• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure

    2023-02-20 13:15:52KuiyuanTian田魁元YongLiu劉勇JiangfengDu杜江鋒andQiYu于奇
    Chinese Physics B 2023年1期
    關(guān)鍵詞:劉勇

    Kuiyuan Tian(田魁元), Yong Liu(劉勇), Jiangfeng Du(杜江鋒), and Qi Yu(于奇)

    State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China

    Keywords: GaN junction barrier Schottky diode,compound dielectric,breakdown voltage,turn-on voltage

    1. Introduction

    Gallium nitride (GaN) materials are very suitable for fabricating high-power devices due to wide band gap, high saturation electron mobility, high critical breakdown field,good thermal conductivity, and superior Baliga’s figure-ofmerit than SiC and Si.[1–4]Recently, the demonstration of low leakage current and high breakdown voltage (BV) vertical GaN diodes has become a major focus in the field of power electronics.[5–8]However,the high turn-on voltage(Von>3 V)will cause a high conduction loss in power switching applications in p–n junction diodes.[9–11]And for vertical GaN Schottky barrier diodes(SBDs),there is an electric field peak at the Schottky contact,which can lead to a high tunneling current of the Schottky barrier.[12,13]In the past few years,vertical GaN JBS diodes have been fabricated by forming p–n junction on the basis of vertical GaN SBDs.[14,15]The JBS can reduce the leakage current of high voltage operation without sacrificing the positive characteristics, because a thick barrier produced by the p–n junction is only added to the high electric field region, and the tunneling current can be reduced significantly.However, the electric field of the p–n junction is not uniform enough in GaN JBS and causes premature breakdown, thus hindering the improvement ofBVof JBS with low leakage current.

    Some literature has reported the structure of a high-Kdielectric layer as a passivation layer.[16–18]The structure can improve the reverse breakdown voltage of the device effectively by utilizing the characteristic that the electric field distribution in the high-Kdielectric layer tends to be uniform.When the high-Kdielectric layer is used as a passivation layer of a semiconductor device,the electric field distribution inside the device is modulated and tends to be uniform,so theBVof the device is increased. However, the use of only high-Kdielectric layers is far from the theoretical limit of GaN reverse characteristics. By utilizing a composite dielectric structure composed of a high-Kdielectric layer and a low-Kdielectric layer,we have reported a GaN p–n junction diode having high reverse characteristics.[19]

    In this paper, a vertical GaN-based JBS with a high-K/low-Kcompound dielectric structure (GaN VCD-JBS) is proposed to increase the breakdown voltage of conventional JBS and reduce the effects of electric field crowding at the tip of the p–n junction without sacrificing forward characteristic.The breakdown voltage of the proposed GaN VCD-JBS is improved by optimizing the parameters of the device. Then,the highest figure-of-merit of 8.6 GW/cm2is obtained in comparison with the papers recently reported.

    2. Device structure

    The device structure of the proposed GaN VCD-JBS is shown in the following Fig. 1. The simulated epitaxial GaN structure consists of a 15-μm-thick GaN drift region doped with 1×1016cm-3, which acts as a current path and pressure-resistant structure. Then two p-type regions doped with 1×1018cm-3are formed. The depth and length of the p-type region are 1 μm and 2 μm, respectively. Two Si3N4high-Kdielectric layers are added to both sides of GaN JBS while two SiO2low-Kdielectric layers are placed at the bottom of the high-Klayers mentioned above. The device has a length (LJBS) of 5.5 μm and a thickness (TJBS) of 15 μm,respectively. For convenience, the width of Schottky contact,the distance from the interface of the p–n junction in JBS to the SiO2low-Kdielectric layer, and the length of the dielectric layer are labeled asWn,T,andLrespectively.

    Fig.1. Schematic cross-section of GaN VCD-JBS.

    According to Gauss’s law and Poisson’s equation, when the electric fluxes are equal at the interface of two materials with different dielectric constants, the electric field strength along the direction of the electric displacement vector inside the two materials satisfies the following relationship:

    Since the dielectric constant of Si3N4is 7.5 and the dielectric constant of SiO2is 3.9,it can be seen from the formula that the electric field at the interface of the Si3N4material layer and the SiO2material layer is discontinuous. The electric field in the vertical direction has a lift from the Si3N4material layer to the SiO2material layer. Based on this principle, we designed a GaN VCD-JBS with a high breakdown voltage. JBS depends on the p–n junction formed by the p-type doping region and the n-type drift region which generates a depletion region in n-type GaN to withstand voltage without increasing turn-on voltage. However,the electric field away from the p–n junction interface in the n-type GaN is drastically reduced,which leads to a reduction in breakdown voltage. In this work,we use the discontinuous electric field in the dielectric layer to affect the electric field in the n-type GaN.By increasing the electric field in the n-type GaN away from the p–n junction interface,the electric field in the n-type drift region becomes uniform,so that the breakdown voltage is increased without sacrificing forward characteristics such as specific on-resistance,saturation current, and turn-on voltage. Then, by optimizing the vertical high-K/low-Kcompound dielectric structure and balancing the size of the Schottky contact area, the electric field away from the p–n junction is more uniform keeping the doping concentration constant.

    3. Simulation models and calibration

    3.1. Simulation models

    In the process of simulation, low-field mobility model,high-field mobility model, Shockley–Read–Hall (SRH)model, Fermi–Dirac model, Auger model, bandgap narrowing model, phonon-assisted tunneling model for GaN SBD,and the Selberherr’s impact ionization model are adopted. The reverseI–Vcharacteristics of GaN diodes can be well explained by the phonon-assisted tunneling model.[20]The tunneling current is generated by the emission of electrons from the energy level of the metal–semiconductor interface. The density of the tunneling current is

    In whichqdescribes the electron charge,Nsdescribes the occupied density of states at the interface, andWis the phonon-assisted tunneling rate as a function of temperatureTand electric field strengthE:

    whereadescribes the electron–phonon interaction constant,ˉhωdescribes the phonon energy, andεTdescribes the trap depth.

    In this paper, low-field mobility and high-field mobility models are used as carrier mobility models. The Albrecht model is selected as low-field mobility for simulation,and the low-field mobility of carriers is described as

    whereμ(N,T)is the low-field carrier mobility as a function of doping concentrationNand lattice temperatureT,wherea,b,c,T0,N0,andT1are obtained from Monte Carlo fitting results,The results are 2.61×10-4V·s·cm-2, 2.9×10-4V·s·cm-2,170.0×10-4V·s·cm-2, 300 K, 1.0×10-17cm-3, 1065 K,respectively.[21]

    The high field mobility of charge carriers is described as

    whereμ(E)is the high-field carrier mobility as a function of the electric field strengthE,Vsat,EC,α,n1, andn2are obtained from the Monte Carlo fitting results,and the results are 1.9064×107cm/s, 220.8936 kV/cm, 6.1973, 7.2044, 0.7857,respectively.[22]

    In this paper, the impact ionization model is selected as Selberherr’s impact ionization model, and the collision ionization rate of electrons (αn) and holes (αp) are respectively described as

    whereEis the local electric field,an,bn,ap,bp, andmare obtained from Monte Carlo simulation results, which are 2.52×108cm-1, 3.41×107V/cm, 5.37×106cm-1,1.96×107V/cm,1,respectively.[23]

    3.2. Simulation calibration

    The GaN vertical p–n diode reported by Esmat Farzana has been used to calibrate the simulation model.[24]The reported diode is grown on a free-standing substrate with an epitaxial dislocation density of 106cm-2. The epitaxial structure consists of a 0.25-μm layer of n+GaN ([Si]: 1×1019cm-3),followed by a 4-μm layer of undoped GaN as the n-drift layer,a 0.4-μm layer of p+GaN([Mg]: 3×1019cm-3)layers,and a 10-nm p++GaN([Mg]: 3×1020cm-3)layer to make ohmic contacts. The GaN p–n diode was simulated by the Silvaco ATLAS tool and the above model was used to calibrate the simulation model parameters. The simulated GaN p–n diode has a turn-on voltage of 3 V and a breakdown voltage of 1100 V,which is similar to the experimental results. The forward characteristics and the electric field characteristics of the reported GaN vertical diodes and the simulation results are shown in Fig.2.The simulation results show great fitting accuracy,proving the credibility of our model for the GaN vertical diode.

    Fig.2. (a) Comparison of the simulated and reported forward characteristics. (b) Comparison of simulated electric field and reported electric field in the diode drift region.

    4. Results and discussion

    Figure 3 shows the forward and reverse characteristics of the conventional GaN SBD, the conventional GaN JBS,the GaN JBS with SiO2dielectric layer, and the GaN VCDJBS designed in the work. As shown in Fig. 3. The breakdown voltage of the conventional SBD is 320 V, while the breakdown voltage of the conventional JBS shown in Fig.3 is 2262 V.The reason is that the p-type doping region implanted inside the JBS forms a p–n junction with the n-type drift region. In the case of withstanding voltage, the high electric field which should have been on the Schottky contact surface is transferred to the p–n junction inside the device. At the same time, the p–n junction forms a higher barrier than the Schottky barrier and can withstand higher voltages. For GaN VCD-JBS,theBVis 3165 V when the length of the dielectric layerL=4 μm and the distance from the p–n junction interface to the low-Kdielectric layerT=5 μm,while the breakdown voltage of the GaN JBS with only SiO2dielectric layer is 2585 V.The results confirmed that the layer of highK/lowKcompound dielectric can effectively modulate the electric field and effectively improve the withstand voltage.

    The inset of Fig.3 shows a comparison of the output characteristics of conventional GaN SBD,conventional GaN JBS,GaN JBS with SiO2dielectric layer,and GaN VCD-JBS.Simulated results show that the turn-on voltage of GaN VCD-JBS is 0.6 V,which is comparable to conventional GaN-based SBD and conventional GaN-based JBS and much less than the turnon voltage of the p–n diode(>3 V).As can be seen from the inset of Fig.3,the forward current density of GaN VCD-JBS,GaN JBS with SiO2dielectric layer and conventional GaN JBS is slightly less than the forward current density of GaN SBD,because the Schottky contact area is reduced due to the presence of a p–n junction in the JBS. However, compared with p–n junction diodes of the same size,the forward characteristics are significantly improved.

    Figure 4 shows the equipotential contours of the conventional GaN JBS,GaN JBS with SiO2dielectric layer,and designed GaN VCD-JBS.As shown in Fig.4,the depletion depth of the drift region in conventional JBS is shorter than the depletion depth of the drift region in VCD GaN JBS.Meanwhile,the potential in the dielectric layers on both sides can also help to withstand voltage. Simulation results show that the n-type drift region can be increased significantly and a higher breakdown voltage can be achieved by optimizing the high-K/low-Kdielectric layer.

    Fig.3. Reverse I–V characteristics of the conventional GaN SBD,the conventional GaN JBS,the GaN JBS with SiO2 dielectric layer,and the GaN VCD-JBS.The inset shows the forward I–V characteristics of the conventional GaN SBD,the conventional GaN JBS,the GaN JBS with SiO2 dielectric layer,and the GaN VCD-JBS.

    Fig.4. Simulated equipotential contours when breakdown for(a)the conventional GaN JBS,(b)the GaN JBS with SiO2 dielectric layer,and(c)the GaN VCD-JBS.

    Figure 5 shows the electric field distribution of the conventional GaN JBS, the GaN JBS with SiO2dielectric layer,and GaN VCD-JBS when the dimension of the JBS is 15 μm and the electric field curve distribution of the two devices whenx=0.1 μm.As shown in Figs.5(a)and 5(b),the electric field is concentrated on the p–n junction of JBS and decreases away from the interface of the p–n junction in the n-type drift region. As shown in Fig.5(c),there is a discontinuity of electric field at the interface of Si3N4and SiO2due to the different dielectric constants of Si3N4and SiO2. The electric field of Si3N4at the interface is suppressed and the electric field of SiO2is enhanced.

    As shown in Fig.5(d), the areas enclosed by the electric field curves of conventional GaN JBS and GaN JBS with SiO2dielectric layer are approximately triangular, and the electric field gradually decreases as the distance from the p–n junction increases.As we all know,the integral of the electric field over the depletion region can represent the withstand voltage of the region. For GaN VCD-JBS, by introducing a high-K/low-Kdielectric layer,the electric field in the drift region away from the p–n junction is increased, and the electric field distribution tends to be uniform. However, due to the electric field crowding effect, the electric field is concentrated at the sharp spike of the p–n junction interface. The peak electric field of the sharp spike is relatively high, so the electric field at other areas of the p–n junction interface is lower than the critical breakdown electric field when the device is breaking down.As shown in the inset of Fig.5(d),the addition of a high-K/low-Kdielectric layer is equivalent to the introduction of a high electric field at the contact surface of the dielectric layer and GaN JBS,which improves the electric field away from the spikes of the p–n junction interface, further increasing the breakdown voltage. Compared to a conventional junction termination,the proposed structure raises the electric fields in the n-type region away from the p–n junction interface.

    Fig.5. The distribution of electric field for(a)the conventional GaN JBS,(b)the GaN JBS with SiO2 dielectric layer,and(c)the GaN VCD-JBS.(d)The electric field profile at x=0.1 μm. The inset of(d)shows the electric field profile at y=1 μm.

    We investigate the relationship betweenBVand the distance from the p–n junction interface to low-Kdielectric layerTand the length of the dielectric layerL. For convenience of further investigation, GaN VCD-JBS with one block of low-Kand one block of high-Kon both sides is optimized firstly by Silvaco simulation. The distance between p–n junction and low-Kdielectric layer varied from 1 μm to 11 μm, and the length of the dielectric layer was changed from 1 μm to 12 μm.When the leakage current is detected to be 50 mA/cm2in the Silvaco simulation, the voltage is defined as the breakdown voltage.

    Figure 6 shows the relationship between the breakdown voltage and the length of the dielectric layerL. The inset of Fig.6 shows the relationship between the breakdown voltage and the distance from the interface of p–n junction to the lowKdielectric layerT. As the length of the dielectric layerLincreases,the breakdown voltage gradually increases until saturation. When the length of the dielectric layer reaches 10 μm,the breakdown voltage of GaN VCD-JBS reaches the maximum value. However,longer dielectric layers result in a waste of conductive area in the device. The length of the dielectric layerL=4 μm has been chosen, and the device has a large breakdown voltage with a small size. With the increase ofT,the breakdown voltage increases firstly and then decreases. If the distance between the p–n junction interface and the low-Kdielectric layer is undersized,a high electric field peak close to the p–n junction in JBS causes a premature breakdown. But if the distance between the p–n junction interface and the low-Kdielectric layer is too large, the new electric field peak introduced in the n-type drift region is relatively low and causes a low breakdown voltage. The distance between the p–n junction interface and the low-Kdielectric layerT=5 μm has been chosen. WhenT=5 μm,the breakdown voltage of GaN VCD-JBS reaches the maximum value.

    Fig.6. Relationship between BV and L when T =5 μm. The inset shows the relationship between BV and T when L=4 μm.

    Fig.7. Electric field distributions for various T at x=0.1 μm when L=4 μm.

    Figure 7 shows that the electric field distribution inside the device varies with the variety of the distance between p–n junction interface and low-Kdielectric layerTwhen it breaks down. The breakdown voltages of the device can be observed by the different electric field distributions inside the devices.With the observation of Fig.7,the breakdown voltage of conventional GaN JBS is 2262 V.By optimizing the distance between interface of the p–n junction and the low-Kdielectric layerT,the electric field in JBS becomes more uniform.WhenTis optimized to be 5 μm, the GaN VCD-JBS achieves aBV=3165 V,which is larger by 38%than conventional GaN JBS.

    For GaN JBS diodes,the Schottky contact area is important for the forward and reverse characteristics of the diode.As the width of the Schottky contact region increases,the specific on-resistance of the JBS (Ron,sp) will decrease. However, the wide Schottky contact increases the reverse leakage current of the diode and reduces the breakdown voltage.

    Fig.8. BV and Ron as functions of the Schottky contact width of GaN conventional JBS Wn. The inset shows the figures-of-merit (FOM) of GaN JBS.

    Figure 8 shows the relationship between theBVandRonand the Schottky contact width of GaN conventional JBSWnobtained by simulation. As the Schottky contact width increases,the device’s resistance gradually decreases,but theBVof the JBS diode also decreases. From the inset of Fig.8,we can conclude that the figure-of-merit (FOM) of JBS increases firstly and then decreases withWnincreasing. In the range ofWnbetween 1.3 μm and 1.6 μm, theFOMof JBS reaches 3 GW/cm2.Therefore,we choose 1.5 μm as the Schottky contact width of the device.

    Figure 9 shows the electric field distribution of the two cells’ combination of GaN VCD-JBS at the breakdown voltage. The optimized structure above is just one cell of a complete GaN VCD-JBS. The complete GaN VCD-JBS consists of many identical cells in parallel. A cell and the adjacent cell share a common dielectric layer. Therefore, it is necessary to verify whether the GaN VCD-JBS composed of two or more cells can achieve the effect. It has been verified that the breakdown voltage of GaN VCD-JBS composed of two cells is 3050 V.Compared with the single cell GaN VCD-JBS,the breakdown voltage is only reduced by 3%, which is negligible. Since each cell shares an identical dielectric layer with an adjacent cell, half of the dielectric layer should be calculated when calculating the on-resistance of the structure.

    Fig.9. The distribution of electric field for two cells combination of GaN VCD-JBS.

    The above optimization simulations are performed with only one layer of low dielectric constant material. Even if the optimum value is reached,the electric field away from the p–n junction is still low and not uniform enough. In order to make the electric field distributions more uniform and realize a higher breakdown voltage of GaN VCD-JBS,it is necessary to add the multi-layer of the low-Kdielectric. The multi-layer of the low-Kdielectric can introduce a plurality of electric field peaks to increase the electric field away from the p–n junction surface, resulting in an enhancedBVof the GaN VCD-JBS.Parameters of an optimized structure with three blocks of low-Klayers are listed in Table 1.

    Table 1. GaN VCD-JBS with three blocks of low-K dielectric layers specifications.

    Fig.10. The electric field distributions corresponding to conventional GaNbased JBS and optimized GaN VCD-JBS at x=0.1 μm.

    Figure 10 shows the electric field distribution curve of a conventional JBS and the electric field distribution curve of a GaN VCD-JBS with an optimized multi-layer of the low-Kdielectric atx=0.1 μm. Its parameters are shown in Table 1.The concentration of the n-type drift region is 1.5×1016cm-3in the device. The electric field distribution of the optimized GaN VCD-JBS becomes more uniform. The area enclosed by the electric field curve is increased by an enhanced electric field away from the p–n junction. TheBVof GaN VCDJBS reaches 4171 V. Compared with the traditional JBS ofBV=1560 V,an increase of 167%is obtained. The forward characteristics of GaN VCD-JBS using multi-layer of low-Kdielectric are also excellent. It has a very low on-resistance of 2.07 mΩ·cm2, and a very high Baliga’s figure-of-merit of 8.6 GW/cm2is obtained in the optimized GaN VCD-JBS.Therefore, a reasonable optimization of multi-layer of low-Kdielectric and high-Kdielectric structure can make the electric field distribution more uniform, and thus achieve greater breakdown voltage.

    Figure 11 shows the comparison of GaN VCD-JBS in this work with other reported diodes. The high-performance GaN VCD-JBS makes it an advanced high-voltage power device, with the highestBVof 4171 V, an extremely lowRonof 2.07 mΩ·cm2, and an excellentFOMof 8.6 GW/cm2. The slash lines in Fig.11 represent the theoretical limits of Si,SiC,and GaN,respectively. The optimized structure is far beyond the theoretical limit of SiC and close to the theoretical limit of GaN.The work represents great potential for GaN VCD-JBS performance.

    Fig.11. Baliga’s figure-of-merit is shown for state-of-art devices and for our proposed devices from this paper,the 3491 V devices with Ron values of 2.2 mΩ·cm2.

    5. Conclusion

    In this work, a vertical GaN-based JBS with a high-K/low-Kcompound dielectric structure (GaN VCD-JBS) is proposed. The electric field peaks introduced by high-K/low-Kdielectric layers make the electric field away from the p–n junction rise and the distribution of the electric field becomes more uniform. The width of Schottky contactWn,the distance from the interface of p–n junction in JBS to low-Kdielectric layerT, and the length of the dielectric layerLof the highK/lowKdielectric composite layer are optimized respectively in subsequent work,resulting in superior forward and reverse characteristics.The simulation results show that when the drift region thickness of GaN VCD-JBS is 15 μm and the drift region concentration is 1.5×1016cm-3, a highBVof 4171 V and lowRon,spof 2.07 mΩ·cm2for GaN VCD-JBS with three lowKdielectric composite layers can be achieved, and the Baliga’s figure-of-merit is 8.6 GW/cm2. This structure shows the potential of GaN JBS as a power diode and provides new ideas for designing high withstand voltage devices.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.61376078)and the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC0515).

    猜你喜歡
    劉勇
    Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
    Dispersion and damping rate of Langmuir wave in space plasma with regularized Kappa distributed electrons
    2021年高考數(shù)學(xué)模擬試題(三)
    2021年高考數(shù)學(xué)模擬試題(五)
    Configuration interaction study on low-lying states of AlCl molecule*
    開小灶
    故事會(huì)(2021年6期)2021-03-18 04:47:36
    劉勇:捕獲“天溢”的北極光靈感
    更 正
    電子科技(2014年1期)2014-03-22 10:17:07
    市長的畫
    雜文選刊(2012年11期)2012-05-08 04:51:46
    Phenol Oxidation by Combined Cavitation Water Jet and Hydrogen Peroxide*
    夜夜看夜夜爽夜夜摸| 侵犯人妻中文字幕一二三四区| 国产又黄又爽又无遮挡在线| 伦理电影免费视频| 久久久精品国产亚洲av高清涩受| 久久久国产成人精品二区| 观看免费一级毛片| av片东京热男人的天堂| 国产成人av教育| 在线看三级毛片| 国产精品亚洲av一区麻豆| 黄色丝袜av网址大全| 亚洲专区字幕在线| 国产精品免费视频内射| 久久久久亚洲av毛片大全| 亚洲精品色激情综合| 免费人成视频x8x8入口观看| 国内精品久久久久久久电影| 我的亚洲天堂| 精品福利观看| 亚洲熟女毛片儿| 久久国产精品影院| 悠悠久久av| 日本成人三级电影网站| 亚洲熟女毛片儿| 国产又色又爽无遮挡免费看| 久久久久久大精品| 成人手机av| 两人在一起打扑克的视频| 中出人妻视频一区二区| 99国产精品99久久久久| 久久香蕉精品热| av天堂在线播放| 男人舔女人下体高潮全视频| 一区二区三区高清视频在线| 亚洲精品在线观看二区| 国内揄拍国产精品人妻在线 | 免费看a级黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区在线av高清观看| 在线观看午夜福利视频| 美女 人体艺术 gogo| 久久久久久久久免费视频了| 窝窝影院91人妻| 日韩精品中文字幕看吧| 亚洲真实伦在线观看| 国产精品二区激情视频| 欧美日韩乱码在线| 欧美在线一区亚洲| 日韩欧美国产一区二区入口| 一级毛片高清免费大全| 中文字幕久久专区| 精品国产国语对白av| 又黄又爽又免费观看的视频| 日本黄色视频三级网站网址| 久久久久亚洲av毛片大全| 久久婷婷人人爽人人干人人爱| 国产精品二区激情视频| 国产高清有码在线观看视频 | 免费观看人在逋| av片东京热男人的天堂| 美女国产高潮福利片在线看| 国产私拍福利视频在线观看| 99精品久久久久人妻精品| 一级毛片女人18水好多| 男人舔奶头视频| videosex国产| 桃色一区二区三区在线观看| 少妇熟女aⅴ在线视频| 午夜影院日韩av| 久久人妻福利社区极品人妻图片| 欧洲精品卡2卡3卡4卡5卡区| 黑人巨大精品欧美一区二区mp4| 国产精品一区二区三区四区久久 | 少妇熟女aⅴ在线视频| 久久国产精品男人的天堂亚洲| 男女之事视频高清在线观看| 久久久久国产一级毛片高清牌| 色婷婷久久久亚洲欧美| 午夜福利一区二区在线看| 狠狠狠狠99中文字幕| 成人三级做爰电影| 女同久久另类99精品国产91| 久久精品影院6| 国产熟女午夜一区二区三区| 国产熟女xx| 无遮挡黄片免费观看| 少妇裸体淫交视频免费看高清 | 久久精品国产99精品国产亚洲性色| 一本综合久久免费| 久久精品夜夜夜夜夜久久蜜豆 | av超薄肉色丝袜交足视频| 亚洲精品国产一区二区精华液| 免费无遮挡裸体视频| 久久亚洲精品不卡| 亚洲色图 男人天堂 中文字幕| 午夜免费鲁丝| 亚洲国产欧洲综合997久久, | 丁香欧美五月| 亚洲国产欧美一区二区综合| 日本一本二区三区精品| ponron亚洲| 色综合站精品国产| 国产v大片淫在线免费观看| 欧美日韩瑟瑟在线播放| 久久精品国产清高在天天线| 无人区码免费观看不卡| 女性被躁到高潮视频| 国产真人三级小视频在线观看| 成在线人永久免费视频| 国产精品久久电影中文字幕| 999久久久精品免费观看国产| 免费高清视频大片| 首页视频小说图片口味搜索| 欧美 亚洲 国产 日韩一| avwww免费| 国产精品久久视频播放| 丁香六月欧美| 男人舔女人下体高潮全视频| 麻豆国产av国片精品| 一区二区三区国产精品乱码| 男女午夜视频在线观看| cao死你这个sao货| 国产成人av激情在线播放| 欧美一区二区精品小视频在线| 亚洲av日韩精品久久久久久密| 国产97色在线日韩免费| 国产视频一区二区在线看| 久久天堂一区二区三区四区| 午夜精品久久久久久毛片777| 波多野结衣巨乳人妻| 波多野结衣高清无吗| 中文字幕另类日韩欧美亚洲嫩草| 久久热在线av| 嫩草影视91久久| 性色av乱码一区二区三区2| 国产精品久久电影中文字幕| 欧美成人午夜精品| 国产成年人精品一区二区| 日韩有码中文字幕| 少妇熟女aⅴ在线视频| 一区二区日韩欧美中文字幕| 三级毛片av免费| 亚洲专区字幕在线| 精品国产美女av久久久久小说| 禁无遮挡网站| 成人精品一区二区免费| 一区福利在线观看| 好男人在线观看高清免费视频 | 亚洲七黄色美女视频| 精品午夜福利视频在线观看一区| 亚洲 欧美 日韩 在线 免费| av在线天堂中文字幕| 婷婷丁香在线五月| 欧美一区二区精品小视频在线| 99国产综合亚洲精品| 老司机福利观看| 国产精品免费视频内射| 免费高清在线观看日韩| 国产精品 欧美亚洲| 欧美日韩一级在线毛片| 国产成人精品久久二区二区免费| avwww免费| 亚洲成av人片免费观看| 熟妇人妻久久中文字幕3abv| 宅男免费午夜| 免费在线观看成人毛片| 麻豆成人av在线观看| 波多野结衣高清作品| 国产视频内射| 侵犯人妻中文字幕一二三四区| 国产精品一区二区三区四区久久 | 熟女电影av网| 国产黄色小视频在线观看| 久久久久精品国产欧美久久久| 动漫黄色视频在线观看| 长腿黑丝高跟| 国产久久久一区二区三区| 悠悠久久av| 欧美日韩乱码在线| 窝窝影院91人妻| 丁香欧美五月| 女警被强在线播放| 手机成人av网站| 亚洲熟妇中文字幕五十中出| 人妻久久中文字幕网| 日本黄色视频三级网站网址| 性色av乱码一区二区三区2| 久久人妻av系列| 此物有八面人人有两片| 国产精品久久视频播放| 一本大道久久a久久精品| 91麻豆精品激情在线观看国产| 无人区码免费观看不卡| 日韩中文字幕欧美一区二区| 黄频高清免费视频| 成人精品一区二区免费| 国产精品,欧美在线| 亚洲成人久久爱视频| 欧美激情久久久久久爽电影| or卡值多少钱| 黄色a级毛片大全视频| 男女午夜视频在线观看| 午夜精品久久久久久毛片777| 在线十欧美十亚洲十日本专区| 欧美黄色片欧美黄色片| 首页视频小说图片口味搜索| 亚洲电影在线观看av| 国产精品爽爽va在线观看网站 | 色在线成人网| 亚洲一卡2卡3卡4卡5卡精品中文| 变态另类成人亚洲欧美熟女| 日本免费a在线| 久久热在线av| 一区二区日韩欧美中文字幕| 亚洲成国产人片在线观看| 夜夜看夜夜爽夜夜摸| 欧美日韩亚洲综合一区二区三区_| 中文在线观看免费www的网站 | av在线天堂中文字幕| 欧美大码av| 男人舔女人的私密视频| 十八禁人妻一区二区| 中文资源天堂在线| 黄色视频不卡| 中文在线观看免费www的网站 | 久久人妻福利社区极品人妻图片| 日日摸夜夜添夜夜添小说| av欧美777| 99久久国产精品久久久| 国产99白浆流出| 亚洲七黄色美女视频| 成人一区二区视频在线观看| 午夜免费观看网址| 国产v大片淫在线免费观看| 国产成人欧美| 国产成人影院久久av| 好看av亚洲va欧美ⅴa在| 亚洲成人国产一区在线观看| 国产亚洲欧美98| 久久精品91蜜桃| 亚洲九九香蕉| 国产激情偷乱视频一区二区| 亚洲,欧美精品.| 国产单亲对白刺激| 婷婷精品国产亚洲av在线| 亚洲五月婷婷丁香| 少妇 在线观看| 欧美性猛交╳xxx乱大交人| 在线播放国产精品三级| 男人舔女人下体高潮全视频| 久久久国产成人精品二区| 12—13女人毛片做爰片一| 母亲3免费完整高清在线观看| 成人精品一区二区免费| 免费高清视频大片| 男女那种视频在线观看| 国产欧美日韩一区二区三| 日本撒尿小便嘘嘘汇集6| 一区二区三区激情视频| av视频在线观看入口| 看片在线看免费视频| 久热这里只有精品99| e午夜精品久久久久久久| 亚洲一区二区三区色噜噜| 久久亚洲真实| 亚洲自偷自拍图片 自拍| 变态另类丝袜制服| 91老司机精品| 久久天堂一区二区三区四区| √禁漫天堂资源中文www| 午夜免费成人在线视频| 三级毛片av免费| 亚洲电影在线观看av| cao死你这个sao货| 熟妇人妻久久中文字幕3abv| 国产精品自产拍在线观看55亚洲| 99国产精品99久久久久| 国产一区二区在线av高清观看| 精品久久久久久久久久久久久 | 国产极品粉嫩免费观看在线| 不卡一级毛片| 91国产中文字幕| 曰老女人黄片| 最近最新中文字幕大全免费视频| 老司机深夜福利视频在线观看| 美女高潮到喷水免费观看| xxx96com| 欧美午夜高清在线| √禁漫天堂资源中文www| 日韩成人在线观看一区二区三区| 精品无人区乱码1区二区| 麻豆久久精品国产亚洲av| 欧美成人一区二区免费高清观看 | 国产精品野战在线观看| 1024香蕉在线观看| 欧美中文综合在线视频| 亚洲国产看品久久| 欧美成人免费av一区二区三区| 亚洲精品在线观看二区| 久久这里只有精品19| 欧美三级亚洲精品| 日韩大码丰满熟妇| 精品不卡国产一区二区三区| 精品免费久久久久久久清纯| 一本综合久久免费| 国产精品av久久久久免费| 免费在线观看日本一区| 亚洲国产精品999在线| 日本一区二区免费在线视频| 久久久久久九九精品二区国产 | 国产在线精品亚洲第一网站| 免费在线观看完整版高清| 欧美另类亚洲清纯唯美| 美女午夜性视频免费| aaaaa片日本免费| 日本免费一区二区三区高清不卡| 国产av又大| 久久香蕉精品热| 性色av乱码一区二区三区2| 一区二区三区国产精品乱码| 亚洲无线在线观看| 日日夜夜操网爽| 黄片小视频在线播放| 精品国内亚洲2022精品成人| 丰满的人妻完整版| 国产av一区在线观看免费| 一a级毛片在线观看| 十分钟在线观看高清视频www| 韩国精品一区二区三区| 热99re8久久精品国产| 久久香蕉精品热| 精品久久久久久久末码| 一级黄色大片毛片| 1024视频免费在线观看| 国产精品亚洲一级av第二区| 男人的好看免费观看在线视频 | 亚洲激情在线av| √禁漫天堂资源中文www| 中文字幕人成人乱码亚洲影| 两人在一起打扑克的视频| 波多野结衣高清无吗| 国产极品粉嫩免费观看在线| 欧美一区二区精品小视频在线| 精品欧美国产一区二区三| 动漫黄色视频在线观看| 真人一进一出gif抽搐免费| 女同久久另类99精品国产91| 高清毛片免费观看视频网站| 在线观看免费视频日本深夜| 男人的好看免费观看在线视频 | 亚洲第一青青草原| 久久人妻av系列| 18禁国产床啪视频网站| 九色国产91popny在线| 国产91精品成人一区二区三区| 法律面前人人平等表现在哪些方面| 2021天堂中文幕一二区在线观 | 国产高清激情床上av| 亚洲av电影不卡..在线观看| 婷婷六月久久综合丁香| 色尼玛亚洲综合影院| 国产高清激情床上av| 亚洲男人的天堂狠狠| 国产精品香港三级国产av潘金莲| www.精华液| avwww免费| 国产精品久久电影中文字幕| 国产精品久久久久久精品电影 | 欧美激情极品国产一区二区三区| 成人精品一区二区免费| 一个人免费在线观看的高清视频| 国产熟女xx| 亚洲九九香蕉| 欧美日韩瑟瑟在线播放| 一级片免费观看大全| 欧美不卡视频在线免费观看 | 午夜久久久在线观看| 国内揄拍国产精品人妻在线 | 亚洲自拍偷在线| 成人国语在线视频| 国产真人三级小视频在线观看| 精品日产1卡2卡| 搡老岳熟女国产| 色av中文字幕| 草草在线视频免费看| 黄色丝袜av网址大全| 久久精品国产清高在天天线| 日韩大尺度精品在线看网址| 国产亚洲欧美在线一区二区| 国产亚洲精品一区二区www| 久久中文字幕人妻熟女| 色婷婷久久久亚洲欧美| 18美女黄网站色大片免费观看| 日本成人三级电影网站| tocl精华| 日韩欧美国产一区二区入口| 久久久国产成人精品二区| 国产在线观看jvid| 99热这里只有精品一区 | 变态另类成人亚洲欧美熟女| 成人手机av| 国产成人欧美| 亚洲欧美激情综合另类| 一级a爱片免费观看的视频| 人妻久久中文字幕网| 欧美黑人精品巨大| 国产在线精品亚洲第一网站| av有码第一页| 中文字幕精品免费在线观看视频| 色播亚洲综合网| 777久久人妻少妇嫩草av网站| 久久精品成人免费网站| 亚洲一区二区三区色噜噜| 99精品久久久久人妻精品| 久久婷婷成人综合色麻豆| 日韩高清综合在线| 色婷婷久久久亚洲欧美| 国产亚洲精品综合一区在线观看 | 国语自产精品视频在线第100页| 欧美激情极品国产一区二区三区| 一级毛片女人18水好多| 天天添夜夜摸| 国产亚洲精品一区二区www| 久久久久久国产a免费观看| 中文字幕精品亚洲无线码一区 | 国产熟女午夜一区二区三区| 国产精品野战在线观看| 日韩 欧美 亚洲 中文字幕| 操出白浆在线播放| 亚洲电影在线观看av| 男女之事视频高清在线观看| 亚洲精品av麻豆狂野| 久久99热这里只有精品18| aaaaa片日本免费| 麻豆久久精品国产亚洲av| 国产精品 国内视频| 黑人操中国人逼视频| 亚洲男人天堂网一区| 精品午夜福利视频在线观看一区| 男人舔奶头视频| 1024手机看黄色片| 黑人巨大精品欧美一区二区mp4| 欧美一级毛片孕妇| 欧美在线一区亚洲| 韩国av一区二区三区四区| 色综合亚洲欧美另类图片| 97超级碰碰碰精品色视频在线观看| 大型黄色视频在线免费观看| 后天国语完整版免费观看| 99国产精品一区二区三区| 岛国视频午夜一区免费看| 久久久久精品国产欧美久久久| 国内揄拍国产精品人妻在线 | 男男h啪啪无遮挡| 天堂√8在线中文| 观看免费一级毛片| 亚洲国产看品久久| 欧美成人免费av一区二区三区| 亚洲自拍偷在线| 非洲黑人性xxxx精品又粗又长| 婷婷精品国产亚洲av| 亚洲欧美一区二区三区黑人| 国产免费男女视频| 免费高清在线观看日韩| 国产aⅴ精品一区二区三区波| 国产精品久久久人人做人人爽| 欧美色欧美亚洲另类二区| 欧美亚洲日本最大视频资源| 18美女黄网站色大片免费观看| 在线观看舔阴道视频| 精品无人区乱码1区二区| 12—13女人毛片做爰片一| 欧美日韩亚洲综合一区二区三区_| 97碰自拍视频| 免费在线观看黄色视频的| 久久香蕉精品热| 男女视频在线观看网站免费 | 成人国产综合亚洲| 两个人视频免费观看高清| 中文资源天堂在线| 久久久精品欧美日韩精品| 一级毛片高清免费大全| 啦啦啦 在线观看视频| 免费在线观看日本一区| 国产精品一区二区三区四区久久 | 女人高潮潮喷娇喘18禁视频| 操出白浆在线播放| 天天躁夜夜躁狠狠躁躁| 精品欧美国产一区二区三| 国产99白浆流出| 午夜精品久久久久久毛片777| 黄网站色视频无遮挡免费观看| 91av网站免费观看| 国产激情偷乱视频一区二区| videosex国产| 一级毛片精品| 亚洲精品粉嫩美女一区| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久久久精品电影 | 日本 av在线| svipshipincom国产片| 亚洲国产看品久久| 欧美丝袜亚洲另类 | 日本一区二区免费在线视频| 精品电影一区二区在线| 午夜激情福利司机影院| 嫩草影视91久久| 久久这里只有精品19| 国产午夜福利久久久久久| 99国产精品一区二区蜜桃av| 久久久久国产精品人妻aⅴ院| 欧美成人性av电影在线观看| 欧美绝顶高潮抽搐喷水| 男女之事视频高清在线观看| 欧美国产精品va在线观看不卡| 性色av乱码一区二区三区2| 亚洲中文日韩欧美视频| av有码第一页| 国内精品久久久久精免费| 国产精品一区二区三区四区久久 | 人人妻,人人澡人人爽秒播| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美+亚洲+日韩+国产| 在线看三级毛片| 村上凉子中文字幕在线| 国产97色在线日韩免费| 精华霜和精华液先用哪个| 熟女少妇亚洲综合色aaa.| 一级a爱片免费观看的视频| 老司机福利观看| 在线永久观看黄色视频| 50天的宝宝边吃奶边哭怎么回事| 国产精品九九99| 国产亚洲精品综合一区在线观看 | 嫁个100分男人电影在线观看| 精品国产亚洲在线| 麻豆国产av国片精品| 国产爱豆传媒在线观看 | 制服人妻中文乱码| 亚洲成人国产一区在线观看| 久久人妻av系列| 亚洲精品美女久久av网站| 欧美久久黑人一区二区| 欧美黑人欧美精品刺激| 日日爽夜夜爽网站| 国产精品精品国产色婷婷| 天天一区二区日本电影三级| av视频在线观看入口| 国产乱人伦免费视频| 午夜免费激情av| 亚洲一区二区三区色噜噜| 亚洲人成电影免费在线| 999久久久国产精品视频| 美女 人体艺术 gogo| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 99久久久亚洲精品蜜臀av| 久久九九热精品免费| 日本成人三级电影网站| 99久久无色码亚洲精品果冻| 国产精品亚洲一级av第二区| 国产极品粉嫩免费观看在线| 亚洲国产毛片av蜜桃av| 制服人妻中文乱码| 国产黄a三级三级三级人| 国产亚洲精品av在线| 99国产精品一区二区蜜桃av| 亚洲一区中文字幕在线| 成人午夜高清在线视频 | 俄罗斯特黄特色一大片| www日本在线高清视频| 亚洲av熟女| 欧美三级亚洲精品| 特大巨黑吊av在线直播 | 婷婷亚洲欧美| 无人区码免费观看不卡| 18禁国产床啪视频网站| 欧美性长视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区日韩欧美中文字幕| 韩国av一区二区三区四区| 久久九九热精品免费| 国产又色又爽无遮挡免费看| 人人妻人人看人人澡| 日韩大码丰满熟妇| 一级a爱片免费观看的视频| 中文字幕av电影在线播放| 视频在线观看一区二区三区| 日韩成人在线观看一区二区三区| 欧美最黄视频在线播放免费| 精品久久久久久久末码| 午夜影院日韩av| 欧美最黄视频在线播放免费| 色精品久久人妻99蜜桃| 日韩成人在线观看一区二区三区| 日日夜夜操网爽| 最近最新免费中文字幕在线| 国产av在哪里看| 男女那种视频在线观看| 人成视频在线观看免费观看| 97碰自拍视频| 黄片播放在线免费| 99国产精品一区二区蜜桃av| 久久久久亚洲av毛片大全| 亚洲在线自拍视频| 亚洲国产欧美一区二区综合| 91成人精品电影| 国产精品野战在线观看| 桃红色精品国产亚洲av| av在线播放免费不卡| 韩国av一区二区三区四区| 最近在线观看免费完整版| 色综合亚洲欧美另类图片| 日韩国内少妇激情av|