• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust SLAM using square-root cubature Kalman filter and Huber’s GM-estimator①

    2016-12-06 05:23:49XuWeijun徐巍軍JiangRongxinXieLiTianXiangChenYaowu
    High Technology Letters 2016年1期

    Xu Weijun(徐巍軍), Jiang Rongxin②, Xie Li, Tian Xiang, Chen Yaowu

    (*Institute of Advanced Digital Technology and Instrumentation, Zhejiang University, Hangzhou 310027, P.R.China)(**Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Zhejiang University, Hangzhou 310027, P.R.China)

    ?

    Robust SLAM using square-root cubature Kalman filter and Huber’s GM-estimator①

    Xu Weijun(徐巍軍)***, Jiang Rongxin②***, Xie Li***, Tian Xiang***, Chen Yaowu***

    (*Institute of Advanced Digital Technology and Instrumentation, Zhejiang University, Hangzhou 310027, P.R.China)(**Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Zhejiang University, Hangzhou 310027, P.R.China)

    Mobile robot systems performing simultaneous localization and mapping (SLAM) are generally plagued by non-Gaussian noise. To improve both accuracy and robustness under non-Gaussian measurement noise, a robust SLAM algorithm is proposed. It is based on the square-root cubature Kalman filter equipped with a Huber’s generalized maximum likelihood estimator (GM-estimator). In particular, the square-root cubature rule is applied to propagate the robot state vector and covariance matrix in the time update, the measurement update and the new landmark initialization stages of the SLAM. Moreover, gain weight matrices with respect to the measurement residuals are calculated by utilizing Huber’s technique in the measurement update step. The measurement outliers are suppressed by lower Kalman gains as merging into the system. The proposed algorithm can achieve better performance under the condition of non-Gaussian measurement noise in comparison with benchmark algorithms. The simulation results demonstrate the advantages of the proposed SLAM algorithm.

    square-root cubature Kalman filter, simultaneous localization and mapping (SLAM), Huber’s GM-estimator, robustness

    0 Introduction

    Simultaneous localization and mapping (SLAM)is a fundamental issue in the autonomous robot systems designed to realize more complex and advanced tasks, such as underground mining, planetary exploration, and disaster rescue. The objective of SLAM is to incrementally build a map of the unknown environment while concurrently using this map to localize the robot[1].

    The nonlinear discrete-time state-space model was typically formulated in the SLAM problem with Gaussian noise. The most popular filter implemented for SLAM is extended Kalman filter (EKF)[2]. However, EKF approach for SLAM tends to be inconsistent due to the accumulation of linearization error. The sigma-point Kalman filters (SPKF) which achieve second-order or higher accuracy have been proven to be far superior to standard EKF.Among the family of SPKF-class estimators, the unscented Kalman filter (UKF) and the cubature Kalman filter (CKF) have shown the capability to reduce linearization error effectively, and therefore are used in SLAM algorithms[3,4]. Especially,

    the third-order cubature rule of the CKF is claimed to be more theoretically justified and more accurate in mathematical terms than the unscented transformation of the UKF[5].

    However, the distribution of measurement noise in practical systems may deviate from the commonly assumed Gaussian model[6]. This non-Gaussian noise model is usually characterized by thick-tailed probability distributions and randomly appearing outliers, which may originate from glint noise of reflection[7]or are induced by unanticipated environment turbulence, temporary sensor failure, and incorrect modelling[8]. To deal with non-Gaussian noise model in the SLAM implementations, several methods have been proposed.For example, the Rao-Blackwellized particle filter based Fast SLAM[9]estimated the state posterior of arbitrary probability distribution by a finite number of particle samples.However, the algorithm will be computationally intensive in situations where the state vectors are high-dimensional. The H∝-filter based SLAM algorithms[4,10]are also able to estimate the state perturbed with non-Gaussian noise by treating the noise as unknown-but-bounded quantities. However the algorithms are prone to be diverged from in the presence of random outliers.

    In essence, the conventional Kalman type filters belong to the recursive minimuml2-norm or least mean-square technique, and the performance of the filters quickly degrades in the presence of outliers and thick-tailed noise. In contrast, Huber’s GM-estimator[11]is an estimation technique that gains robustness by optimizing a cost function represented in a combined minimuml1-andl2-norm. Using this estimator, the effect of the outliers is suppressed by down-weighting the normalized measurement residuals that are larger than a given threshold. Huber’s method has also shown its high robustness by integrating it into various Kalman type filters[12-14].

    Taking the advantage of square-root cubature rule’s numerical stability, a robust SLAM algorithm based on SCKF is proposed. Moreover, to accommodate the non-Gaussian measurement noise model, Huber’s GM-estimator is further introduced to improve the measurement update for each revisited landmark. Simulation results are provided to illustrate the effectiveness of the proposed algorithm in the complex scenarios with non-Gaussian measurement noise models.

    1 Problem formulation

    Consider the general discrete-time nonlinear SLAM system with the process model and measurement model

    xk=f(xk-1, uk-1)+vk-1

    zk=h(xk)+wk

    (1)

    where f(·) and h(·) are specific known nonlinear functions; xk=[xv,k, mk] is the state vector consisting of the robot pose xv,kand varying-size map of landmark mkat time step k; uk-1is the control input of the proprioceptive sensors; zkis the measurement obtained from the on-board sensors; vk-1and wkare additive process and measurement noise, respectively. The noises are assumed to be mutually independent Gaussian random variables with zero mean and covariances Qk-1and Rk, respectively.

    In this study, the third order spherical-radial cubature rule is utilized to approximate the nonlinear Gaussian integral with a set of 2N (N is the dimensionality of the state vector to be estimated) equally weighted cubature points. The set of cubature points is determined by {ξi, wi}, where ξiis thei-th element and wiis the corresponding weight factor:

    (2)

    2 SLAM based on square-root cubature rule

    The objective of the SLAM algorithm is to keep the system state estimate up to date by recursively evolving with the time update, measurement update and new landmark initialization steps. The square-root cubature rule is applied to all the SLAM steps to propagate the square-root factors of the predictive and posterior covariance directly. The complete procedure for the SCKF based SLAM(SCKF-SLAM) is derived in this section.

    2.1 Time update step

    When the robot moves according to the control signals from the proprioceptive sensors, the robot state has to be predicted based on its prior estimate of the state and the control inputs. As the process noise is non-additive, the robot state vector and its covariance squared root factor are required to be augmented as

    (3)

    The augmented state vector and its covariance squared root factor are used to determine a set of 2N1cubature points which are calculated by

    (4)

    where N1is the size of the augmented state vector. Each cubature point is propagated through the process model:

    (5)

    where uk-1is the control input. Note that the dimensionality of each propagated cubature point is the same as the original robot state vector, rather than the augmented one. The predicted robot state mean is estimated by

    (6)

    The square-root factor of the predicted robot covariance matrix is found by performing the QR decomposition

    (7)

    (8)

    2.2 Measurement update step

    Each time the robot revisits the landmarks that have already been mapped by means of its on-board sensors, the measurements are exploited to correct the estimate of both the robot state and the map of the landmarks. Landmark measurements are processed sequentially with a serial of update steps.

    The cubature points with respect to the current state are evaluated by

    (9)

    A specific landmark measurement depends only on the predicted robot pose and the particular landmark’s state, which are parts of the state vector. The propagated cubature points are evaluated with the measurement model by

    (10)

    The predicted measurement is estimated as

    (11)

    The square-root factor of the innovation matrix is found by performing the QR decomposition:

    Szz, k|k-1=qr([Zk|k-1SR,k])

    (12)

    where SR,kis the upper Cholesky factor of Rk, and Zk|k-1is a column matrix with each column calculated as

    [Zi, k|k-1]i=1,2,…,2N2

    (13)

    The cross-covariance matrix is obtained by matrix multiplying:

    (14)

    where χk|k-1is a column matrix with each column calculated as

    [χi, k|k-1]i=1,2,…,2N2

    (15)

    The Kalman gain of the SCKF is calculated by

    (16)

    The corrected state vector and corresponding square-root factor of the covariance matrix are finally obtained by

    (17)

    Sk|k=qr([χk|k-1-KZk|k-1KSR,k])

    (18)

    2.3 New landmark initialization step

    Landmark initialization happens when the robot detects a number of landmarks for the first time and decides to incorporate them into the map. The robot state vector and its covariance square-root factor are augmented with each new landmark measurement:

    (19)

    The expected position of the new landmark is calculated analogously using the cubature rule. A set of 2N3cubature points is calculated to represent the probability density of the augmented state:

    (20)

    where N3is the size of the augmented state vector. Each cubature point is propagated through the nonlinear inverse measurement model as

    (21)

    where h-1denotes the nonlinear inverse observation function, which transforms the new landmark measurements into the landmark coordinates in the global frame.

    The predicted mean of the augmented state is calculated by

    (22)

    The square-root factor of the corresponding covariance matrix is also obtained with the QR decomposition

    (23)

    (24)

    3 Huber-based SCKF SLAM

    (25)

    where δk|k-1is an unknown error vector.

    The nonlinear measurement function is also rewritten as a linear form by approximating:

    (26)

    where measurement matrix Hkis calculated by the predicted state covariance matrix and the cross-covariance matrix:

    (27)

    By combining Eqs(25) and (26) together, the linear regression equation can be obtained as

    (28)

    The error covariance matrix with respect to the far right component of the above equation is given by

    (29)

    where Skis the Cholesky factor of the error covariance.

    (30)

    (31)

    (32)

    The linear regression equation can be transformed to a compact form as

    yk=Mkxk+ξk

    (33)

    Huber’s GM-estimator is used to find the solution to this linear regression problem, by minimizing the cost function as

    (34)

    where ρ(·) is a symmetric, positive-define score function with a unique minimum at zero, dim(zk) is the size of a single landmark measurement, riis thei-th component of the residual between observation ykand its fitted value Mkxk, i.e., ri=[Mkxk-yk]. The solution of Eq.(34) is determined by the following implicit equation:

    (35)

    where the derivative ψ(ri)=dρ(ri)/dx is known as the influence function. By defining a weight function w(ri)=ψ(ri)/riand an associated diagonal weight matrix W=diag[w(ri)], it can be written in a matrix form as

    (36)

    This equation can be solved by using the iterated reweighted least-square algorithm, where the weight matrix W is recalculated in each iteration and is used in the next iteration. This process is represented as

    (37)

    (38)

    When Eq.(37) is converged, the final value of the corrected estimation of the state vector is achieved and the corresponding corrected covariance matrix is computed with the converged weight matrix:

    (39)

    Finally, the corrected square-root factor of the covariance matrix is achieved by performing the Cholesky factorization:

    Sk|k=CHOL(Pk|k)

    (40)

    The pseudo-code of the proposed Huber based SLAMalgorithm (HSCKF-SLAM) is summarized in “Algorithm 1”.

    Algorithm1 HSCKF-SLAMAlgorithmRequire:Initialrobotstatemeanx0andcovarianceP01. MainLoop:2. fork=1,2,…,Tdo3. Time-update:4. Computethepredictedrobotpose^xv,k|k-1anditsCholeskyfactorofthecovarianceSv,k|k-1via(4)-(8);5. ifnewmeasurementsreceivedthen6. Performdataassociationalgorithm;7. endif8. Measurementupdate:9. formeasurementsofrevisitedlandmarksdo10. Computethecross-covariancematrixPxz,k|k-1via(9)-(15);11. Computethecorrectedsystemstate^xk|kandthecorresponding CholeskyfactorofthecovarianceSk|kvia(25)-(40);12. endfor13. NewLandmarkinitialization:13. formeasurementsofnewlyvisitedlandmarksdo14. Performlandmarkinitializationstepvia(20)-(24);15. endfor16. endfor

    4 Simulations and results

    A series of simulations have been conducted to evaluate the performance of the proposed HSCKF-SLAM algorithm in comparison with the UKF-SLAM and the SCKF-SLAM. The publicly available UKF-SLAM simulator*https://svn.openslam.org/data/svn/bailey-slam/is modified as a benchmark platform.The other two algorithms have been implemented in Matlab R2012a on a 2.9GHz Intel Corei7-3520M Processor. As presented in Fig.1(a), the robot is assumed to move along the predefined trajectory in a rectangular plane. The robot starts from the origin of the

    global frame and detectsnearby landmarks with a laser sensor.The additive measurement noise is assumed to follow a Gaussian mixture distribution of the form:

    0≤α≤1, σ2=βσ1

    where α represents the noise model contamination, σ1and σ2are the standard deviations of the Gaussian mixture components, and β denotes the ratio between them.The process noise is 0.2m/s in wheel velocity and 2° in steering angle.Other simulation parameters are listed in Table 1.

    Table 1 Simulation parameters.

    Fig.1 The simulation results.True landmark (*) and robot path (thick solid lines), estimated landmark (diamonds)

    In order to evaluate the performance of the proposed algorithm under various measurement noise conditions,two simulation scenarios with different measurement noise models are considered: a Gaussian mixture contaminated noise model and an outlier contaminated noise model.For a fair comparison, all the SLAM algorithms are carried out with the same simulation parameters except that of the measurement noise.200 independent Monte Carlo simulation runs are conducted for each simulation scenario.

    4.1 Results in Gaussian mixture contaminated noise case

    In this simulation scenario,the measurement noise is assumed as a contaminated Gaussian model with two independent Gaussian mixtures. The standard deviation

    of the main mixture component σ1is set to 0.2m in range and 2° in bearing. Fig.1(b)~(d) show the results of a typical simulation run where the contamination and ratio parameters are set to 0.3 and 10, respectively. These plots indicate that both the robot trajectories and landmarks are estimated accurately at different time steps (k=36s, 72s, and 108s) by the proposed algorithm. The Kalman gain weights under different measurement residuals are also presented in Fig.2. It can be seen that the weights reach local minimums in the most time steps when either the range measurement residual or the bearing measurement residual is a high peak of the curve. Moreover, larger measurement residuals can bring about smaller weights. As a result, the measurement outliers are supressed to a great extent in the Kalman update process.

    Fig.2 Average Kalman gain weights under different measurement residuals

    The effects of different combinations of parameters α and β on accuracy are illustrated in Fig.3 and Fig.4. Fig.3 shows the relations between the average RMSE of the algorithms and contamination parameter α when ratio parameter β is fixed to 5. Similarly, the relations between average RMSE and ratio parameter β are shown in Fig.4, where α is set to 0.4. As observed in the figures, the HSCKF-SLAM outperforms the other algorithms in all cases. Besides, the superiority of the HSCKF-SLAM is more obvious as the parameters increase.The results indicate that the Huber based update plays a more important role when the distribution of the non-Gaussian noise has thicker tails. The SCKF-SLAM exhibits slightly better performance than the UKF-SLAM due to the reason that SCKF can approximate the nonlinear functions in higher order than UKF.The unscented transformation is no longer numerically stable and the Cholesky decomposition of the state covariance encounters troubles in cases of extremely large noise.

    Fig.3 Average RMSE under different contamination parameters

    Fig.4 Average RMSE under different ratio parameters

    4.2 Results in outlier contaminated noise case

    In this simulation scenario, the basic measurement noise follows a Gaussian distribution by setting contamination parameter to 0. This Gaussian noise model is then contaminated by a number of random measurement outliers which are induced periodically. Totally 21 measurements are selected and biased by an offset [5m, 5°]. Fig.5 depicts RMSE of the robot position and heading of the algorithms. It can be seen from the results that both the UKF-SLAM and the SCKF-SLAM suffer from estimation errors larger than the HSCKF-SLAM apparently. The position and heading RMSE are below 1m and 1.2° for HSCKF-SLAM.This proves that HSCKF-SLAM can detect all the measurement outliers and reduce their influence effectively. The average NEES of the outlier scenario are shown in Fig.6, where the two horizontal dashed lines are plotted to mark the 95% two-side confidence region.It can be seen that both SCKF-SLAM and UKF-SLAM become inconsistent for all the time steps, while HSCKF-SLAM retains consistent for more than 75 time steps.These results demonstrate that by making use of Huber’s update method, the conventional Kalman type filter is insensitive to the measurement outliers.

    Fig.5 Comparison of RMSE in outlier contaminated Gaussian measurement noise case

    Fig.6 Average NEES of the robot position in outlier case

    4.3 Computational cost

    The computational costs of these algorithms are also compared. As illustrated in Table 2, UKF-SLAM requires the minimum computational cost. SCKF-SLAM demands more running time because QR decompositions are employed to ensure numerical stability. HSCKF-SLAM takes the most computational effort due to the extra realization of robust linear regression in the measurement update stage. However, the increased average running time for one single update step with Huber’s method is of the order of a 3ms.This increase is a worthwhile price to be paid for robustness and consistency. Besides, such a level of increase is often acceptable in real-time SLAM applications.

    Table 2 Computational cost of algorithms

    5 Conclusions

    A robust SLAM algorithm based on SCKF and Huber’s GM-estimator is proposed for robot systems with non-Gaussian measurement noises. The integration of a GM-estimator doesn’t only retain the accurate merit of SCKF, but also provides an efficient way to work in non-Gaussian cases, with performance surpassing the benchmark algorithms in robustness and consistency.The influence of Huber’s GM-estimator on the convergence rate and efficiency properties with different score functions will be further studied and optimized.

    Reference

    [ 1] Dissanayake M W M G, Newman P, Clark S, et al. A solution to the simultaneous localization and map building (SLAM) problem.IEEETransactionsonRoboticsandAutomation, 2001, 17(3): 229-241

    [ 2] Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I.IEEERoboticsandAutomationMagazine, 2006, 13(2): 99-108

    [ 3] Martinez-Cantin R, Castellanos J A. Unscented SLAM for large-scale outdoor environments. In: Proceedings of the International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2005. 328-333

    [ 4] Chandra K P B, Gu D, Postlethwaite I. A cubature H∞ filter and its square-root version.InternationalJournalofControl, 2014, 87(4): 764-776

    [ 5] Arasaratnam I, Haykin S. Cubature Kalman filters.IEEETransactionsonAutomaticControl, 2009, 54(6): 1254-1269

    [ 6] Gandhi M A, Mili L. Robust Kalman filter based on a generalized maximum-likelihood-type estimator.IEEETransactionsonSignalProcessing, 2010, 58(5): 2509-2520

    [ 7] Li X R, Jilkov V P. Survey of maneuvering target tracking. Part V. Multiple-model methods.IEEETransactionsonAerospaceandElectronicSystems, 2005, 41(4): 1255-1321

    [ 8] Zoubir A M, Koivunen V, Chakhchoukh Y, et al. Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts.IEEESignalProcessingMagazine, 2012, 29(4): 61-80

    [ 9] Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem. In: Proceedings of the National Conference on Artificial Intelligence, Edmonton, Canada, 2002. 593-598

    [10] Ahmad H, Namerikawa T. Feasibility study of partial observability in H∞filtering for robot localization and mapping problem. In: Proceedings of the 2010 American Control Conference, Baltimore, USA, 2010.3980-3985

    [11] Huber P J. Robust Statistics. New Jersey: John Wiley & Sons, 2004. 43-48

    [12] Karlgaard C D, Schaub H. Huber-based divided difference filtering.JournalofGuidance,Control,andDynamics, 2007, 30(3): 885-891

    [13] Chang L, Hu B, Chang G, et al. Huber-based novel robust unscented Kalman filter.IETScience,Measurement&Technology, 2012, 6(6): 502-509

    [14] Wang X, Cui N, Guo J. Huber-based unscented filtering and its application to vision-based relative navigation.IETRadar,SonarandNavigation, 2010, 4(1): 134-141

    [15] Coleman D, Holland P, Kaden N, et al. System of subroutines for iteratively reweighted least squares computations.ACMTransactionsonMathematicalSoftware, 1980, 6(3): 327-336

    [16] Hampel F R, Ronchetti E M, Rousseeuw P J, et al. Robust Statistics: the Approach Based on Influence Functions. Published Online, John Wiley & Sons, 2011. 307-341

    Xu Weijun, born in 1985. He is a Ph.D. candidate in the College of Biomedical Engineering and Instrument Science of Zhejiang University. His main research fields arerobot simultaneous localization and mapping, multiple target tracking and multi-agent navigation.

    10.3772/j.issn.1006-6748.2016.01.006

    ① Supported by the National High Technology Research and Development Program of China (2010AA09Z104), and the Fundamental Research Funds of the Zhejiang University (2014FZA5020).

    ② To whom correspondence should be addressed. E-mail: rongxinj@zju.edu.cnReceived on Dec. 3, 2014

    极品教师在线视频| 街头女战士在线观看网站| 成人国产av品久久久| 久久久久视频综合| 国产成人a∨麻豆精品| 啦啦啦啦在线视频资源| 人人妻人人爽人人添夜夜欢视频 | 热re99久久国产66热| 少妇 在线观看| 欧美97在线视频| 九九在线视频观看精品| 桃花免费在线播放| 久久午夜福利片| 国产91av在线免费观看| 五月开心婷婷网| 汤姆久久久久久久影院中文字幕| 多毛熟女@视频| 中文乱码字字幕精品一区二区三区| 新久久久久国产一级毛片| 熟女av电影| 亚洲精品日韩在线中文字幕| 欧美性感艳星| 亚洲精品中文字幕在线视频 | 精品午夜福利在线看| 久久午夜福利片| 久久精品国产a三级三级三级| 亚洲国产日韩一区二区| 亚洲天堂av无毛| 欧美少妇被猛烈插入视频| 五月天丁香电影| 一级爰片在线观看| 91久久精品电影网| 国国产精品蜜臀av免费| 欧美变态另类bdsm刘玥| 日韩人妻高清精品专区| 多毛熟女@视频| 曰老女人黄片| 欧美变态另类bdsm刘玥| 中文欧美无线码| av天堂久久9| 精品人妻熟女av久视频| 男女无遮挡免费网站观看| 精品熟女少妇av免费看| 免费久久久久久久精品成人欧美视频 | 亚洲三级黄色毛片| 成人毛片60女人毛片免费| 亚州av有码| 夜夜骑夜夜射夜夜干| 国产乱人偷精品视频| 人人妻人人澡人人爽人人夜夜| 精品国产乱码久久久久久小说| 丰满迷人的少妇在线观看| 最近2019中文字幕mv第一页| 久久婷婷青草| 国产精品国产三级专区第一集| av天堂久久9| 久久人人爽人人片av| av视频免费观看在线观看| 久久久久久久久久久久大奶| 国产高清国产精品国产三级| 建设人人有责人人尽责人人享有的| 蜜桃在线观看..| 亚洲av国产av综合av卡| 久久ye,这里只有精品| 久久精品夜色国产| 国产成人午夜福利电影在线观看| 亚洲精品自拍成人| 亚洲国产精品一区三区| 在线亚洲精品国产二区图片欧美 | 日韩不卡一区二区三区视频在线| 国精品久久久久久国模美| 极品教师在线视频| 美女脱内裤让男人舔精品视频| 国产男人的电影天堂91| 观看av在线不卡| 精品少妇久久久久久888优播| 极品教师在线视频| 九九在线视频观看精品| 亚洲内射少妇av| 国产黄色视频一区二区在线观看| av专区在线播放| 国产永久视频网站| 亚洲国产精品一区三区| 久久久久久久大尺度免费视频| 日本黄色日本黄色录像| 亚洲激情五月婷婷啪啪| 一级毛片 在线播放| 91在线精品国自产拍蜜月| 在现免费观看毛片| 亚洲精品乱码久久久v下载方式| 另类亚洲欧美激情| 欧美最新免费一区二区三区| 少妇被粗大猛烈的视频| 99久国产av精品国产电影| 精品一区二区三卡| 黄片无遮挡物在线观看| 精品国产国语对白av| 精品亚洲成a人片在线观看| 熟女电影av网| 97在线视频观看| 国产日韩欧美视频二区| 国产精品一区二区三区四区免费观看| 97超视频在线观看视频| 亚洲人与动物交配视频| 伦精品一区二区三区| 亚洲熟女精品中文字幕| 最后的刺客免费高清国语| 久久久a久久爽久久v久久| 亚洲av日韩在线播放| 亚洲欧洲日产国产| 极品教师在线视频| 制服丝袜香蕉在线| 亚洲国产精品一区三区| 老熟女久久久| 久久免费观看电影| 高清不卡的av网站| 午夜影院在线不卡| 中文欧美无线码| 日日摸夜夜添夜夜爱| 国产深夜福利视频在线观看| 中文天堂在线官网| 91在线精品国自产拍蜜月| 丝瓜视频免费看黄片| 亚洲成人av在线免费| 一本—道久久a久久精品蜜桃钙片| 国产淫片久久久久久久久| 久久久欧美国产精品| 国产一区二区三区av在线| 啦啦啦视频在线资源免费观看| 国产深夜福利视频在线观看| 国内少妇人妻偷人精品xxx网站| 久久ye,这里只有精品| 91精品国产九色| 亚洲经典国产精华液单| 国产亚洲午夜精品一区二区久久| 亚洲av不卡在线观看| 欧美最新免费一区二区三区| 亚洲精品国产成人久久av| 国产精品伦人一区二区| 精品熟女少妇av免费看| 人人妻人人添人人爽欧美一区卜| videos熟女内射| 在线看a的网站| 亚洲精品国产成人久久av| 91精品国产九色| 99视频精品全部免费 在线| 国产亚洲91精品色在线| 国产一级毛片在线| 日本-黄色视频高清免费观看| 男女边吃奶边做爰视频| 久久久久久人妻| 免费观看在线日韩| 日韩强制内射视频| 国产91av在线免费观看| 男女啪啪激烈高潮av片| 久久6这里有精品| 久久久久精品性色| 亚洲丝袜综合中文字幕| 交换朋友夫妻互换小说| 美女国产视频在线观看| 麻豆精品久久久久久蜜桃| 岛国毛片在线播放| 汤姆久久久久久久影院中文字幕| 中文字幕av电影在线播放| 国产日韩欧美亚洲二区| 在线观看av片永久免费下载| 国产精品久久久久久av不卡| 少妇的逼水好多| 国产熟女午夜一区二区三区 | 中文在线观看免费www的网站| 永久免费av网站大全| 国产综合精华液| 极品少妇高潮喷水抽搐| 国产精品国产三级专区第一集| 国产免费视频播放在线视频| 日韩欧美一区视频在线观看 | 乱码一卡2卡4卡精品| 久久久久久久久久久久大奶| 精品国产国语对白av| av专区在线播放| 婷婷色综合大香蕉| 亚洲欧美一区二区三区国产| av福利片在线观看| 国产亚洲91精品色在线| 美女视频免费永久观看网站| 精品国产露脸久久av麻豆| 在线观看三级黄色| 久久久久久久大尺度免费视频| 日本-黄色视频高清免费观看| 亚洲av电影在线观看一区二区三区| 午夜精品国产一区二区电影| 男人舔奶头视频| 卡戴珊不雅视频在线播放| 在线观看一区二区三区激情| 国产 一区精品| 丰满少妇做爰视频| 精品亚洲成国产av| 女性生殖器流出的白浆| 国产欧美日韩综合在线一区二区 | 成年av动漫网址| 久久久国产精品麻豆| 极品人妻少妇av视频| 国产在视频线精品| 精品久久久噜噜| 日韩欧美 国产精品| 精品午夜福利在线看| 日本欧美国产在线视频| 免费人成在线观看视频色| 高清黄色对白视频在线免费看 | 久久久久久久国产电影| 人人妻人人看人人澡| 亚洲精品久久久久久婷婷小说| av又黄又爽大尺度在线免费看| 中文字幕精品免费在线观看视频 | 一级片'在线观看视频| 免费观看的影片在线观看| tube8黄色片| 国产成人精品久久久久久| 精品午夜福利在线看| 一区二区三区乱码不卡18| 又爽又黄a免费视频| 久久久久久久久久久免费av| 九九久久精品国产亚洲av麻豆| 亚洲婷婷狠狠爱综合网| 欧美成人午夜免费资源| 色网站视频免费| 亚洲怡红院男人天堂| 一区二区三区四区激情视频| 美女视频免费永久观看网站| 欧美+日韩+精品| 亚洲精品久久久久久婷婷小说| 日本av手机在线免费观看| 如何舔出高潮| 免费大片黄手机在线观看| 久久国产乱子免费精品| 久久久久久久精品精品| 特大巨黑吊av在线直播| 久久久久国产网址| 国产欧美日韩综合在线一区二区 | 内地一区二区视频在线| 久久女婷五月综合色啪小说| 日韩大片免费观看网站| 大香蕉97超碰在线| 免费少妇av软件| 久久99一区二区三区| 国产男女内射视频| 秋霞在线观看毛片| 麻豆成人av视频| 国产 一区精品| 亚洲欧美中文字幕日韩二区| 你懂的网址亚洲精品在线观看| 天美传媒精品一区二区| 91精品一卡2卡3卡4卡| 亚州av有码| 纯流量卡能插随身wifi吗| 日韩av在线免费看完整版不卡| 国产免费视频播放在线视频| 国产探花极品一区二区| 午夜久久久在线观看| 国产在线一区二区三区精| freevideosex欧美| 国产片特级美女逼逼视频| 成人免费观看视频高清| 最近中文字幕高清免费大全6| 大又大粗又爽又黄少妇毛片口| 精品国产乱码久久久久久小说| 国产中年淑女户外野战色| 一级毛片黄色毛片免费观看视频| 人人妻人人添人人爽欧美一区卜| 久久久欧美国产精品| 日韩三级伦理在线观看| 丁香六月天网| 欧美bdsm另类| 如何舔出高潮| 成人黄色视频免费在线看| 人妻少妇偷人精品九色| 国产免费福利视频在线观看| 美女cb高潮喷水在线观看| 欧美日本中文国产一区发布| 一级二级三级毛片免费看| 欧美97在线视频| 亚洲综合色惰| 亚洲精品一区蜜桃| 国产欧美日韩综合在线一区二区 | 亚洲av欧美aⅴ国产| 成人无遮挡网站| 伊人久久精品亚洲午夜| 国产综合精华液| 久热这里只有精品99| 日韩三级伦理在线观看| 久久久a久久爽久久v久久| 又大又黄又爽视频免费| 久久久久久久国产电影| 国产一区二区在线观看日韩| 丝袜在线中文字幕| 亚洲熟女精品中文字幕| 亚洲精品第二区| 高清黄色对白视频在线免费看 | 亚洲激情五月婷婷啪啪| 水蜜桃什么品种好| av网站免费在线观看视频| 美女cb高潮喷水在线观看| h日本视频在线播放| 国产综合精华液| 久久久欧美国产精品| 少妇的逼好多水| 久久久国产欧美日韩av| 中国三级夫妇交换| 丁香六月天网| 中国三级夫妇交换| 久久久a久久爽久久v久久| 日韩欧美 国产精品| 能在线免费看毛片的网站| 岛国毛片在线播放| 日日摸夜夜添夜夜爱| 99re6热这里在线精品视频| 日韩强制内射视频| 蜜桃在线观看..| 国产精品三级大全| 午夜免费观看性视频| 97超视频在线观看视频| tube8黄色片| 亚洲国产精品专区欧美| 中文字幕制服av| 国产黄频视频在线观看| 麻豆精品久久久久久蜜桃| 久久久亚洲精品成人影院| 在线 av 中文字幕| 免费观看av网站的网址| 人妻人人澡人人爽人人| 国产精品久久久久久久电影| 夜夜骑夜夜射夜夜干| 亚洲欧美日韩东京热| 一级毛片久久久久久久久女| 欧美人与善性xxx| 在线观看国产h片| 国产午夜精品一二区理论片| 欧美少妇被猛烈插入视频| 日韩精品免费视频一区二区三区 | 亚洲精品aⅴ在线观看| 精品久久久精品久久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲综合精品二区| 欧美日韩一区二区视频在线观看视频在线| 久久国内精品自在自线图片| 亚洲av二区三区四区| 高清不卡的av网站| 国产精品一区二区在线观看99| 91在线精品国自产拍蜜月| 精品少妇黑人巨大在线播放| 亚洲精品久久午夜乱码| 久久久久国产网址| 美女福利国产在线| 99精国产麻豆久久婷婷| 一本大道久久a久久精品| 亚洲成人av在线免费| 一区二区三区免费毛片| 九九在线视频观看精品| 热99国产精品久久久久久7| 国产有黄有色有爽视频| av不卡在线播放| 全区人妻精品视频| 一本一本综合久久| 久久热精品热| 久久精品国产亚洲网站| 如日韩欧美国产精品一区二区三区 | 高清欧美精品videossex| 高清午夜精品一区二区三区| 老司机影院成人| 国产精品一区二区性色av| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区黑人 | 少妇人妻一区二区三区视频| 如何舔出高潮| 九九久久精品国产亚洲av麻豆| 99久久人妻综合| 99久久精品热视频| 日本91视频免费播放| 99热网站在线观看| 午夜影院在线不卡| 97在线视频观看| 国产午夜精品一二区理论片| 久久人人爽av亚洲精品天堂| 欧美激情极品国产一区二区三区 | 18禁在线播放成人免费| 成年人免费黄色播放视频 | 国产精品国产av在线观看| √禁漫天堂资源中文www| 欧美变态另类bdsm刘玥| 久久综合国产亚洲精品| 大香蕉久久网| 人妻人人澡人人爽人人| 两个人的视频大全免费| 韩国av在线不卡| 欧美精品一区二区大全| 丰满少妇做爰视频| 国产一区二区三区综合在线观看 | 久久99一区二区三区| 国产片特级美女逼逼视频| av网站免费在线观看视频| 狂野欧美白嫩少妇大欣赏| 2022亚洲国产成人精品| 如何舔出高潮| 久久久久久伊人网av| 国产色爽女视频免费观看| 啦啦啦在线观看免费高清www| 久久婷婷青草| 丰满迷人的少妇在线观看| 99国产精品免费福利视频| 嫩草影院新地址| 女人久久www免费人成看片| 大片免费播放器 马上看| 欧美区成人在线视频| 99久久精品国产国产毛片| 亚洲精品aⅴ在线观看| 久久久久国产精品人妻一区二区| 国产精品无大码| 女的被弄到高潮叫床怎么办| 九九久久精品国产亚洲av麻豆| 精品亚洲成国产av| 男女边吃奶边做爰视频| 国产精品99久久久久久久久| 91久久精品国产一区二区成人| 亚洲经典国产精华液单| 最近手机中文字幕大全| 91久久精品电影网| 另类精品久久| 精品国产一区二区久久| 黄色欧美视频在线观看| 久久午夜综合久久蜜桃| 国产成人精品福利久久| 一本大道久久a久久精品| 欧美精品一区二区大全| 热re99久久精品国产66热6| 少妇被粗大猛烈的视频| tube8黄色片| √禁漫天堂资源中文www| 国产伦理片在线播放av一区| 美女福利国产在线| 在线看a的网站| 99热6这里只有精品| 亚洲天堂av无毛| 久久精品国产a三级三级三级| 日韩三级伦理在线观看| 久久毛片免费看一区二区三区| 欧美日韩视频高清一区二区三区二| 大香蕉久久网| 热99国产精品久久久久久7| 91午夜精品亚洲一区二区三区| 欧美丝袜亚洲另类| www.色视频.com| 青春草视频在线免费观看| 我要看日韩黄色一级片| 少妇高潮的动态图| av不卡在线播放| 亚洲一区二区三区欧美精品| 三上悠亚av全集在线观看 | 免费看不卡的av| 国产黄片视频在线免费观看| 高清午夜精品一区二区三区| 97精品久久久久久久久久精品| av天堂久久9| 久久久国产欧美日韩av| 国产视频首页在线观看| 九草在线视频观看| 久久国内精品自在自线图片| 日产精品乱码卡一卡2卡三| 纯流量卡能插随身wifi吗| 国产精品国产三级国产av玫瑰| 成年女人在线观看亚洲视频| 青青草视频在线视频观看| 国产黄片美女视频| 国产精品久久久久久精品电影小说| 免费高清在线观看视频在线观看| 免费黄网站久久成人精品| 各种免费的搞黄视频| 久热这里只有精品99| 日本av手机在线免费观看| 欧美日韩综合久久久久久| 国产 精品1| 亚洲精品日韩av片在线观看| 免费黄频网站在线观看国产| 日韩强制内射视频| 亚洲成色77777| 美女cb高潮喷水在线观看| 婷婷色麻豆天堂久久| 午夜精品国产一区二区电影| 国产伦精品一区二区三区视频9| 极品教师在线视频| 日本wwww免费看| 久久狼人影院| 搡老乐熟女国产| 18+在线观看网站| 蜜桃在线观看..| 一二三四中文在线观看免费高清| 精品熟女少妇av免费看| 色视频www国产| 99热网站在线观看| kizo精华| 国产免费一区二区三区四区乱码| a级毛片在线看网站| 18禁动态无遮挡网站| 日韩中文字幕视频在线看片| 亚洲性久久影院| 午夜91福利影院| 日韩人妻高清精品专区| 99热这里只有精品一区| 一级a做视频免费观看| 日韩,欧美,国产一区二区三区| 中文字幕精品免费在线观看视频 | av网站免费在线观看视频| 国产日韩欧美视频二区| 国内揄拍国产精品人妻在线| h视频一区二区三区| 久久97久久精品| 久久99一区二区三区| 国产精品伦人一区二区| 精品午夜福利在线看| 亚洲久久久国产精品| 最近手机中文字幕大全| 中文欧美无线码| 免费黄频网站在线观看国产| 久久人人爽av亚洲精品天堂| 亚洲电影在线观看av| 国产精品一二三区在线看| 久久久久久久久大av| 亚洲精品一二三| 亚洲国产最新在线播放| 免费高清在线观看视频在线观看| 晚上一个人看的免费电影| 亚洲一级一片aⅴ在线观看| 亚洲国产精品999| 午夜福利影视在线免费观看| 在线观看免费日韩欧美大片 | 黑丝袜美女国产一区| 亚洲精品第二区| 菩萨蛮人人尽说江南好唐韦庄| 赤兔流量卡办理| 一区二区三区免费毛片| 国产精品国产三级专区第一集| 精品人妻一区二区三区麻豆| 丰满迷人的少妇在线观看| 国产av码专区亚洲av| 国产日韩欧美视频二区| 中国三级夫妇交换| 亚洲在久久综合| 日韩亚洲欧美综合| 婷婷色综合大香蕉| 国产欧美日韩精品一区二区| 免费观看无遮挡的男女| 天天躁夜夜躁狠狠久久av| 自线自在国产av| 欧美另类一区| 国产av精品麻豆| 在线观看www视频免费| 日韩大片免费观看网站| 精品少妇黑人巨大在线播放| 国产片特级美女逼逼视频| 99热国产这里只有精品6| 秋霞伦理黄片| videossex国产| 日产精品乱码卡一卡2卡三| 丝袜喷水一区| 国产高清国产精品国产三级| 伊人久久精品亚洲午夜| 能在线免费看毛片的网站| 亚洲久久久国产精品| 国产国拍精品亚洲av在线观看| 国产探花极品一区二区| 最后的刺客免费高清国语| 精品熟女少妇av免费看| a级毛色黄片| 大码成人一级视频| 国产一区二区三区综合在线观看 | 久久午夜福利片| 亚洲精品,欧美精品| 十八禁高潮呻吟视频 | 亚洲成人av在线免费| 妹子高潮喷水视频| 午夜激情久久久久久久| 性高湖久久久久久久久免费观看| 午夜激情福利司机影院| 色吧在线观看| 国产成人freesex在线| 熟女人妻精品中文字幕| 日韩制服骚丝袜av| 麻豆成人av视频| 亚洲国产色片| 精品一区二区免费观看| 久久久久久久久久成人| 国产老妇伦熟女老妇高清| 日韩精品有码人妻一区| 欧美老熟妇乱子伦牲交| 热99国产精品久久久久久7| 又大又黄又爽视频免费| 国产精品不卡视频一区二区| 国产精品嫩草影院av在线观看| 精品久久久久久久久亚洲| 午夜视频国产福利| 亚洲综合精品二区| 精品久久久久久久久亚洲| 另类亚洲欧美激情| 国产亚洲精品久久久com| 美女主播在线视频| 国产成人午夜福利电影在线观看| 欧美 亚洲 国产 日韩一| 欧美日韩精品成人综合77777| 亚洲人成网站在线观看播放| 久久国内精品自在自线图片| 久久久久精品久久久久真实原创| a级片在线免费高清观看视频| 一本一本综合久久| 国产一区二区在线观看av| 内射极品少妇av片p| 51国产日韩欧美|