• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An improved potential field method for mobile robot navigation①

    2016-12-06 05:23:42LiGuangsheng李廣勝ChouWusheng
    High Technology Letters 2016年1期
    關(guān)鍵詞:李廣

    Li Guangsheng (李廣勝), Chou Wusheng

    (Robotics Institute, Beijing University of Aeronautics and Astronautics, Beijing 100191, P.R.China)

    ?

    An improved potential field method for mobile robot navigation①

    Li Guangsheng (李廣勝)②, Chou Wusheng

    (Robotics Institute, Beijing University of Aeronautics and Astronautics, Beijing 100191, P.R.China)

    In order to overcome the inherent oscillation problem of potential field methods (PFMs) for autonomous mobile robots in the presence of obstacles and in narrow passages, an enhanced potential field method that integrates Levenberg-Marquardt (L-M) algorithm and k-trajectory algorithm into the basic PFMs is proposed and simulated. At first, the mobile robot navigation function based on the basic PFMs is established by choosing Gaussian model. Then, the oscillation problem of the navigation function is investigated when a mobile robot nears obstacles and passes through a long and narrow passage, which can cause large computation cost and system instability. At last, the L-M algorithm is adopted to modify the search direction of the navigation function for alleviating the oscillation, while the k-trajectory algorithm is applied to further smooth trajectories. By a series of comparative experiments, the use of the L-M algorithm and k-trajectory algorithm can greatly improve the system performance with the advantages of reducing task completion time and achieving smooth trajectories.

    potential field, oscillation, Gaussian model, Levenberg-Marquardt (L-M) algorithm, k-trajectory

    0 Introduction

    With the continuous development of robot technology, the widespread use of autonomous mobile robot will become an inevitable trend, especially in severe environment not suitable for humans to access for working operations, such as daily maintenance of nuclear power plants in high radiation areas. The using of autonomous mobile robots in practice will greatly improve the production efficiency and reduce labor intensity.

    Research on autonomous navigation is an imperative task required in autonomous mobile robot applications. Over the years, a great number of methods that deal with the autonomous navigation problems have been done in this field. Usually, one of the most general and simple ways to develop the navigation is based on potential field method (PFM). This approach was first introduced by Khatib[1], who defined negative electric charge and positive electric charge around the goal and obstacle respectively. The positive charge generates a virtual force that repels the mobile robot from obstacle, while the negative charge creates a virtual force that attracts the mobile robot to the target. Hereafter, many researchers introduced new methods based on this principle to improve the performance of PFM, such as Volpe presented a new potential field based on the modified ellipses model[2], and Khosla proposed a new superquadric potential field model for obstacle avoidance[3]. However, those approaches have some inherent drawbacks. In Ref.[4], Koren and Borenstein identified the significant problems of PFM. In order to overcome the problem of oscillation, on one hand, Sato[5]introduced a motion planning method to prevent the formation of local minima, which was based on Laplace potential field and had no minimal point. In Ref.[6], Zou proposed a novel navigation algorithm by using virtual local goals to replace the global objective for escaping the local minimum when the mobile robot trapped in local minima. Zhang and Duan[7]proposed a modified artificial physics method to alleviate oscillation by using gravitational model. On the other hand, Jing[8]proposed artificial coordinating fields to deal with the problems of mobile robots being in uncertain dynamic environments with obstacles. Kenneth, et al.[9-11]adopted a modified Newton’s method (MNM) based on the Gaussian model to choose Newton direction for the navigation function rather than using the gradient descent direction.

    In this work, the Levenberg-Marquardt method (L-MM) is adopted to modify Newton direction for alleviating the oscillation problem of the PFM based on Gaussian model, and k-trajectory method is used for smoothing trajectories. From the viewpoint of optimization, L-MM is an iterative technique, which has the advantages of fast convergence rate, and can be used for solving nonlinear least squares problems[12]. Therefore, by using the L-MM and k-trajectory algorithm in combination, the enhanced potential field method (EPFM) can achieve a good approximation to the navigation function. The simulation results show that the mobile robot can accomplish obstacle avoidance and target searching in the environment with a complex configuration of target and obstacles, and EPFM can greatly alleviate oscillation and achieve smoother trajectories.

    This paper is organized as follows. In Section 1, the basic PFM and its inherent oscillation phenomenon are introduced. In Section 2, a detailed instruction about the L-M algorithm and k-trajectory algorithm are provided. In Section 3, a series of performance comparison experiments for the basic PFM, MNM and EPFM with different potential models are performed, and then the simulation results are presented and analyzed. In Section 4, a brief conclusion and further researches are provided.

    1 Basic potential field method and inherent oscillation phenomenon

    1.1 Basic potential field method model

    In the basic PFM, obstacles and the targets or the goals are all considered as point mass. For building potential field, in this section, Gaussian model and Gaussian-like model are chosen to establish the attractive force function and the repulsive force function in two dimensions, respectively. The target is defined as the attractive point, whose position of the center of the mass is represented by vector qa(ax, ay). Similarly, vector qr(rx, ry) is defined as the position of repulsive point, such as obstacle or other robot. The mobile robot is located at q(x, y).

    The attractive force function represented by the negative Gaussian model is defined as

    (1)

    The repulsive force function is expressed as

    (2)

    Fig.1 displays the effect of adjusting the parameterCand varianceρon the repulsive force function.

    Fig.1 The effect of the parameters C and variance ρ

    From Fig.1, it can be deduced that the implement adjustments of affecting range and affecting area of attractive force and repulsive force are feasible by adjusting the value of parameterCandρ. Since the parameters can be controlled easily, thus, the Gaussian model is chosen to establish the autonomous navigation function for mobile robot.

    1.2 Control law of mobile robot navigation

    To facilitate the discussion, it is assumed that there is only one target in an initially unknown environment. The navigation function that drives the mobile robot moving toward the goal is given by

    F(q)=FA(q)+FR(q)

    (3)

    where F(q) is the sum of the forces that effects the mobile robot. FA(q) represents the attractive force between the target and mobile robot, FR(q) denotes the sum of repulsive forces generated by a set of obstacles.

    Using the navigation function defined above, the control law of mobile robot navigation is then given by

    (4)

    1.3 Path generation for mobile robot

    Based on the control law above, the forces acting upon the mobile robot can drive it moving toward the predetermined target along the gradient descent direction within the maximum speed.

    In the process of the moving, a series of feasible path solutions can be obtained as the step (current solution) going on until getting the target, which can be labelled with Pi(xi, yi, zi). By connecting the solution Piin sequence, therefore, the mobile robot path can be described as

    Path={P0, P1(x1, y1, z1),

    P2(x1, y1, z1),…,Pn}

    (5)

    where P0is the start point, and Pnis the target point.

    1.4 The PFM inherent oscillation phenomenon

    In practical applications, however, the PFM has some inherent flaws that happen quite frequently, such as trapped with local minima, no passage among closely spaced obstacles, and oscillation in the vicinity of obstacles and in a narrow passage[4]. The most serious problem is oscillation phenomenon, whose causes are not only closely related to unstable motions derived from instability of the discrete system resulting from sampling of sensory inputs, but also related to the stable oscillatory gradient trajectory[10]due to the rapid changes in direction. In this paper, it is assumed that the sensors are capable of achieving the relative position of obstacles and target, and the discrete navigation system of the mobile robot is in a stable running. So our interest is mainly restricted to the substantial reasons of oscillation problem from the theoretical perspective.

    From the perspective of optimization theory, PFM is inherently associated with the oscillation problem. As a result of using the orthogonal search direction, the trajectory exhibits strong zigzagging phenomenon when the mobile robot nears obstacles. Furthermore, PFM can only contain linear information and achieve linear convergence rate. So it cannot provide a better approximation to the potential field navigation function in the process of iterative calculation, especially when the navigation function becomes a nonlinear function due to the complex configuration of target and obstacles. One solution is to use optimization theory to overcome the oscillation problem by introducing higher order information to approximate the navigation function.

    Fig.2 shows the oscillation phenomenon by using the basic PFM.

    Fig.2 Illustration of the oscillation phenomenon

    2 The improved potential field method

    2.1 Levenberg-Marquardt algorithm for oscillation

    To solve the oscillation problem of PFM, the use of the L-M algorithm is proposed to establish the mobile robot navigation function. This method can find the most suitable direction, the modified Newton direction, which contains both the first and second derivative information. Compared with other existing methods, such as the steepest descent method (SDM), EPFM has the second order accuracy approximation ability to the navigation function with at least second order convergence rate. Thus, it is viable to modify the Newton direction by using L-M algorithm, and adopt the modified Newton direction as the search direction of the navigation function.

    The dynamics of the mobile robot is given by the control law:

    (6)

    In Eq.(6), B(q) is a positive definite matrix. As in the optimization theory, B(q) is defined as

    B(q)=(G(q)+μk(q)I)-1

    (7)

    where μkis referred to as the damping coefficient, which is only related to q(x, y) and should satisfy the condition of μk>0. The presence of μkthat can guarantee the matrix B(q) is invertible. G(q) is the Hessian matrix of F(q), which is defined as

    (8)

    According to the optimization theory, the kernel operation of the L-M algorithm can dynamically adjust the value of parameter μkin its iterative process. When the current position of the mobile robot is far away from the obstacles or target, the value of parameter μkshould be adjusted smaller. Otherwise, the value of parameter μkshould be adjusted larger. In the practical applications of L-M method, it is common to take the strategy to adjust parameter μk, which is similar to trust region method.

    The L-M algorithm process is shown in Table 1.

    Table 1 The L-M algorithm process

    2.2 K-trajectory for path smoothing

    The mobile robot original path generated by the improved method based on combining PFM with L-M algorithm is usually hard for exact moving. There are some turning points on the original path, which have great deviation of turning angle, tending to case a large amount of oscillation. In this section, a feasible strategy called k-trajectory is adopted to smooth the unoptimized trajectories[14].

    Assume that the mobile robot path consists of a ordered set of waypoints, and wi-1, wiand wi+1are the any three continuous waypoint of it. The unit vectors along the corresponding path segments are defined as

    qi=(wi-wi-1)/‖wi-1-wi‖

    (9)

    qi+1=(wi+1-wi)/‖wi+1-wi‖

    (10)

    where angle β between qiand qi+1is expressed as

    (11)

    From Fig.3, the expression can also be obtained as follows:

    (12)

    Fig.3 Graphical depiction of the k-trajectory

    Therefore, the point pkcan be expressed by

    (13)

    After this process, the original path formed by wi-1, wiand wi+1could be replaced by the circular arc and the line segments, which is represented by the solid line in Fig.4.

    3 Results and comparison

    In order to validate EPFM, simulation experiments have been performed on industrial PC (Intel i5, 2.50GHz, 4GB memory), the operating system is Windows8 with Matlab (2012a) software. In the course of processing, there are no any commercial algorithm tools used.

    To analysy the results more intuitively, the following evaluation criteria are adopted to evaluate the performance of the mobile robot:

    (1) How many steps the mobile robot reaches the target.

    (2) The smoothness of the trajectory.

    For all scenarios, the parameters of EPFM are set as follows:C=10,ρ=3,λ=0.55,σ=0.4,ε=1e-6,η1=0.75,η2=0.25,n=20,α=10.

    3.1 Applying the EPFM to different potential models

    According to the theory of optimization, oscillation occurring is not only closely connected with the complex configuration of target and obstacles, but also depends greatly on the potential field model chosen to construct the navigation function F(q). In this section, the SDM, MNM and EPFM that use different models (generalized Gaussian model, parabolic model, and generalized gravitational model) to construct F(q) for the mobile robot were compared in a typical obstacle avoidance and target reaching task. The corresponding results are shown in Figs 5~7.

    Fig.6 Performance comparisons of the three methods using parabolic model

    Fig.7 Performance comparisons of the three methods using gravitational model

    Figs 5~7 show the corresponding trajectories, and the average numbers of steps spent by the mobile robot for succeeding in avoiding obstacles and seeking target via using different methods in each scenario. From those typical examples, it can be found that the EPFM can better achieve smoother trajectories and faster progress compared to the other methods mentioned above.

    3.2 Performance in passing a randomly generated obstacle area of different shapes

    In this section, a series of obstacles with different sizes and shapes are randomly generated to represent a random, complex and unknown environment in an area of 100m×120m. Moreover, the minimum distance between any two obstacles is specified to make sure that the mobile robot can pass through the passage among obstacles. The mobile robot starts from the point of (10,10) and is required to reach the target at (90,80).

    Fig.8 shows the trajectories corresponding to the three methods.

    In Fig.8, it can be seen that although all the methods can successfully reach the target, the EPFM and MNM can make trajectories smoother compared to the SDM, since trajectories obtained by SDM have a great quantity of oscillation when obstacles are nearby. From Fig.8, it can also be concluded that EPFM can achieve the target with fewer steps compared to SDM and MNM.

    Fig.8 Performance comparisons of the three methods through a randomly generated obstacle area of different shapes

    3.3 Passing through a long and narrow passage

    In practical applications, oscillation frequently occurs when the mobile robot passes through long and narrow corridors. To illustrate this problem, SDM and EPFM are tested on the tasks of traveling in a wide and a narrow passage.

    In Fig.9(a) and (b), it can be seen that both the SDM and EPFM can drive the mobile robot to pass through the passage fast and keep smooth trajectories when the width of the corridor is 2m. In the Fig.9(c) and (d), however, when the passage width is narrowed down to 1m, serious oscillation appear to the trajectory based on the SDM due to the sudden change of the passage width, while EPFM can still make the robot quickly move to target in fewer steps with smooth trajectory.

    Fig.9 Performance comparisons of the SDM and EPFM through a long and narrow passage

    The simulation results also prove that oscillation occurring does not depend on the obstacle shapes in PFM applications.

    3.4 Performance in real environment

    To further demonstrate the performance of the proposed method in practical applications, experiments have been conducted under outdoor environment.

    Fig.10 shows the mobile robot used in the experiments, which is an omnidirectional mobile robot. It has a global position system (GPS) and 10 ultrasonic sensors to get the knowledge of their information about the orientation and location (the absolute position and the relative position), and its maximum speed is 2m/s.

    Fig.11(a) shows the experimental environment with a rectangular obstacle, and the trajectories responding to the three methods are plotted in Fig.11(b). Fig.12 shows the parts of the enlarged versions in Fig.11(b).

    Fig.10 The robot for experiments

    Fig.11 Experiments with a real mobile robot

    From Fig.11 and Fig.12, it can be seen that a large amount of oscillation exists in the trajectories obtained by PFM and MNM, while the EPFM can provide a smoother trajectory.

    Moreover, the turning angles of the three methods can also be obtained in the practical experiments. Therefore, the deviation of the turning angle can be introduced to evaluate the smoothness of the trajectory since the smoother trajectory has a smaller deviation of turning angle. Fig.13 shows the deviation response for the three methods. It can be concluded that the use of the EPFM can keep a more smoother trajectory without frequent turning compared to the SDM and MNM.

    Fig.12 Parts of enlarged version of Fig. 11 (b)

    Fig.13 The turnning angles response for the three methods

    4 Conclusion

    This study proposes an enhanced PFM, which integrates L-M algorithm and k-trajectory algorithm into the basic PFM, to overcome the oscillation problem of the mobile robot navigation in a complicated environment with obstacles. A series of comparative experiments have been carried out to demonstrate the proposed approach in various scenarios with different models and methods. The results show that the proposed method can greatly improve the overall system performance. Compared with the basic PFM and the MNM, the EPFM has shown the capability of alleviating the oscillation and consuming much fewer time steps. As a result of the significant improvement in the steps, a real-time application of the proposed approach in dynamic mobile robot navigation becomes possible.

    [ 1] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots.InternationalJournalofRoboticsResearch, 1985, 5(1): 90-98

    [ 2] Volpe R, Khosla P. Artificial potentials with elliptical isopotential contours for obstacle avoidance. In: Proceedings of the 26th IEEE Conference on Decision and Control, Los Angeles, USA, 1987. 180-185

    [ 3] Khosla P, Volpe R. Superquadric artificial potentials for obstacle avoidance and approach. In: Proceedings of the 1988 IEEE International Conference on Robotics and Automation, Philadelphia, USA, 1988. 1778-1784

    [ 4] Koren Y, Borenstein J. Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, USA, 1991. 1398-1404

    [ 5] Sato K. Deadlock-free motion planning using the Laplace potential field.AdvancedRobotics, 2012, 7(5): 449-461

    [ 6] Zou X Y, Zhu J. Virtual local target method for avoiding local minimum in potential field based robot navigation.JournalofZhejiangUniversity(science), 2003, 4(3): 264-269

    [ 7] Zhang X Y, Duan H B, Luo Q N. Levenberg-Marquardt based artificial physics method for mobile robot oscillation alleviation.ScienceChinaPhysicsMechanics&Astronomy, 2014, 57(9): 1771-1777

    [ 8] Jing X J, Wang Y C, Tan D L. Artificial coordinating field and its application to motion planning of robots in uncertain dynamic environments.ScienceinChina, 2004, 47(5): 577-594

    [ 9] McIsaac K A, Ren J, Huang X S. Modified Newton’s method applied to potential field navigation. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, 2003. 5873-5878

    [10] Ren J, McIsaac K A, Patel R V. Modified Newton’s method applied to potential field-based navigation for mobile robots.IEEETransactionsonRobotics, 2006, 22(2): 384-391

    [11] Ren J, McIsaac K A, Patel R V. Modified Newton’s method applied to potential field-based navigation for nonholonomic robots in dynamic environments.Robotica, 2008, 26(1): 117-127

    [12] Lourakis M I A. A brief description of the Levenberg-Marquardt algorithm implemened by levmar. http://www.ics.forth.gr/~lourakis/levmar/: Foundation of Research & Technology-Hellas, 2005

    [13] Ren J, McIsaac K A. A hybrid-systems approach to potential field navigation for a multi-robot team. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, China, 2003. 3875-3880

    [14] Anderson E P, Beard R W, McLain T W. Real-time dynamic trajectory smoothing for unmanned air vehicles.IEEETransactionsonControlSystemsTechnology, 2005, 13(3): 471-477

    Li Guangsheng, born in 1985. He received his B.S. and M.S. degrees in Mechatronics Engineering in 2010 and 2013 respectively. And currently he is pursuing the Ph.D. degree of Mechatronic Engineering in Beihang University. His current research interest is embedded control of robots.

    10.3772/j.issn.1006-6748.2016.01.003

    ① Supported by the National Key Basic Research Program of China (973 Project) (No.2013CB035503).

    ② To whom correspondence should be addressed. E-mail: liguangsheng10@163.comReceived on Mar. 25, 2015

    猜你喜歡
    李廣
    念(外一首)
    How to Arouse Middle School Students’ Interest in English Study
    速讀·中旬(2018年7期)2018-08-17 07:22:00
    李廣的故事
    隨機微分方程的樣本Lyapunov二次型估計
    各種各樣的建筑
    飛將軍李廣
    小伙伴們一起跑
    水中的精靈
    喙嘴龍
    花生
    国产午夜精品一二区理论片| 少妇熟女欧美另类| 校园人妻丝袜中文字幕| 毛片一级片免费看久久久久| 一个人观看的视频www高清免费观看| 国产高清有码在线观看视频| 国产一区亚洲一区在线观看| 深夜精品福利| 超碰av人人做人人爽久久| 99久久无色码亚洲精品果冻| 能在线免费观看的黄片| a级毛色黄片| 一级黄片播放器| 久久精品国产亚洲网站| 真实男女啪啪啪动态图| 99热精品在线国产| 久久国内精品自在自线图片| 国产片特级美女逼逼视频| 成熟少妇高潮喷水视频| 欧美变态另类bdsm刘玥| 日本-黄色视频高清免费观看| 日韩精品青青久久久久久| 91麻豆精品激情在线观看国产| or卡值多少钱| 午夜免费激情av| 欧美3d第一页| 欧美另类亚洲清纯唯美| 亚洲三级黄色毛片| 看黄色毛片网站| 日本成人三级电影网站| 蜜臀久久99精品久久宅男| 国产成年人精品一区二区| а√天堂www在线а√下载| 亚洲国产色片| 99热这里只有精品一区| 国产精品久久久久久久久免| 国产成人精品一,二区 | 国产一区二区在线观看日韩| 深夜a级毛片| 哪里可以看免费的av片| 岛国在线免费视频观看| 亚洲欧美日韩高清专用| 亚洲图色成人| 日日摸夜夜添夜夜添av毛片| 日本-黄色视频高清免费观看| 黄片wwwwww| 99在线人妻在线中文字幕| 久久久久久国产a免费观看| 亚洲精品影视一区二区三区av| 美女 人体艺术 gogo| 久久精品国产99精品国产亚洲性色| 日本一本二区三区精品| 欧美+日韩+精品| 全区人妻精品视频| 日本免费一区二区三区高清不卡| 亚洲成人精品中文字幕电影| 菩萨蛮人人尽说江南好唐韦庄 | 三级国产精品欧美在线观看| 高清午夜精品一区二区三区 | 日韩亚洲欧美综合| 国产精品伦人一区二区| 亚洲精品456在线播放app| 色播亚洲综合网| 哪个播放器可以免费观看大片| 神马国产精品三级电影在线观看| 精品一区二区三区人妻视频| av在线蜜桃| 欧美日韩精品成人综合77777| av免费在线看不卡| 婷婷六月久久综合丁香| 久久久精品欧美日韩精品| 性插视频无遮挡在线免费观看| 国产亚洲欧美98| 成人欧美大片| 国产成人freesex在线| 国产高清不卡午夜福利| 三级国产精品欧美在线观看| 99久久精品热视频| av在线天堂中文字幕| 久久久久九九精品影院| 桃色一区二区三区在线观看| 亚洲在线自拍视频| 久久久久久久久久久免费av| 成年版毛片免费区| 1000部很黄的大片| 亚洲成人精品中文字幕电影| 国产国拍精品亚洲av在线观看| 美女大奶头视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男女做爰动态图高潮gif福利片| 美女xxoo啪啪120秒动态图| 国产精品一区www在线观看| 中文字幕免费在线视频6| 欧美变态另类bdsm刘玥| 国产亚洲精品久久久久久毛片| 18禁黄网站禁片免费观看直播| 淫秽高清视频在线观看| 亚洲精品久久国产高清桃花| 国产一级毛片在线| 中文字幕久久专区| 亚洲欧美精品自产自拍| 亚洲成人精品中文字幕电影| 中文字幕熟女人妻在线| 国产精品美女特级片免费视频播放器| 国产在线精品亚洲第一网站| 大香蕉久久网| 只有这里有精品99| 日韩欧美三级三区| 欧美性猛交╳xxx乱大交人| 国模一区二区三区四区视频| 久99久视频精品免费| 中文字幕制服av| 日本一本二区三区精品| 亚洲国产精品合色在线| 精品一区二区三区人妻视频| 日韩精品有码人妻一区| 舔av片在线| 亚洲欧美日韩高清专用| 搞女人的毛片| 91麻豆精品激情在线观看国产| 精品欧美国产一区二区三| 美女被艹到高潮喷水动态| 久久精品人妻少妇| 毛片一级片免费看久久久久| 可以在线观看毛片的网站| 中国国产av一级| 美女高潮的动态| 国产精品.久久久| 国产私拍福利视频在线观看| 日韩一区二区三区影片| 婷婷精品国产亚洲av| 国产精品免费一区二区三区在线| 午夜激情福利司机影院| 亚洲色图av天堂| 久久中文看片网| 亚洲欧美中文字幕日韩二区| 黄色配什么色好看| 久久久久久久久大av| 精品欧美国产一区二区三| 97超碰精品成人国产| 免费观看a级毛片全部| 天天躁日日操中文字幕| 可以在线观看毛片的网站| 亚洲乱码一区二区免费版| 久久6这里有精品| 又爽又黄a免费视频| 三级国产精品欧美在线观看| 狠狠狠狠99中文字幕| 国产乱人偷精品视频| 色哟哟哟哟哟哟| 国产精品精品国产色婷婷| 亚洲成a人片在线一区二区| 丝袜喷水一区| 好男人在线观看高清免费视频| 欧美性猛交╳xxx乱大交人| 日韩强制内射视频| 性色avwww在线观看| 中出人妻视频一区二区| a级一级毛片免费在线观看| 中文资源天堂在线| 寂寞人妻少妇视频99o| 黑人高潮一二区| 美女 人体艺术 gogo| 亚洲国产精品合色在线| 国国产精品蜜臀av免费| 欧美另类亚洲清纯唯美| 日韩精品青青久久久久久| 欧美激情在线99| 久久久a久久爽久久v久久| 亚洲精品乱码久久久久久按摩| 午夜亚洲福利在线播放| 黄色欧美视频在线观看| 男人舔女人下体高潮全视频| 麻豆国产av国片精品| 色5月婷婷丁香| 精品国产三级普通话版| 热99re8久久精品国产| 亚洲最大成人中文| 一级毛片电影观看 | 国产视频内射| 夜夜看夜夜爽夜夜摸| 国产一区二区三区在线臀色熟女| 女的被弄到高潮叫床怎么办| 欧美一区二区精品小视频在线| 国产高清有码在线观看视频| 中文字幕av在线有码专区| 男女下面进入的视频免费午夜| 老司机影院成人| 国产成人一区二区在线| 中文精品一卡2卡3卡4更新| 麻豆精品久久久久久蜜桃| 国语自产精品视频在线第100页| 天堂√8在线中文| 干丝袜人妻中文字幕| 你懂的网址亚洲精品在线观看 | 国产69精品久久久久777片| 国产老妇女一区| 国产一区二区三区在线臀色熟女| 精品久久久噜噜| 亚洲欧美精品专区久久| 久久久国产成人免费| 搞女人的毛片| 九九热线精品视视频播放| 国产精品久久电影中文字幕| 亚洲精品久久久久久婷婷小说 | 久99久视频精品免费| 欧美激情久久久久久爽电影| 国产一区二区三区在线臀色熟女| 成人高潮视频无遮挡免费网站| 日本黄色视频三级网站网址| 午夜久久久久精精品| 国产成人freesex在线| 1000部很黄的大片| 少妇的逼好多水| 精品欧美国产一区二区三| 国产日韩欧美在线精品| 亚洲成人av在线免费| 久久精品夜夜夜夜夜久久蜜豆| 夜夜爽天天搞| av黄色大香蕉| 日本黄色视频三级网站网址| 日韩欧美一区二区三区在线观看| 欧美在线一区亚洲| 久久草成人影院| 搞女人的毛片| 亚洲成人中文字幕在线播放| 欧美日韩乱码在线| 91精品国产九色| 看免费成人av毛片| 变态另类丝袜制服| 久久精品国产鲁丝片午夜精品| 欧美又色又爽又黄视频| 久久久国产成人免费| 国产精品一区二区三区四区免费观看| 乱人视频在线观看| 国产精品麻豆人妻色哟哟久久 | 天堂√8在线中文| 久久精品综合一区二区三区| 欧美xxxx性猛交bbbb| 乱码一卡2卡4卡精品| 国产精品人妻久久久久久| 日本五十路高清| 国产不卡一卡二| 久久韩国三级中文字幕| 亚洲欧美精品综合久久99| 国产成人精品一,二区 | 99riav亚洲国产免费| 最近最新中文字幕大全电影3| 日本黄大片高清| 长腿黑丝高跟| 99久久精品国产国产毛片| 午夜免费男女啪啪视频观看| 男人舔奶头视频| 床上黄色一级片| 非洲黑人性xxxx精品又粗又长| 欧美激情国产日韩精品一区| 亚洲精品日韩av片在线观看| 69人妻影院| 内地一区二区视频在线| 国产高清三级在线| 中文亚洲av片在线观看爽| 亚洲18禁久久av| 免费看av在线观看网站| 日本-黄色视频高清免费观看| 在线观看美女被高潮喷水网站| 久久99热6这里只有精品| 内射极品少妇av片p| 亚洲av.av天堂| 男人和女人高潮做爰伦理| 日韩视频在线欧美| 亚洲精品自拍成人| 免费人成视频x8x8入口观看| 又黄又爽又刺激的免费视频.| 国内少妇人妻偷人精品xxx网站| 亚洲七黄色美女视频| 久久久精品大字幕| 日韩av不卡免费在线播放| 我要搜黄色片| 男女那种视频在线观看| 午夜福利高清视频| 69av精品久久久久久| 欧美一级a爱片免费观看看| 国产精品一区二区性色av| 国产视频首页在线观看| 亚洲精品乱码久久久v下载方式| 日韩人妻高清精品专区| 亚洲欧美日韩卡通动漫| 婷婷色av中文字幕| 国产伦一二天堂av在线观看| 国产亚洲5aaaaa淫片| 精品免费久久久久久久清纯| 九九爱精品视频在线观看| 美女脱内裤让男人舔精品视频 | 给我免费播放毛片高清在线观看| 99久久九九国产精品国产免费| av在线天堂中文字幕| 亚洲丝袜综合中文字幕| 国产精品一区二区三区四区久久| 高清在线视频一区二区三区 | 亚洲18禁久久av| 亚洲国产精品久久男人天堂| 亚洲欧美成人综合另类久久久 | 伊人久久精品亚洲午夜| 99久久中文字幕三级久久日本| 色播亚洲综合网| 爱豆传媒免费全集在线观看| 亚洲欧美日韩卡通动漫| 日本黄色片子视频| 岛国毛片在线播放| 国产一区二区三区av在线 | 国产成人精品一,二区 | 麻豆乱淫一区二区| 国产精品国产高清国产av| 99热只有精品国产| 麻豆精品久久久久久蜜桃| av天堂中文字幕网| 亚洲精品影视一区二区三区av| 天天一区二区日本电影三级| 国产高清有码在线观看视频| 国产精品不卡视频一区二区| 日韩欧美一区二区三区在线观看| 久久久久久九九精品二区国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 我要搜黄色片| 久久人妻av系列| 亚洲精品日韩av片在线观看| 亚洲精品国产av成人精品| 欧美人与善性xxx| 日韩三级伦理在线观看| 晚上一个人看的免费电影| 两个人的视频大全免费| 免费大片18禁| 99久久成人亚洲精品观看| 国产高潮美女av| 精品免费久久久久久久清纯| 国产成人精品一,二区 | 国产亚洲欧美98| 人体艺术视频欧美日本| 国国产精品蜜臀av免费| 91精品国产九色| 高清午夜精品一区二区三区 | 天堂av国产一区二区熟女人妻| 91av网一区二区| 久久国内精品自在自线图片| 赤兔流量卡办理| 成人国产麻豆网| 国产真实乱freesex| 国产成人freesex在线| 99久久中文字幕三级久久日本| 日韩 亚洲 欧美在线| 波野结衣二区三区在线| 综合色av麻豆| 男女那种视频在线观看| 亚洲乱码一区二区免费版| 一级毛片我不卡| 尾随美女入室| 五月伊人婷婷丁香| 一本久久精品| 赤兔流量卡办理| 国产高清激情床上av| 国产美女午夜福利| 白带黄色成豆腐渣| 麻豆国产97在线/欧美| 亚洲不卡免费看| 亚洲精品久久久久久婷婷小说 | 简卡轻食公司| 男女啪啪激烈高潮av片| 99热这里只有是精品在线观看| 蜜臀久久99精品久久宅男| 韩国av在线不卡| 日本五十路高清| 成年免费大片在线观看| 亚洲精品日韩av片在线观看| 内地一区二区视频在线| 我的女老师完整版在线观看| 久久久精品大字幕| 成年女人永久免费观看视频| 中国美白少妇内射xxxbb| 听说在线观看完整版免费高清| 午夜免费男女啪啪视频观看| 青青草视频在线视频观看| 久久亚洲国产成人精品v| 99九九线精品视频在线观看视频| 特级一级黄色大片| 两个人视频免费观看高清| 岛国毛片在线播放| 亚洲精品久久国产高清桃花| 亚洲中文字幕一区二区三区有码在线看| 99久国产av精品国产电影| 精品一区二区三区人妻视频| 久久精品夜色国产| 国产一区二区三区av在线 | 日韩三级伦理在线观看| 欧美潮喷喷水| 乱人视频在线观看| 久久久久国产网址| av卡一久久| 欧美最新免费一区二区三区| 亚洲最大成人手机在线| 日韩欧美 国产精品| 成人性生交大片免费视频hd| 日产精品乱码卡一卡2卡三| 国产69精品久久久久777片| 久久国产乱子免费精品| 精品99又大又爽又粗少妇毛片| 在线观看一区二区三区| 又爽又黄a免费视频| 99热只有精品国产| 免费一级毛片在线播放高清视频| 18禁在线播放成人免费| 看黄色毛片网站| 麻豆国产97在线/欧美| 看黄色毛片网站| 一级二级三级毛片免费看| 内射极品少妇av片p| 国产高清有码在线观看视频| 精品不卡国产一区二区三区| 午夜精品在线福利| 亚洲精品亚洲一区二区| 国产一级毛片在线| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲无线观看免费| 两个人视频免费观看高清| 亚洲av二区三区四区| 一本久久中文字幕| 日韩人妻高清精品专区| 一级av片app| 久久亚洲精品不卡| 久久久a久久爽久久v久久| 久久精品影院6| 国产伦精品一区二区三区四那| 久久久久久大精品| 国产成人freesex在线| 嫩草影院入口| 国产精品一区二区性色av| 三级毛片av免费| 自拍偷自拍亚洲精品老妇| 中文字幕精品亚洲无线码一区| 亚洲成人精品中文字幕电影| 国内久久婷婷六月综合欲色啪| 免费观看的影片在线观看| 国产精品1区2区在线观看.| 一本久久中文字幕| 久久精品人妻少妇| 欧美成人精品欧美一级黄| 久久亚洲精品不卡| 日韩大尺度精品在线看网址| 听说在线观看完整版免费高清| 看免费成人av毛片| 日韩高清综合在线| 一进一出抽搐gif免费好疼| 中文字幕精品亚洲无线码一区| 深夜a级毛片| 日本在线视频免费播放| 床上黄色一级片| 国产午夜精品论理片| 99久久无色码亚洲精品果冻| 三级国产精品欧美在线观看| 日本黄色片子视频| 国产精品久久久久久精品电影| 国产成人精品一,二区 | 波野结衣二区三区在线| av女优亚洲男人天堂| 久久99精品国语久久久| 99久久人妻综合| 欧美精品国产亚洲| 亚洲国产日韩欧美精品在线观看| 少妇猛男粗大的猛烈进出视频 | 欧美色欧美亚洲另类二区| av免费观看日本| 亚洲av不卡在线观看| 国产精品无大码| 日韩欧美精品免费久久| 午夜爱爱视频在线播放| 国产熟女欧美一区二区| 69av精品久久久久久| 欧美人与善性xxx| 中文字幕熟女人妻在线| 天堂av国产一区二区熟女人妻| 哪里可以看免费的av片| 精品久久久久久久久久免费视频| 色综合亚洲欧美另类图片| 成年av动漫网址| 日本色播在线视频| 国产单亲对白刺激| 亚洲精品成人久久久久久| 性欧美人与动物交配| av在线蜜桃| 国产成人影院久久av| 日韩在线高清观看一区二区三区| 国产成人91sexporn| 久久久久久久久久久丰满| 亚洲一级一片aⅴ在线观看| 久久久欧美国产精品| 卡戴珊不雅视频在线播放| 国产午夜福利久久久久久| 麻豆乱淫一区二区| 日韩欧美一区二区三区在线观看| 精品久久久久久久人妻蜜臀av| 亚洲av熟女| 日本黄大片高清| 成人鲁丝片一二三区免费| 91麻豆精品激情在线观看国产| 少妇的逼水好多| 亚洲欧美日韩卡通动漫| 国产高潮美女av| 晚上一个人看的免费电影| 精品午夜福利在线看| 伦精品一区二区三区| 插阴视频在线观看视频| 国产亚洲5aaaaa淫片| 国内久久婷婷六月综合欲色啪| 麻豆国产97在线/欧美| 人妻制服诱惑在线中文字幕| 毛片女人毛片| 欧美日本亚洲视频在线播放| 精品久久久久久久久久久久久| 欧美性猛交黑人性爽| 日本熟妇午夜| 精品一区二区三区视频在线| 欧美日韩精品成人综合77777| 黄色欧美视频在线观看| 狠狠狠狠99中文字幕| 精品一区二区三区人妻视频| 欧美成人精品欧美一级黄| 亚洲国产欧洲综合997久久,| 亚洲最大成人中文| 国产老妇伦熟女老妇高清| 亚洲欧美精品专区久久| 国产在线精品亚洲第一网站| 一个人免费在线观看电影| 欧美三级亚洲精品| 嘟嘟电影网在线观看| 波多野结衣高清作品| 天天一区二区日本电影三级| 国产片特级美女逼逼视频| av免费观看日本| 免费观看精品视频网站| 亚洲aⅴ乱码一区二区在线播放| 精品一区二区三区人妻视频| 老司机福利观看| 亚洲精品粉嫩美女一区| 国产伦在线观看视频一区| 日日干狠狠操夜夜爽| 蜜桃久久精品国产亚洲av| 18+在线观看网站| 综合色av麻豆| 久久精品国产亚洲av涩爱 | 亚洲精品456在线播放app| 亚洲国产精品sss在线观看| 欧美成人精品欧美一级黄| 国产精品,欧美在线| 色5月婷婷丁香| 亚洲最大成人手机在线| 精品久久久久久久久亚洲| 一级毛片aaaaaa免费看小| av视频在线观看入口| 久久久久久九九精品二区国产| 高清毛片免费看| 噜噜噜噜噜久久久久久91| 小说图片视频综合网站| 干丝袜人妻中文字幕| 亚洲av成人av| 看十八女毛片水多多多| 久久人人爽人人片av| 美女黄网站色视频| 日韩国内少妇激情av| 成人av在线播放网站| 日韩精品有码人妻一区| 欧美高清成人免费视频www| 亚洲精品久久国产高清桃花| 中文欧美无线码| 日韩大尺度精品在线看网址| 夜夜爽天天搞| av天堂在线播放| 亚洲av成人精品一区久久| 久久6这里有精品| 国产三级中文精品| 乱码一卡2卡4卡精品| 天美传媒精品一区二区| 国产爱豆传媒在线观看| av黄色大香蕉| 精品免费久久久久久久清纯| 22中文网久久字幕| 日韩欧美国产在线观看| 精品免费久久久久久久清纯| 日本免费一区二区三区高清不卡| 日本三级黄在线观看| av在线天堂中文字幕| 1000部很黄的大片| 色尼玛亚洲综合影院| 超碰av人人做人人爽久久| 边亲边吃奶的免费视频| 久久精品国产鲁丝片午夜精品| 在线观看美女被高潮喷水网站| 国产高潮美女av| 级片在线观看| 最近中文字幕高清免费大全6| 日韩人妻高清精品专区| 最近最新中文字幕大全电影3| 两个人视频免费观看高清| 国产三级中文精品| 久久久久久久亚洲中文字幕| 卡戴珊不雅视频在线播放| 自拍偷自拍亚洲精品老妇| 99热精品在线国产| 最后的刺客免费高清国语| av免费观看日本| 久久久欧美国产精品| 在现免费观看毛片| 日韩精品有码人妻一区| 欧美日韩国产亚洲二区| 简卡轻食公司| 我的女老师完整版在线观看| 黄色一级大片看看|