• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An effective estimation of distribution algorithm for parallel litho machine scheduling with reticle constraints①

    2016-12-06 05:24:37ZhouBinghai周炳海ZhongZhenyi
    High Technology Letters 2016年1期

    Zhou Binghai (周炳海), Zhong Zhenyi

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, P.R.China)

    ?

    An effective estimation of distribution algorithm for parallel litho machine scheduling with reticle constraints①

    Zhou Binghai (周炳海)②, Zhong Zhenyi

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, P.R.China)

    In order to improve the scheduling efficiency of photolithography, bottleneck process of wafer fabrications in the semiconductor industry, an effective estimation of distribution algorithm is proposed for scheduling problems of parallel litho machines with reticle constraints, where multiple reticles are available for each reticle type. First, the scheduling problem domain of parallel litho machines is described with reticle constraints and mathematical programming formulations are put forward with the objective of minimizing total weighted completion time. Second, estimation of distribution algorithm is developed with a decoding scheme specially designed to deal with the reticle constraints. Third, an insert-based local search with the first move strategy is introduced to enhance the local exploitation ability of the algorithm. Finally, simulation experiments and analysis demonstrate the effectiveness of the proposed algorithm.

    semiconductor manufacturing, parallel machine scheduling, auxiliary resource constraints, estimation of distribution algorithm

    0 Introduction

    The manufacturing of integrated circuits (ICs) on silicon wafers is a complex production process. Photolithography is one of the main production process steps in the wafer fabrications. 35% to 45% of work-in-process (WIP) of a wafer fabrication system typically resides in the photolithography area[1]. As the bottleneck process of fabricating complex wafers with the most expensive equipment, the photolithography almost determines the throughput and the cost of semiconductor manufacturing[2].

    A mould used to produce chips is called a reticle, which must be on the litho machine for the duration of a wafer lot’s processing. Reticles can be thought of as auxiliary resource constraints in the photolithography process. ICs are built by repeatedly constructing layers with desired properties on the silicon wafer’s surface. Every layer of each product can require its own unique reticle and a set of reticles for a single product can cost well over MYM150 K. In this paper, photolithography scheduling motivates our investigation into parallel litho machine scheduling in the presence of reticle constraints to minimize total weighted completion time, thus improving the scheduling efficiency of photolithography and leading to financial gains.

    The scheduling problem of the photolithography area has aroused much attention from home and abroad researchers and has become an issue of concern in our country recently. Ref.[1] investigated scheduling rules to assign WIP to litho machines to maximize production volume. Ref.[3] described several heuristics for litho machine and reticle scheduling based on appropriate modifications of the apparent tardiness cost (ATC) dispatching rule. Ref.[4] proposed two heuristics and a tabu search-based post processing algorithm. Ref.[5] investigated the problem of the load balancing among litho machines and presented a novel model. Ref.[6] solved the photolithography production control problem based on process capability indices. Ref.[7] established a multistage mathematical programming based scheduling approach with the objected goal of maximization of throughput, minimization of setup cost and a balancing of machine utilization. Ref.[8] put forward a time window rolling- and GA-based method for the dynamic dispatching problem in photolithography area. Ref.[9] introduced discrete event simulation (DES) and mathematical programming techniques into semiconductor manufacturing. This DES model allows a detailed problem description. Ref.[10] studied non-identical parallel machines with time constraints in semiconductor manufacturing and developed simple heuristics. Ref.[11] solved a litho machine scheduling formulation by using the branch-and-cut method.

    A review of the available literature indicates that there is a dearth of research that explicitly considers auxiliary resource constraints in photolithography. Furthermore, in previous research, the general approach for managing reticles is that the number of reticles available is assumed to be infinite or that the number of reticles available is assumed to be finite while only one unique reticle is available for each type. However, in fact, most of wafer fabs have multiple reticles available for each type of reticle so as to provide creation of more effective production schedules. In this study, each reticle type has multiple reticles available and jobs are investigated with non-zero ready times—both of these characteristics are inherent in semiconductor wafer fabs.

    What’s more, some of those methods adopted in photolithography such as discrete event simulation are expensive and time-consuming to develop and run while the solutions of those simple scheduling rules are not so promising. Therefore, this paper seeks to find an effective algorithm aiming at keeping a balance between time and solution quality. As a relatively new population-based optimization algorithm, estimation of distribution algorithm (EDA) has been successfully developed to solve a variety of optimization problems in academic and engineering fields[12-14]. But there has been no research about EDA on auxiliary resource constraints so far. Besides, the general method to deal with constraint violations is that a penalty function is added to the objective function or that infeasible solutions are simply removed. However, in this article, a specially designed decoding scheme is proposed to deal with the reticle constraints to transform infeasible solutions into feasible solutions. In addition, an insert-based local search with the first move strategy is introduced to exploit the neighborhood of the best individuals. Simulation results indicate that the proposed algorithm can lead to satisfactory results.

    1 Problem statements

    The problem assumptions and notations of parallel litho machines with reticle constraints are given as follows.

    The assumptions are given as follows: (1) There are a total of n independent jobs (wafer lots) and m identical litho machines. (2) Jobs can be assigned to each of the m available litho machines. (3) Each litho machine can only process one job at most once. In addition, once a job starts to be processed on a litho machine, it can’t be interrupted until it is finished. (4) Each job has its own processing time, release time and weight. (5) Each job should be processed on a certain layer. (6) One type of reticle can only process one certain layer. (7) The same reticle is not allowed to be used on different litho machines in overlapping time periods. (8) The same reticle is allowed to be used on different litho machines in non-overlapping time periods.

    In order to establish a mathematical model, the following notations are given.

    J Thesetofjobsorproductionlots;L Thesetofprocessinglayers;δl Thesetofjobswhichrequirelayerl∈Lprocess-ing;nl Numberofreticlesavailableforprocessinglayerl∈L; Jobj∈Jhasthefollowingparameters:pj Theprocessingtimeofjobj∈J;rj Thereleasetimeofjobj∈J;wj Theweight(priority)ofjobj∈J;Cj Thetimeatwhichjobj∈Jfinishesitsrequiredprocessing;m Thetotalnumberoflithomachines; Binaryvariables:xij Ifjobiimmediatelyprecedesjobjonthesamelithomachine,xij=1;otherwise,xij=0.eij Ifjobiimmediatelyprecedesjobjonthesamereticle,eij=1;otherwise,eij=0.?i∈δl,?j∈δl,?l∈L:i≠j Dummyvariable:job0 Ajobwhoseprocessingtime,readytime,andweightaresetequalto0each.Thus,itcanindi-cateboththestartingandfinishingofjobpro-cessingoneachlithomachineandeachreticle.

    According to the above assumptions and notations, the following mathematical model is given.

    An objective of the scheduling problem is to minimize total weighted completion time (TWCT):

    Eqs(1) and (2) indicate that jobs are assigned to each of the m available litho machines:

    (1)

    (2)

    Eqs(3) and (4) indicate litho machine assignment and job sequencing for jobs on the same litho machine:

    (3)

    (4)

    Eqs(5) and (6) indicate that jobs require layer l∈L processing are assigned to each of the nlavailable reticles:

    (5)

    (6)

    Eqs(7) and (8) indicate reticle assignment and job sequencing for jobs on the same reticle:

    (7)

    (8)

    Eq.(9) shows how jobi’s completion time Ciis determined:

    ?i∈J,?j∈J: j≠0, i≠j

    (9)

    (i.e. big M)

    Eq.(10) ensures that if two jobs require the same reticle, one of the jobs should complete its processing before the other job starts its processing

    ?i∈δl, ?j∈δl, ?l∈L: i≠j

    (10)

    2 Proposed estimation of distribution algorithm

    As a relatively new paradigm in the field of evolutionary computation, estimation of distribution algorithm employs explicit probability distributions in optimization[15].

    2.1 Encoding schemes

    Every individual of the population denotes a solution, which is represented by a sequence of all the job numbers as π={π1,π2,…,πi,…,πn} to determine the schedule order of all the jobs where πi∈J is theith job in π. For example, a solution π={1,2,5,4,3,0} implies that job 1 is scheduled first, and next are job 2, job 5, job 4 and job 3 in sequence. Job 0 is the last job to be scheduled.

    2.2 Decoding schemes

    To decode a sequence is to arrange the machines for all the jobs and determine the processing order in each machine. In this paper, a schedule is feasible only if the auxiliary resource constraints are not violated.

    The following variables and definitions are used for the method.

    s: the first machine completes its required workload.

    J′={πj|1≤j

    N(Iπj): the number of reticles occupied during Iπj.

    Based on the above variables, definitions and sequence π, the decoding heuristic is described as follows.

    Step 2: Initialize I=[a,a+pπi], Iπj=[Cπj-pπj, Cπj] and N(Iπj)=0. According to the above definition of the intersection, for each πj∈J′, if Iπj∩I≠φ, update Iπj=Iπj∩I, N(Iπj)=N(Iπj)+1.

    Step 3: For each πj∈J′, define K={πk|j

    Step 4: For each πk∈K, if Iπj∩Iπk≠φ, update Iπj=Iπj∩Iπk, N(Iπj)=N(Iπj)+1.

    Step 7: Cπi=a+pπi, J=J/πiand go to step 9.

    Step 9: If J≠φ, go to step 1. Otherwise, stop.

    2.3 Population initialization

    In order to guarantee the diversity of the initial population, initial random population of popsize individuals are used which are distributed uniformly.

    2.4 Probability model

    Different from the Genetic algorithm (GA) that produces offspring through crossover and mutation operators, EDA does it by sampling according to a probability model. So, the probability model has a great effect on the performance of EDA. In this paper, the probability model is designed as a probability matrix P. The element pij(gen) of the probability matrix P represents the probability that job j appears before or in position i of the solution sequence at generation gen. The value of pijrefers to the importance of a job when deciding the scheduling order.

    The initial population with popsize individuals determines the superior sub-population that consists of the best SP solutions, where SP=η×popsize, and η is a parameter representing the proportion of the superior sub-population in the whole population. Then the probability matrix P is initialized according to

    (11)

    In each generation of EDA, the new individuals are generated via sampling the solution space according to the probability matrix P. For every position i, job j is selected with a probability pij. If job j has already appeared, it means that job j has been scheduled. Then, the wholejth column of probability matrix P will be set as zero and all the elements of P will be normalized to maintain that each row sums up to 1. In such a way, an individual is constructed until all the jobs appear in the sequence. In EDA, a population with popsize individuals is generated.

    2.5 Updating mechanism

    A new population with popsize individuals determines the superior sub-population that consists of the

    best SP solutions. And then probability matrix P is updated according to

    (12)

    where α∈(0,1) is the learning rate of P.

    The updating process can be regarded as a kind of increased learning, where the second term on the right hand side of the equation represents learning information from the superior sub-population.

    2.6 Insert-based local search with the first move strategy

    As EDA pays more attention to global exploration while its exploitation capability is relatively limited, an effective EDA should balance the exploration and the exploitation abilities. In order to enhance the local exploitation ability of the algorithm, an insert-based local search with the first move strategy is introduced.

    Step 2: iter=1;

    Step 2.1: Choose u and v randomly (u≠v), πA_1=Insert(πA,u,v);

    Step 2.3: If f(πA_1)

    Step 2.4: iter=iter+1;

    Step 2.5: If iter≤(n·(n-1)), then go to step 2.1; otherwise, stop.

    2.7 Procedure of proposed EDA

    Step 1: Initialize the population according to 2.3 and initialize the probability matrix P according to 2.4.

    Step 2: Sample the probability model to generate new population according to 2.4 and select superior sub-population.

    Step 3: Update the probability matrix P according to 2.5.

    Step 4: Perform the local search according to 2.6.

    Step 5: If the termination criterion is not met, go to step 2; otherwise, stop.

    3 Simulation and analysis

    In this section, in order to evaluate the computational results of EDA and EDA with the local search, the two algorithms are compared with GA and the particle swarm optimization (PSO). The performance measure employed in our numerical study is the average value of TWCT. All the algorithms are run on a 1.86GHz portable computer with 896MB of RAM running Windows XP professional. The codes are written in C++ language.

    3.1 Datasets

    Since there are no standard test data in the open literature, the test problems are randomly generated on the basis of the following factors:

    1. number of jobs or wafer lots (n),

    2. number of machines (m),

    3. number of reticles available for processing layer l (nl).

    For the set of test instances, the level settings for each factor are: 3 levels forn, 2 form, and 2 for nl. For instance, a problem denoted as n10m2a represents n=10, m=2 and nl=[Rl/3]+1, while a problem denoted as n10m2b representsn=10,m=2 and nl=[Rl/5]+1. And for each parameter combination, 10 instances will be generated randomly according to the parameter settings in Table1. This results in a total of 120 test problems.

    Table 1 Parameters for the test data

    3.2 Parameters setting

    EDA contains several key parameters: popsize (the population size), η (the parameter associated with the superior sub-population), α (the learning rate). To investigate the influence of these parameters on the performance of EDA, the Taguchi method of design of experiment is implemented by using a moderate-scale problem n20m4a.

    For each parameter combination, EDA with local search operator is run 20 times independently and the average response variable (ARV) value is the average value of TWCT obtained by the proposed EDA. According to the number of parameters and the number of factor levels, the orthogonal array L25(53) is chosen. That is, the total number of treatment is 25, the number of parameters is 3, and the number of factor levels is 5. Different combinations of these parameter values are listed in Table 2. The orthogonal array and the obtained ARV values are listed in Table 3.

    Table 2 Parameter levels

    Table 3 Orthogonal table and ARV values

    According to the orthogonal table and the ARV values, the response values of each parameter listed in Table 4 can be obtained. Then, according to the response values, the trend of each factor level is illustrated in Fig.1.

    Table 4 Response table

    Fig.1 Factor level trend of the parameters

    According to the above analysis, a good choice of parameter combination is suggested as popsize=40, η=0.1, α= 0.1.

    3.3 Computational results

    The average TWCT value and CPU time of 10 instances under 12 problems obtained by the four algorithms after 500 generations are listed in Table 5, where EDA represents the general EDA algorithm and EDA+LS stands for EDA with the local search operator. Both GA and PSO are of general procedure with the decoding scheme the same as the one proposed in this paper. The parameters for GA and PSO are set as follows: (1) For GA, popsize=60, crossover probability Pc=0.6, mutation probability Pm=0.25, where the parameters are also set by the Taguchi method of design of experiment using the problem n20m4a. (2) For PSO, popsize=70, learning factorsc1=c2=0.2, inertia weight w is initially set as 0.9 and then linearly decreased to 0.4 according to the number of iterations, where popsize is set by experiment and the other parameters are set according to general conditions[16].

    As can be seen from Table 5, although GA and PSO appear more efficient in terms of CPU time because it requires a linear time to create new individuals for GA and PSO while this task requires O(N2) time for EDA, EDA is better than GA and PSO in terms of solution quality. Besides, the solution quality of GA and PSO can be hardly improved even if they use the same CPU time as EDA does because their convergence curves become flat after 500 generations as presented in Fig.2 and Fig.3. Furthermore, the performance of EDA can be greatly improved by adding the local search to it. Obviously, EDA+LS performs the best for all the problems and its CPU time is still acceptable.

    Fig.2 Convergence curves in solving nl=[Rl/3]+1

    Fig.3 Convergence curves in solving nl=[Rl/5]+1

    Fig.2 and Fig.3 depict the convergence curves obtained by the four algorithms for the 60 problems with nl=[Rl/3]+1 and nl=[Rl/5]+1 respectively. The vertical axis shows the average TWCT value of 60 instances for each algorithm. It can be seen from Fig.2 that although PSO evolves faster than the other algorithms at first, it turns out with a premature convergence. Fig.3 shows that the four algorithms are nearly of the same convergence speed, but they end with obvious difference in solution quality due to different solutions at the first generation.

    It’s apparent from both Fig.2 and Fig.3 that EDA outperforms GA and PSO in terms of solution quality. Furthermore, EDA+LS can provide even higher quality solutions than EDA. What’s more, the superiority of EDA and EDA+LS to GA and PSO in solution quality is more significant in Fig.3 compared with that in Fig.2, which indicates that EDA and EDA +LS may perform much better than GA and PSO when the auxiliary resources are more tightly constrained as the number of reticles of each type affects the availability of the auxiliary resources. All in all, the results show that the proposed EDA is effective, especially in solving scarce auxiliary resources problems.

    4 Conclusion

    In this paper, an estimation of distribution algorithm is developed to solve the scheduling problem of parallel litho machines with reticle constraints by considering multiple reticles available for each reticle type. An effective decoding scheme is designed for the auxiliary resource constraints and an insert-based local search with the first move strategy is introduced which has been proved to be very useful. Comparisons to GA and PSO demonstrate the effectiveness of the proposed EDA in solving the scheduling problem in photolithography, especially when the auxiliary resources are constrained more tightly.

    [ 1] Lee Y H, Park J, Kim S. Experimental study on input and bottleneck scheduling for a semiconductor fabrication line.IIEtransactions, 2002, 34(2): 179-190

    [ 2] Wang S, Zhang P, Qin W. Composite dispatching rule design for photolithography area scheduling in wafer manufacturing system with multiple objectives.AppliedMechanicsandMaterials, 2013, 252: 418-426

    [ 3] de Diaz S L M, Fowler J W, Pfund M E, et al. Evaluating the impacts of reticle requirements in semiconductor wafer fabrication.IEEETransactionsonSemiconductorManufacturing, 2005, 18(4): 622-632

    [ 4] Cakici E, Mason S J. Parallel machine scheduling subject to auxiliary resource constraints.ProductionPlanningandControl, 2007, 18(3): 217-225

    [ 5] Shr A M D, Liu A, Chen P P. Load balancing among photolithography machines in the semiconductor manufacturing system.JournalofInformationScienceEngineering, 2008, 24(2): 379-391

    [ 6] Pearn W L, Kang H Y, Lee A H I, et al. Photolithography control in wafer fabrication based on process capability indices with multiple characteristics.IEEETransactionsonSemiconductorManufacturing, 2009, 22(3): 351-356

    [ 7] Klemmt A, Lange J, Weigert G, et al. A multistage mathematical programming based scheduling approach for the photolithography area in semiconductor manufacturing. In: Proceedings of the 2010 Winter Simulation Conference, Baltimore, USA, 2010. 2474-2485

    [ 8] Yang F C, Kuo C N. A time window rolling-and GA-based method for the dynamic dispatching problem in photolithography area. In: Proceedings of the 40th IEEE International Conference on Computers and Industrial Engineering, Awaji Island, Japan, 2010. 1-6

    [ 9] Klemmt A, Weigert G. An optimization approach for parallel machine problems with dedication constraints: Combining simulation and capacity planning. In: Proceedings of the 2011 Winter Simulation Conference, Phoenix, USA, 2011. 1986-1998

    [10] Obeid A, Dauzère-Pérès S, Yugma C. Scheduling job families on non-identical parallel machines with time constraints. In: Proceedings of the 2011 Winter Simulation Conference, Phoenix, USA, 2011. 1994-2005

    [11] Yan B, Chen H Y, Luh P B, et al. Litho machine scheduling with convex hull analyses.IEEETransactionsonAutomationScienceandEngineering, 2013, 10(4): 928-937

    [12] Zhang Y, Li X. Estimation of distribution algorithm for permutation flow shops with total flowtime minimization.Computers&IndustrialEngineering, 2011, 60(4): 706-718

    [13] Wang L, Wang S, Xu Y, et al. A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem.Computers&IndustrialEngineering, 2012, 62(4): 917-926

    [14] Wang S, Wang L, Liu M, et al. An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem.InternationalJournalofProductionEconomics, 2013, 145(1): 387-396

    [15] Larranaga P, Lozano J A. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Netherlands: Springer, 2002

    [16] Liu Z X, Liang H. Parameter setting and experimental analysis of the random number in particle swarm optimization algorithm.ControlTheory&Applications, 2010, 27(11): 1489-1496

    Zhou Binghai, was born in 1965. He received Ph.D and M.S. degrees respectively from School of Mechanical Engineering, Shanghai Jiaotong University in 2001 and 1992. He is a professor, a Ph.D supervisor in School of Mechanical Engineering, Tongji University. He is the author of more than 140 scientific papers. His current research interests are scheduling, modeling, simulation and control for manufacturing systems, integrated manufacturing technology.

    10.3772/j.issn.1006-6748.2016.01.007

    ① Supported by the National High Technology Research and Development Programme of China (No. 2009AA043000) and the National Natural Science Foundation of China (No. 61273035, 71471135).

    ② To whom correspondence should be addressed. E-mail: bhzhou@#edu.cnReceived on Jan. 28, 2015

    一区福利在线观看| 国产成人啪精品午夜网站| 久久国产精品人妻蜜桃| av福利片在线观看| 亚洲国产精品sss在线观看| 免费电影在线观看免费观看| 欧美在线一区亚洲| 亚洲第一欧美日韩一区二区三区| 18+在线观看网站| 亚洲成人免费电影在线观看| 丰满的人妻完整版| 国产精品久久视频播放| 国产av一区在线观看免费| 国产伦精品一区二区三区四那| 国产视频一区二区在线看| eeuss影院久久| a级毛片a级免费在线| 午夜精品在线福利| 怎么达到女性高潮| 亚洲人成网站在线播放欧美日韩| 久久婷婷人人爽人人干人人爱| 午夜亚洲福利在线播放| 99久久精品国产亚洲精品| 国产激情偷乱视频一区二区| 国产极品精品免费视频能看的| 国产主播在线观看一区二区| 女人十人毛片免费观看3o分钟| 久久久久性生活片| 亚洲av中文字字幕乱码综合| 日韩欧美 国产精品| 色吧在线观看| 高清毛片免费观看视频网站| 久久久久久久亚洲中文字幕 | 亚洲精品色激情综合| 天天躁日日操中文字幕| 久久伊人香网站| 日本熟妇午夜| 91av网一区二区| 国产一区二区三区在线臀色熟女| 欧美日韩福利视频一区二区| 亚洲在线观看片| 女同久久另类99精品国产91| 他把我摸到了高潮在线观看| 一个人免费在线观看电影| 能在线免费观看的黄片| 亚洲第一欧美日韩一区二区三区| 人人妻人人看人人澡| 国产午夜福利久久久久久| 99久久精品热视频| 国产成人影院久久av| 老司机午夜福利在线观看视频| 91在线观看av| 深夜a级毛片| 国产一区二区亚洲精品在线观看| 午夜激情欧美在线| 欧美高清成人免费视频www| 午夜福利高清视频| 亚洲av日韩精品久久久久久密| 欧美成狂野欧美在线观看| 久久人妻av系列| 国产精品国产高清国产av| 美女免费视频网站| 毛片一级片免费看久久久久 | 一级av片app| 9191精品国产免费久久| 男人舔奶头视频| 国产私拍福利视频在线观看| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩东京热| 动漫黄色视频在线观看| 国产爱豆传媒在线观看| 色哟哟哟哟哟哟| 直男gayav资源| 欧美潮喷喷水| 亚洲最大成人中文| 熟女电影av网| 此物有八面人人有两片| 精华霜和精华液先用哪个| 日韩欧美一区二区三区在线观看| 十八禁网站免费在线| 久久久久久国产a免费观看| 日本a在线网址| 午夜免费激情av| 一进一出抽搐动态| 人妻久久中文字幕网| 成人美女网站在线观看视频| 伊人久久精品亚洲午夜| 婷婷精品国产亚洲av| 日韩免费av在线播放| 一级a爱片免费观看的视频| 国产一区二区在线av高清观看| 一区二区三区四区激情视频 | 欧美性感艳星| 美女xxoo啪啪120秒动态图 | 日韩精品中文字幕看吧| av福利片在线观看| 日本五十路高清| 久久中文看片网| 中文字幕熟女人妻在线| 69人妻影院| 日本 欧美在线| 久久午夜亚洲精品久久| 99热6这里只有精品| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久久久久免费视频| 一个人看视频在线观看www免费| 亚洲精品亚洲一区二区| 国产一区二区在线观看日韩| 综合色av麻豆| 国模一区二区三区四区视频| x7x7x7水蜜桃| 成人美女网站在线观看视频| 熟妇人妻久久中文字幕3abv| 一区二区三区激情视频| 亚洲美女黄片视频| 亚洲18禁久久av| 国产精品久久久久久人妻精品电影| 午夜福利成人在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 色综合亚洲欧美另类图片| www.www免费av| 国产大屁股一区二区在线视频| 动漫黄色视频在线观看| 久久久精品欧美日韩精品| 桃色一区二区三区在线观看| av天堂中文字幕网| a级毛片a级免费在线| 欧美3d第一页| 国产精品久久久久久久电影| 中文字幕熟女人妻在线| 亚洲美女搞黄在线观看 | 国产色婷婷99| 国产野战对白在线观看| 18美女黄网站色大片免费观看| 国产又黄又爽又无遮挡在线| 国产精品久久久久久亚洲av鲁大| 亚洲五月天丁香| 最近最新中文字幕大全电影3| 欧美区成人在线视频| www.色视频.com| 男人的好看免费观看在线视频| 天堂网av新在线| 午夜福利高清视频| 国产精品久久久久久人妻精品电影| 欧美日韩亚洲国产一区二区在线观看| 在线观看66精品国产| 日韩欧美三级三区| 成人性生交大片免费视频hd| 精品欧美国产一区二区三| 久久久久久久久久黄片| 久久久久久大精品| 日韩av在线大香蕉| 精品一区二区三区视频在线| 国产v大片淫在线免费观看| 99精品在免费线老司机午夜| 婷婷亚洲欧美| 欧美日本亚洲视频在线播放| 国产高清视频在线观看网站| 99热只有精品国产| 少妇人妻一区二区三区视频| 久久精品影院6| 久久6这里有精品| av女优亚洲男人天堂| 日韩欧美国产在线观看| 少妇熟女aⅴ在线视频| av在线蜜桃| 欧美黄色片欧美黄色片| 中亚洲国语对白在线视频| 久久久国产成人免费| 中文字幕免费在线视频6| 成人欧美大片| 熟女电影av网| 中文字幕人成人乱码亚洲影| 一区二区三区四区激情视频 | 亚洲人与动物交配视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 全区人妻精品视频| www日本黄色视频网| 亚洲精品粉嫩美女一区| 亚洲av免费高清在线观看| 最近最新中文字幕大全电影3| 亚洲精品粉嫩美女一区| 我的女老师完整版在线观看| 久久久成人免费电影| 一个人免费在线观看电影| 国产中年淑女户外野战色| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av涩爱 | 国产高潮美女av| www.色视频.com| 亚洲黑人精品在线| 日日摸夜夜添夜夜添av毛片 | 少妇高潮的动态图| 2021天堂中文幕一二区在线观| 男女之事视频高清在线观看| 色综合欧美亚洲国产小说| 少妇熟女aⅴ在线视频| 国产免费av片在线观看野外av| 毛片女人毛片| 91九色精品人成在线观看| 丁香欧美五月| 男插女下体视频免费在线播放| 啦啦啦观看免费观看视频高清| 波多野结衣高清无吗| 日韩欧美免费精品| 亚洲男人的天堂狠狠| 国产视频一区二区在线看| 国产国拍精品亚洲av在线观看| 免费在线观看亚洲国产| 小说图片视频综合网站| 极品教师在线免费播放| 国内久久婷婷六月综合欲色啪| 亚洲电影在线观看av| 国产一区二区激情短视频| 97超级碰碰碰精品色视频在线观看| 国产精品99久久久久久久久| 精品乱码久久久久久99久播| 桃色一区二区三区在线观看| 三级男女做爰猛烈吃奶摸视频| 久久中文看片网| 午夜老司机福利剧场| 中文字幕久久专区| 国产爱豆传媒在线观看| 日日干狠狠操夜夜爽| 欧美成人免费av一区二区三区| 99视频精品全部免费 在线| 美女大奶头视频| 99在线人妻在线中文字幕| 免费在线观看亚洲国产| 国产视频一区二区在线看| 亚洲无线在线观看| 免费在线观看亚洲国产| 精品国内亚洲2022精品成人| 精品人妻1区二区| 欧美黄色片欧美黄色片| 热99re8久久精品国产| 亚洲无线观看免费| 精品乱码久久久久久99久播| 夜夜夜夜夜久久久久| .国产精品久久| 亚洲国产欧洲综合997久久,| 桃色一区二区三区在线观看| 日韩免费av在线播放| 欧美成人a在线观看| 亚洲av中文字字幕乱码综合| 亚洲av美国av| 中文字幕免费在线视频6| 久久热精品热| 男人和女人高潮做爰伦理| 国产精品99久久久久久久久| 欧美性猛交黑人性爽| 别揉我奶头 嗯啊视频| 男人舔奶头视频| 18禁裸乳无遮挡免费网站照片| 窝窝影院91人妻| 亚洲乱码一区二区免费版| 国产欧美日韩一区二区三| 国产精品1区2区在线观看.| 最好的美女福利视频网| 欧美性感艳星| 亚洲av不卡在线观看| 中文亚洲av片在线观看爽| 美女高潮喷水抽搐中文字幕| 日韩亚洲欧美综合| 能在线免费观看的黄片| 国产精品99久久久久久久久| 日本 av在线| 90打野战视频偷拍视频| 特大巨黑吊av在线直播| av天堂中文字幕网| 十八禁网站免费在线| 男人和女人高潮做爰伦理| 真人做人爱边吃奶动态| 日韩精品中文字幕看吧| aaaaa片日本免费| 亚洲人成网站高清观看| 午夜两性在线视频| 国产成年人精品一区二区| 男插女下体视频免费在线播放| 成人特级av手机在线观看| 国产亚洲欧美在线一区二区| 欧美一区二区亚洲| 午夜免费成人在线视频| 欧美精品国产亚洲| 国产麻豆成人av免费视频| 亚洲av成人精品一区久久| 国产精品综合久久久久久久免费| 亚洲熟妇熟女久久| 一级作爱视频免费观看| 夜夜躁狠狠躁天天躁| 日韩中文字幕欧美一区二区| 香蕉av资源在线| 欧美成狂野欧美在线观看| 看片在线看免费视频| 国产三级在线视频| 国产高清有码在线观看视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 757午夜福利合集在线观看| 精品国产三级普通话版| 在线观看午夜福利视频| 久久久精品大字幕| ponron亚洲| 亚洲av美国av| 亚洲人与动物交配视频| 国产探花极品一区二区| 日韩精品中文字幕看吧| 麻豆成人av在线观看| 亚洲真实伦在线观看| 男女床上黄色一级片免费看| 日韩有码中文字幕| 国产免费男女视频| 热99在线观看视频| 一级毛片久久久久久久久女| 亚洲不卡免费看| 国产老妇女一区| www.999成人在线观看| 亚洲人成电影免费在线| 99国产精品一区二区三区| 少妇被粗大猛烈的视频| 好男人在线观看高清免费视频| 免费一级毛片在线播放高清视频| 国产精品久久久久久亚洲av鲁大| 99国产精品一区二区蜜桃av| 亚洲人成网站高清观看| 亚洲美女黄片视频| 亚洲五月婷婷丁香| 在线观看舔阴道视频| 少妇被粗大猛烈的视频| 午夜精品久久久久久毛片777| 亚洲av中文字字幕乱码综合| 精品国产三级普通话版| 国产精品美女特级片免费视频播放器| 国产精品乱码一区二三区的特点| 久久精品国产亚洲av香蕉五月| 久久精品国产99精品国产亚洲性色| 好男人电影高清在线观看| 国产亚洲av嫩草精品影院| av福利片在线观看| 国模一区二区三区四区视频| 国语自产精品视频在线第100页| www.999成人在线观看| av黄色大香蕉| 日韩欧美一区二区三区在线观看| 日本在线视频免费播放| 亚洲美女视频黄频| 色尼玛亚洲综合影院| 久久精品人妻少妇| 狂野欧美白嫩少妇大欣赏| 国产一级毛片七仙女欲春2| 成人无遮挡网站| 又黄又爽又免费观看的视频| 一区二区三区四区激情视频 | 免费看美女性在线毛片视频| 丝袜美腿在线中文| 成熟少妇高潮喷水视频| 亚洲人成网站在线播放欧美日韩| 嫩草影院精品99| 级片在线观看| 亚洲真实伦在线观看| 亚洲黑人精品在线| 亚洲第一电影网av| 又粗又爽又猛毛片免费看| 嫩草影院入口| 真人做人爱边吃奶动态| 深夜a级毛片| 一本一本综合久久| 国产亚洲精品av在线| 国产主播在线观看一区二区| 好男人在线观看高清免费视频| 韩国av一区二区三区四区| 欧美在线黄色| 97热精品久久久久久| 在线国产一区二区在线| 久久精品久久久久久噜噜老黄 | 岛国在线免费视频观看| 欧美一级a爱片免费观看看| 欧美+亚洲+日韩+国产| 国产一区二区激情短视频| 老司机午夜福利在线观看视频| 亚洲精品在线美女| 欧美日韩乱码在线| 脱女人内裤的视频| av欧美777| 能在线免费观看的黄片| 搞女人的毛片| 国产精品一及| 欧美日韩福利视频一区二区| 好看av亚洲va欧美ⅴa在| 男女下面进入的视频免费午夜| 久久久久国内视频| 亚洲午夜理论影院| 欧美在线黄色| 国产欧美日韩一区二区精品| 成人高潮视频无遮挡免费网站| 国产精品免费一区二区三区在线| 成人无遮挡网站| 国产一区二区亚洲精品在线观看| 午夜激情欧美在线| 黄色一级大片看看| 国产精品久久久久久精品电影| 欧美xxxx黑人xx丫x性爽| 天堂影院成人在线观看| av在线蜜桃| 丰满乱子伦码专区| 老司机午夜福利在线观看视频| 国产免费一级a男人的天堂| 国产av不卡久久| 免费看美女性在线毛片视频| 99久久99久久久精品蜜桃| 国产在线精品亚洲第一网站| 天天一区二区日本电影三级| 国产野战对白在线观看| 波多野结衣高清无吗| 免费人成在线观看视频色| 757午夜福利合集在线观看| av在线观看视频网站免费| 亚洲,欧美精品.| 国产黄a三级三级三级人| 亚洲五月天丁香| 内地一区二区视频在线| 日本熟妇午夜| www日本黄色视频网| 91在线精品国自产拍蜜月| 蜜桃亚洲精品一区二区三区| 日日摸夜夜添夜夜添av毛片 | bbb黄色大片| 久久久久国内视频| 一卡2卡三卡四卡精品乱码亚洲| 伊人久久精品亚洲午夜| 香蕉av资源在线| 99久久精品国产亚洲精品| av在线蜜桃| 久久久久国内视频| 欧美乱色亚洲激情| 欧美黑人欧美精品刺激| 亚洲欧美激情综合另类| 精品一区二区三区视频在线观看免费| 嫩草影视91久久| 琪琪午夜伦伦电影理论片6080| 蜜桃亚洲精品一区二区三区| 精品人妻1区二区| 色精品久久人妻99蜜桃| 国产欧美日韩精品一区二区| a在线观看视频网站| 人人妻人人看人人澡| 久久精品国产自在天天线| 国产视频内射| 色哟哟哟哟哟哟| а√天堂www在线а√下载| 99国产精品一区二区三区| 男女视频在线观看网站免费| 亚洲成人免费电影在线观看| 日韩 亚洲 欧美在线| 亚洲乱码一区二区免费版| 一级av片app| 国产精品av视频在线免费观看| 日本三级黄在线观看| 欧美黄色片欧美黄色片| 国产激情偷乱视频一区二区| 精品免费久久久久久久清纯| 国产精品1区2区在线观看.| 国产亚洲av嫩草精品影院| 国产高潮美女av| 97超级碰碰碰精品色视频在线观看| 精品人妻视频免费看| 亚洲avbb在线观看| 精品午夜福利在线看| 欧美最黄视频在线播放免费| 偷拍熟女少妇极品色| 亚洲国产精品合色在线| 99riav亚洲国产免费| av在线蜜桃| 国产日本99.免费观看| 亚洲精品日韩av片在线观看| 国产av一区在线观看免费| 美女高潮喷水抽搐中文字幕| 国产精品人妻久久久久久| 18禁在线播放成人免费| 国产白丝娇喘喷水9色精品| 国模一区二区三区四区视频| 久久热精品热| 老司机午夜福利在线观看视频| www.色视频.com| 国产色婷婷99| 免费观看人在逋| 国产精品99久久久久久久久| 亚洲精品久久国产高清桃花| 日韩人妻高清精品专区| 麻豆av噜噜一区二区三区| 3wmmmm亚洲av在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美zozozo另类| 少妇高潮的动态图| 日韩亚洲欧美综合| 久久久久亚洲av毛片大全| 亚洲第一欧美日韩一区二区三区| 97超视频在线观看视频| 看黄色毛片网站| 丝袜美腿在线中文| 国产极品精品免费视频能看的| 日韩 亚洲 欧美在线| 亚洲乱码一区二区免费版| 丰满人妻熟妇乱又伦精品不卡| 精品乱码久久久久久99久播| 91在线观看av| 最近最新免费中文字幕在线| 国产免费一级a男人的天堂| 国产69精品久久久久777片| 18禁黄网站禁片免费观看直播| 乱码一卡2卡4卡精品| 激情在线观看视频在线高清| 欧美日韩中文字幕国产精品一区二区三区| 欧美激情国产日韩精品一区| 一边摸一边抽搐一进一小说| 亚洲精品亚洲一区二区| 国产成人啪精品午夜网站| www.色视频.com| 精品久久久久久成人av| 日韩成人在线观看一区二区三区| 精品午夜福利视频在线观看一区| 男人舔女人下体高潮全视频| 老司机福利观看| 亚洲18禁久久av| 国产精品亚洲美女久久久| 一夜夜www| 国产午夜福利久久久久久| 免费在线观看成人毛片| 免费av毛片视频| 国产精品电影一区二区三区| 久久6这里有精品| 三级国产精品欧美在线观看| 夜夜夜夜夜久久久久| 国产私拍福利视频在线观看| 真人做人爱边吃奶动态| 99久久无色码亚洲精品果冻| 动漫黄色视频在线观看| 性欧美人与动物交配| 久久这里只有精品中国| 国产欧美日韩精品一区二区| 亚洲黑人精品在线| 91久久精品电影网| 中文字幕免费在线视频6| 亚洲av免费在线观看| 午夜免费男女啪啪视频观看 | 国产av不卡久久| 内射极品少妇av片p| 中国美女看黄片| 91字幕亚洲| 亚洲精品乱码久久久v下载方式| 美女免费视频网站| 一卡2卡三卡四卡精品乱码亚洲| 欧美在线黄色| 蜜桃久久精品国产亚洲av| 在线观看一区二区三区| www.熟女人妻精品国产| www.999成人在线观看| 久久久久久久久久成人| 男人的好看免费观看在线视频| 婷婷精品国产亚洲av在线| 精品久久久久久成人av| 欧美一区二区国产精品久久精品| 白带黄色成豆腐渣| 中文字幕精品亚洲无线码一区| 国产蜜桃级精品一区二区三区| a级一级毛片免费在线观看| 丝袜美腿在线中文| 国产爱豆传媒在线观看| 别揉我奶头 嗯啊视频| 亚洲最大成人av| 亚洲国产日韩欧美精品在线观看| 日韩欧美免费精品| 成人国产综合亚洲| 女生性感内裤真人,穿戴方法视频| 舔av片在线| 99久久99久久久精品蜜桃| 午夜福利免费观看在线| 国产av麻豆久久久久久久| 久久久久久大精品| 免费av观看视频| 51午夜福利影视在线观看| 免费看光身美女| 一个人观看的视频www高清免费观看| 熟妇人妻久久中文字幕3abv| 在线观看免费视频日本深夜| 夜夜爽天天搞| 国语自产精品视频在线第100页| 欧美成人性av电影在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 搡老妇女老女人老熟妇| 黄色日韩在线| 亚洲五月婷婷丁香| 午夜福利高清视频| 欧美色欧美亚洲另类二区| 久久国产乱子免费精品| 色av中文字幕| 久久久成人免费电影| 看免费av毛片| 久久久精品欧美日韩精品| 国产精品国产高清国产av| 嫩草影院入口| av在线蜜桃| 日本黄色片子视频| 日韩中字成人| 十八禁国产超污无遮挡网站| 亚洲国产欧洲综合997久久,| 亚洲午夜理论影院| 搡老妇女老女人老熟妇| 欧美日韩综合久久久久久 | 国产国拍精品亚洲av在线观看| 99国产精品一区二区三区| 国产成人aa在线观看| 宅男免费午夜| 免费看光身美女| 三级毛片av免费| 美女黄网站色视频|