplate channels”,Heat and Mass Transfer, 40 (5), 365-375 (2004).

    19 Cui, Y.Z., Tian, M.C., “Three-dimensional numerical simulation of thermal hydraulic performance of a circular tube with edgefold-twisted-tape inserts”,J.Hydrodynamic, 22 (5), 662-670 (2010).

    20 Cui, Y.Z., Tian, M.C., “Thermal and hydrodynamic performance of high humidity gas convection condensation in a tube with edgefold-twisted-tape”,CIESC J., 61 (12), 3092-3099 (2010). (in Chinese)

    21 Peterson, P.F., Schrock, V.E., Kageyama, T., “Diffusion layer theory for turbulent vapor condensation with non-condensable gases”,ASME J.Heat Transfer, 115, 998-1003 (1993).

    猜你喜歡
    李廣
    念(外一首)
    How to Arouse Middle School Students’ Interest in English Study
    速讀·中旬(2018年7期)2018-08-17 07:22:00
    李廣的故事
    隨機微分方程的樣本Lyapunov二次型估計
    An improved potential field method for mobile robot navigation①
    飛將軍李廣
    小伙伴們一起跑
    水中的精靈
    喙嘴龍
    花生
    欧美人与性动交α欧美精品济南到 | 亚洲国产精品一区三区| 国产成人精品一,二区| 日韩不卡一区二区三区视频在线| 久久久久国产精品人妻一区二区| 中文字幕人妻熟女乱码| 成人国语在线视频| 久久久国产一区二区| 国产毛片在线视频| 又粗又硬又长又爽又黄的视频| 九色成人免费人妻av| 久久狼人影院| 亚洲人成77777在线视频| 伦精品一区二区三区| 超碰97精品在线观看| 99久久综合免费| 天天躁夜夜躁狠狠躁躁| 人人妻人人爽人人添夜夜欢视频| 在线观看美女被高潮喷水网站| 亚洲激情五月婷婷啪啪| 男女无遮挡免费网站观看| 最近中文字幕2019免费版| av卡一久久| 欧美精品一区二区免费开放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 制服诱惑二区| 精品亚洲成a人片在线观看| 日韩精品有码人妻一区| 亚洲精品视频女| 国产成人精品在线电影| 国产精品99久久99久久久不卡 | 亚洲精华国产精华液的使用体验| 最近的中文字幕免费完整| 国产精品久久久久久av不卡| 亚洲五月色婷婷综合| √禁漫天堂资源中文www| 桃花免费在线播放| 777米奇影视久久| 日日撸夜夜添| 波多野结衣一区麻豆| 超色免费av| 免费在线观看完整版高清| 97精品久久久久久久久久精品| 午夜福利影视在线免费观看| 哪个播放器可以免费观看大片| 狂野欧美激情性xxxx在线观看| 男女下面插进去视频免费观看 | 亚洲丝袜综合中文字幕| 亚洲精品日本国产第一区| 亚洲欧美成人综合另类久久久| 国产福利在线免费观看视频| 国产高清不卡午夜福利| 免费黄频网站在线观看国产| 国产欧美日韩一区二区三区在线| 51国产日韩欧美| 春色校园在线视频观看| 久久午夜福利片| 国产亚洲午夜精品一区二区久久| 午夜av观看不卡| 一级片免费观看大全| 美女脱内裤让男人舔精品视频| 成人免费观看视频高清| 国精品久久久久久国模美| 777米奇影视久久| 黄片无遮挡物在线观看| 九九在线视频观看精品| a级片在线免费高清观看视频| 亚洲精品国产av蜜桃| 熟女人妻精品中文字幕| 啦啦啦视频在线资源免费观看| 香蕉精品网在线| 欧美精品国产亚洲| 夫妻午夜视频| 亚洲国产精品国产精品| 伊人亚洲综合成人网| 色吧在线观看| 日韩制服丝袜自拍偷拍| 汤姆久久久久久久影院中文字幕| 日韩免费高清中文字幕av| 午夜免费观看性视频| av片东京热男人的天堂| 国产精品久久久久久久久免| 久久99一区二区三区| 欧美日韩国产mv在线观看视频| 成年人免费黄色播放视频| 多毛熟女@视频| 内地一区二区视频在线| 国产国语露脸激情在线看| 自线自在国产av| 久久韩国三级中文字幕| 免费在线观看黄色视频的| 国产成人aa在线观看| 久久久久视频综合| 国产成人精品在线电影| 久久亚洲国产成人精品v| 日本欧美视频一区| 99久国产av精品国产电影| 日韩熟女老妇一区二区性免费视频| 久久久久久人人人人人| 国产一区二区激情短视频 | 伊人亚洲综合成人网| 日韩欧美一区视频在线观看| av黄色大香蕉| 久久韩国三级中文字幕| 亚洲精品乱久久久久久| 日本猛色少妇xxxxx猛交久久| 日产精品乱码卡一卡2卡三| 纵有疾风起免费观看全集完整版| 亚洲精品久久久久久婷婷小说| 欧美日韩成人在线一区二区| 亚洲欧洲国产日韩| 大片电影免费在线观看免费| 香蕉国产在线看| 日日撸夜夜添| 中文天堂在线官网| 纵有疾风起免费观看全集完整版| 美女中出高潮动态图| 国产一区有黄有色的免费视频| 成年av动漫网址| 观看美女的网站| 中文精品一卡2卡3卡4更新| 日韩精品有码人妻一区| 精品一区二区免费观看| 18在线观看网站| 国产精品一国产av| 男女下面插进去视频免费观看 | 搡老乐熟女国产| 亚洲国产最新在线播放| √禁漫天堂资源中文www| 国产精品欧美亚洲77777| 亚洲欧洲日产国产| 人人妻人人添人人爽欧美一区卜| 中文精品一卡2卡3卡4更新| av又黄又爽大尺度在线免费看| 在线观看免费日韩欧美大片| 国产精品成人在线| 亚洲激情五月婷婷啪啪| 久久99一区二区三区| 国产精品偷伦视频观看了| 亚洲一码二码三码区别大吗| 蜜桃在线观看..| av在线app专区| 秋霞在线观看毛片| 亚洲婷婷狠狠爱综合网| 亚洲av电影在线观看一区二区三区| av片东京热男人的天堂| 欧美日韩成人在线一区二区| 久久久久国产网址| 免费少妇av软件| 晚上一个人看的免费电影| av国产久精品久网站免费入址| 国产成人精品婷婷| 亚洲一区二区三区欧美精品| 99热全是精品| 男女国产视频网站| 欧美日韩视频精品一区| 天天操日日干夜夜撸| 人妻一区二区av| 国产亚洲最大av| 大码成人一级视频| 69精品国产乱码久久久| 国产成人精品久久久久久| 国产精品麻豆人妻色哟哟久久| 国产精品秋霞免费鲁丝片| 国产xxxxx性猛交| 国产又爽黄色视频| 亚洲国产成人一精品久久久| 国产伦理片在线播放av一区| 免费黄色在线免费观看| 在线观看三级黄色| 最近最新中文字幕免费大全7| 一级毛片 在线播放| 亚洲美女黄色视频免费看| 久久精品久久久久久久性| 只有这里有精品99| 亚洲精品视频女| 精品人妻熟女毛片av久久网站| 丝袜喷水一区| 国产精品麻豆人妻色哟哟久久| 日本wwww免费看| 汤姆久久久久久久影院中文字幕| 日产精品乱码卡一卡2卡三| 男人操女人黄网站| 观看av在线不卡| 免费不卡的大黄色大毛片视频在线观看| 精品国产一区二区久久| 日韩精品有码人妻一区| 亚洲欧洲国产日韩| 69精品国产乱码久久久| 欧美日韩视频高清一区二区三区二| 大香蕉久久网| 久久久a久久爽久久v久久| 七月丁香在线播放| www.av在线官网国产| 国产成人av激情在线播放| 久久婷婷青草| 亚洲国产最新在线播放| 亚洲色图 男人天堂 中文字幕 | 国产片内射在线| 2021少妇久久久久久久久久久| 久久99一区二区三区| 日韩 亚洲 欧美在线| 色哟哟·www| 五月玫瑰六月丁香| 国产一区亚洲一区在线观看| 中国三级夫妇交换| 国产精品欧美亚洲77777| 精品一区二区免费观看| 国产亚洲欧美精品永久| 满18在线观看网站| 国产白丝娇喘喷水9色精品| 亚洲,欧美精品.| 看免费成人av毛片| 亚洲精品美女久久久久99蜜臀 | 国产精品人妻久久久影院| 免费大片黄手机在线观看| 日日啪夜夜爽| 国产精品一国产av| 水蜜桃什么品种好| 亚洲天堂av无毛| 欧美日韩成人在线一区二区| 国产探花极品一区二区| 宅男免费午夜| 亚洲三级黄色毛片| 日韩一区二区三区影片| 国语对白做爰xxxⅹ性视频网站| 久久国产亚洲av麻豆专区| av在线播放精品| 美女xxoo啪啪120秒动态图| 青青草视频在线视频观看| 天天操日日干夜夜撸| 黑丝袜美女国产一区| 十八禁高潮呻吟视频| 亚洲国产最新在线播放| 各种免费的搞黄视频| av视频免费观看在线观看| 9191精品国产免费久久| 亚洲欧美一区二区三区黑人 | 制服诱惑二区| 97超碰精品成人国产| 麻豆精品久久久久久蜜桃| 男女高潮啪啪啪动态图| 最近中文字幕2019免费版| 欧美成人精品欧美一级黄| 91精品伊人久久大香线蕉| 久久国产精品大桥未久av| 极品少妇高潮喷水抽搐| 美国免费a级毛片| 在线观看三级黄色| 两个人免费观看高清视频| 王馨瑶露胸无遮挡在线观看| 婷婷色麻豆天堂久久| 亚洲精品久久成人aⅴ小说| 亚洲情色 制服丝袜| 免费在线观看黄色视频的| 婷婷色综合大香蕉| 香蕉国产在线看| 在线观看免费日韩欧美大片| 久久久久久久久久久久大奶| 亚洲经典国产精华液单| 伊人久久国产一区二区| 亚洲av综合色区一区| 久久久久精品性色| 免费在线观看黄色视频的| 国产免费一级a男人的天堂| 最近的中文字幕免费完整| 亚洲国产av新网站| 99re6热这里在线精品视频| 国产精品久久久av美女十八| 久久久久久久大尺度免费视频| 国产日韩欧美视频二区| 在线观看美女被高潮喷水网站| 大片电影免费在线观看免费| 成人黄色视频免费在线看| 国产免费福利视频在线观看| 成年人免费黄色播放视频| 久久av网站| 夜夜骑夜夜射夜夜干| 精品国产国语对白av| 精品久久久精品久久久| 久久青草综合色| 青春草亚洲视频在线观看| 久久久精品94久久精品| 精品一区二区三区四区五区乱码 | 热99国产精品久久久久久7| 爱豆传媒免费全集在线观看| 国产一区二区在线观看av| 亚洲国产av新网站| 日日撸夜夜添| 国产精品免费大片| 狂野欧美激情性xxxx在线观看| 黄片无遮挡物在线观看| 丝袜人妻中文字幕| 日本免费在线观看一区| 免费观看av网站的网址| 丝瓜视频免费看黄片| 女人被躁到高潮嗷嗷叫费观| 晚上一个人看的免费电影| 久久精品久久久久久久性| 亚洲四区av| 老司机亚洲免费影院| 一区二区三区四区激情视频| 18禁裸乳无遮挡动漫免费视频| 成人国产麻豆网| 久久久a久久爽久久v久久| 侵犯人妻中文字幕一二三四区| 九九爱精品视频在线观看| 国产伦理片在线播放av一区| 精品国产露脸久久av麻豆| 精品一区二区三区四区五区乱码 | 亚洲婷婷狠狠爱综合网| 中文字幕免费在线视频6| 伦精品一区二区三区| 1024视频免费在线观看| 一边亲一边摸免费视频| 亚洲高清免费不卡视频| 美女内射精品一级片tv| 亚洲一码二码三码区别大吗| 国产精品人妻久久久影院| 亚洲美女视频黄频| 精品久久蜜臀av无| 美女xxoo啪啪120秒动态图| 久久久久国产精品人妻一区二区| av在线老鸭窝| 丝袜脚勾引网站| 下体分泌物呈黄色| 99久久人妻综合| 午夜免费男女啪啪视频观看| 精品国产露脸久久av麻豆| 日日撸夜夜添| 成人无遮挡网站| 又黄又爽又刺激的免费视频.| 成人亚洲欧美一区二区av| 日韩伦理黄色片| 国产精品国产三级专区第一集| 狂野欧美激情性xxxx在线观看| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久久久免| 国产色婷婷99| 欧美97在线视频| av黄色大香蕉| 国产精品一二三区在线看| 午夜免费男女啪啪视频观看| 汤姆久久久久久久影院中文字幕| 在线观看三级黄色| 亚洲高清免费不卡视频| 狠狠精品人妻久久久久久综合| 亚洲,欧美,日韩| 亚洲一码二码三码区别大吗| 波多野结衣一区麻豆| 欧美国产精品一级二级三级| 亚洲国产色片| 国产一区有黄有色的免费视频| 永久网站在线| 少妇人妻 视频| 久久ye,这里只有精品| 18禁在线无遮挡免费观看视频| 在现免费观看毛片| 中国国产av一级| 亚洲成人一二三区av| 国产精品久久久久久精品古装| 一个人免费看片子| 少妇高潮的动态图| 亚洲精品自拍成人| 国产精品成人在线| 中国三级夫妇交换| 18禁在线无遮挡免费观看视频| 国产精品熟女久久久久浪| 伊人久久国产一区二区| a级片在线免费高清观看视频| 男女免费视频国产| 尾随美女入室| 色5月婷婷丁香| 国产一区二区激情短视频 | 人人妻人人添人人爽欧美一区卜| 日本黄大片高清| 伦理电影大哥的女人| 亚洲av日韩在线播放| 亚洲美女黄色视频免费看| 又大又黄又爽视频免费| 九色成人免费人妻av| 两个人看的免费小视频| videossex国产| 新久久久久国产一级毛片| 欧美国产精品va在线观看不卡| 欧美精品亚洲一区二区| 亚洲丝袜综合中文字幕| 一级片免费观看大全| 最近2019中文字幕mv第一页| 高清毛片免费看| 日韩熟女老妇一区二区性免费视频| 日产精品乱码卡一卡2卡三| 亚洲综合色惰| 国产亚洲精品久久久com| 成年动漫av网址| 日本色播在线视频| 9色porny在线观看| 欧美成人精品欧美一级黄| 中文字幕最新亚洲高清| 久久97久久精品| 久久精品夜色国产| 另类亚洲欧美激情| 人成视频在线观看免费观看| 亚洲综合色网址| 免费日韩欧美在线观看| 亚洲欧美一区二区三区国产| 久久精品aⅴ一区二区三区四区 | 国产av国产精品国产| 丰满饥渴人妻一区二区三| 亚洲精品一二三| 2022亚洲国产成人精品| 男女国产视频网站| 侵犯人妻中文字幕一二三四区| 国产淫语在线视频| 成年美女黄网站色视频大全免费| 少妇人妻久久综合中文| 亚洲高清免费不卡视频| 涩涩av久久男人的天堂| 欧美日韩综合久久久久久| 极品人妻少妇av视频| 啦啦啦中文免费视频观看日本| 高清毛片免费看| 久久久久精品人妻al黑| 69精品国产乱码久久久| 日韩成人av中文字幕在线观看| 国产精品蜜桃在线观看| 久久久久久久久久久免费av| 亚洲综合色惰| 精品卡一卡二卡四卡免费| 久久久国产欧美日韩av| 国产成人精品无人区| 精品一区在线观看国产| 亚洲精品第二区| 日韩在线高清观看一区二区三区| 如日韩欧美国产精品一区二区三区| 免费观看性生交大片5| 国产在线一区二区三区精| 全区人妻精品视频| 少妇的逼好多水| 国产老妇伦熟女老妇高清| av在线老鸭窝| 亚洲精品视频女| 国产精品一区二区在线不卡| 秋霞在线观看毛片| 亚洲经典国产精华液单| 国产高清三级在线| 少妇精品久久久久久久| 高清黄色对白视频在线免费看| 一级毛片电影观看| 国产黄色视频一区二区在线观看| 日韩在线高清观看一区二区三区| 69精品国产乱码久久久| 亚洲综合精品二区| 精品国产一区二区三区四区第35| 久久免费观看电影| 一级a做视频免费观看| 免费看av在线观看网站| 国产不卡av网站在线观看| 久久狼人影院| 少妇高潮的动态图| 亚洲色图 男人天堂 中文字幕 | 午夜激情久久久久久久| 亚洲欧美中文字幕日韩二区| 精品视频人人做人人爽| 超色免费av| 久久热在线av| 在线观看www视频免费| 伦精品一区二区三区| 草草在线视频免费看| 美女福利国产在线| 午夜精品国产一区二区电影| 免费av不卡在线播放| 七月丁香在线播放| 亚洲国产精品成人久久小说| 成年动漫av网址| 婷婷色麻豆天堂久久| 最近中文字幕高清免费大全6| 熟妇人妻不卡中文字幕| 大陆偷拍与自拍| 中文精品一卡2卡3卡4更新| 亚洲av免费高清在线观看| 亚洲在久久综合| 亚洲国产精品专区欧美| 国产精品熟女久久久久浪| 考比视频在线观看| av在线观看视频网站免费| 日日爽夜夜爽网站| 成年av动漫网址| 中文天堂在线官网| 欧美日韩视频高清一区二区三区二| 亚洲精品456在线播放app| 九九在线视频观看精品| 成人18禁高潮啪啪吃奶动态图| 中文字幕亚洲精品专区| 国产av精品麻豆| 成人影院久久| 免费黄网站久久成人精品| 欧美精品一区二区大全| 狠狠婷婷综合久久久久久88av| 又大又黄又爽视频免费| 成年人午夜在线观看视频| 十八禁网站网址无遮挡| 日韩中字成人| 国产精品熟女久久久久浪| 97超碰精品成人国产| 欧美精品一区二区大全| 成人影院久久| 亚洲国产精品国产精品| 久久久亚洲精品成人影院| 大片免费播放器 马上看| 久久久欧美国产精品| 一区二区av电影网| a 毛片基地| 国产在线免费精品| 一边亲一边摸免费视频| 久久人人97超碰香蕉20202| a级毛片在线看网站| 国产1区2区3区精品| 少妇被粗大的猛进出69影院 | 777米奇影视久久| 黄网站色视频无遮挡免费观看| 大话2 男鬼变身卡| 国产av国产精品国产| 日韩视频在线欧美| 久久精品国产自在天天线| 热99国产精品久久久久久7| 欧美日本中文国产一区发布| 中文精品一卡2卡3卡4更新| 晚上一个人看的免费电影| 日韩一本色道免费dvd| 夜夜骑夜夜射夜夜干| 亚洲精品美女久久av网站| 男女国产视频网站| 久久久国产欧美日韩av| 一区二区三区精品91| 黄色视频在线播放观看不卡| 亚洲av电影在线进入| 欧美性感艳星| 80岁老熟妇乱子伦牲交| 亚洲av.av天堂| 女人被躁到高潮嗷嗷叫费观| 婷婷色麻豆天堂久久| 国产精品久久久久久精品电影小说| 久久久久国产网址| 久久久久人妻精品一区果冻| 久久久a久久爽久久v久久| 久久久久精品久久久久真实原创| 九色亚洲精品在线播放| 久久国产精品大桥未久av| 黄色怎么调成土黄色| h视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 久久久久久久国产电影| 午夜日本视频在线| 我要看黄色一级片免费的| 国产免费现黄频在线看| 制服人妻中文乱码| 秋霞伦理黄片| 亚洲av男天堂| 三上悠亚av全集在线观看| 国产精品一国产av| 欧美xxxx性猛交bbbb| 寂寞人妻少妇视频99o| 久久午夜福利片| 日本黄色日本黄色录像| 欧美日韩视频高清一区二区三区二| 少妇被粗大的猛进出69影院 | 天堂8中文在线网| 蜜桃在线观看..| 国产精品欧美亚洲77777| 国产精品麻豆人妻色哟哟久久| 国产精品秋霞免费鲁丝片| 国产一级毛片在线| 天天操日日干夜夜撸| 中文字幕精品免费在线观看视频 | av片东京热男人的天堂| 女人被躁到高潮嗷嗷叫费观| 91aial.com中文字幕在线观看| 亚洲欧美一区二区三区国产| 成人毛片a级毛片在线播放| 91精品国产国语对白视频| 国产午夜精品一二区理论片| 国产成人精品婷婷| 国产日韩欧美亚洲二区| 少妇被粗大猛烈的视频| 晚上一个人看的免费电影| 母亲3免费完整高清在线观看 | 又大又黄又爽视频免费| 一级黄片播放器| 欧美亚洲 丝袜 人妻 在线| 久久久久国产精品人妻一区二区| 国产精品 国内视频| 人妻少妇偷人精品九色| 亚洲一码二码三码区别大吗| 在现免费观看毛片| 边亲边吃奶的免费视频| 国产黄色视频一区二区在线观看| 久久久久久久久久久久大奶| 国产成人aa在线观看| 国产精品 国内视频| a 毛片基地| 亚洲精品自拍成人| 九色亚洲精品在线播放| 亚洲精品乱码久久久久久按摩| 曰老女人黄片| 高清黄色对白视频在线免费看| 亚洲高清免费不卡视频| 少妇高潮的动态图| 亚洲成人手机| 国产在线免费精品| av卡一久久| 久久久久久久久久久免费av| 啦啦啦视频在线资源免费观看| 国产探花极品一区二区| xxxhd国产人妻xxx|