• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator

    2022-08-31 09:57:48MengPeng彭猛JunBoYang楊俊波HaoChen陳浩BoYuanLi李博源XuLeiGe葛緒雷XiaoHuYang楊曉虎GuoBoZhang張國博andYanYunMa馬燕云
    Chinese Physics B 2022年8期
    關(guān)鍵詞:陳浩楊俊

    Meng Peng(彭猛) Jun-Bo Yang(楊俊波) Hao Chen(陳浩) Bo-Yuan Li(李博源)Xu-Lei Ge(葛緒雷) Xiao-Hu Yang(楊曉虎) Guo-Bo Zhang(張國博) and Yan-Yun Ma(馬燕云)

    1Department of Physics,National University of Defense Technology,Changsha 410072,China

    2College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518000,China

    3Key Laboratory for Laser Plasmas(MoE),School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China

    4College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    Keywords: space radiation,laser–plasma interaction,two-dimensional material,Raman spectroscopy

    1. Introduction

    Space radiation is one of the substantial threats to spacecraft and satellites because it can severely damage solar cells and electronics onboard.[1]With the continuous deepening of human space exploration, the demands on spacecraft performance are increasing. All space agencies around the world are constantly developing various countermeasures to deal with this threat. Space radiation, which has a plenitude of different types and origins,can be extremely versatile. Space radiation is usually composed of various particles, such as electrons,protons,ions,and photons. Moreover,the energy spectra of radiation belt are very broadband,spanning multiple orders of magnitude.[1,2]Space radiation belts exist in the five strongly magnetized planets in solar system, namely, Earth,Jupiter, Saturn, Uranus, and Neptune.[3–5]According to the model based on the measurements of Pioneer and Voyager detections, the electron energy in Jupiter’s radiation belt can reach 100 MeV,which is much higher than that in Earth’s radiation belt.[5–8]

    In planetary radiation belts, energetic electrons are accelerated to form directional spectra fluxes characterized by a power-law or exponential decline towards higher energies.In contrast to space radiation,laboratory’s space radiation test facilities characterized by linacs or cyclotrons cannot produce broadband spectra, but instead monoenergetic beams,resulting in completely different energy deposition on the device.[9]Based on the chirped pulse amplification(CPA),[10]today’s laser system can generate power up to petawattregime to produce relativistic electron beam by laser–plasma interaction.[11,12]Electron beams with low energy divergence and exponential energy distribution emitted from laser-plasma accelerator (LPA) are similar to the conditions in space radiation, contributing to a booming research field, especially in the field of space radiation.[2,8,12]LPA is a workable advanced tool as a complementary source for space radiation testing. In 2017, Hiddinget al.[2]used LPA to reproduce the broadband Van-Allen belt level electron beam for systematically exploring the degradation of optocouplers,and a significant electronics degradation characterized straightforwardly by the current transfer ratio was acquired with such laboratory-made space radiation.

    The harsh radiation environment has a severe impact on the reliability of conventional silicon-based devices. The undesirable phenomena such as single event effect, total dose effect, and displacement damage, can adversely affect their performance.[13–16]Now, quantum tunneling is setting a hard limit for further miniaturization of silicon-based electronics at nanoscale technology nodes, but the adoption of novel material and/or device structure is considered beyond this limit. Of particular interest is the two-dimensional (2D) material such as graphene,[17–20]transition metal dichalcogenide(TMD),[21–23]and black phosphorus(BP).[24–26]Their intrinsically large specific area,low power requirement,and chemical stability make devices based on 2D material a promising candidate for space instrumentation.[14]The 2D materialbased integrated electronics have a smaller sensitive volume, demonstrating stronger protection against single event effects.[27]However, zero bandgap limits the application of graphene in the field of optoelectronics.[17,18]BP(0.3 eV)and TMD(<2.0 eV)have a small bandgap that hinders the potential optoelectronic application at higher energy. Recently, 2D layered metal phosphorus trichalcogenides (MPS3,M=Fe,Ni, Mn, Zn, etc.)[28–31]have received enormous attention for the excellent electronic, optical and magnetic properties derived from their electronic structure and energy band. In this article, we study the exponential energy electron beam produced by LPA for the 2D material(FePS3)testing,which has potential space application. A series of characterizations have been performed on the FePS3sample before and after electron radiation for radiation damage analysis, and the detailed discussion and conclusion are given in Section 3.

    2. Experimental details

    2.1. Preparation and characterization of FePS3

    Fig.1. (a)Schematic crystal structure of FePS3. (b)Brightfield microscope image of cleaved sheet samples exfoliated onto an oxidized silicon substrate.(c)AFM topography image of FePS3 sample,and the height profiles along line A.(d)The typical Raman spectrum of FePS3 sample showing Eu,E(3)1g,A(11g),E(14g),A(12g),Si-2TA,and Si-TO peaks.

    An optical microscope (BX41M-LED, Olympus) has been used to characterize the FePS3samples. In the case of exfoliated FePS3samples, the region edges and boundaries between different layers often run in parallel or are arranged at angles close to 60?and 120?[34](see Fig. 1(b)).This observation is due to the crack-propagation along the crystal axis of high-symmetry during exfoliation. The FePS3samples comprising areas of tens of layers with 2–20 μm lateral dimensions have been scanned by the atomic force microscopy (AFM, NT-MDT Solver SPM &SNOM). Figure 1(c) presents the AFM topography image along height profiles. Raman spectroscopy (Senterra, Bruker), as a nondestructive characterization technique, has been used to test the property of FePS3at room temperature. According to

    2.2. Electron radiation

    In 1979, laser electron acceleration was proposed by Tajima and Dawson.[40]In their theory, when an intense focused laser pulse(I ≥1018W/cm2)propagates through the underdense plasma, this plasma will excite a relativistic plasma wave with a field amplitude of 100 GV/m. This plasma wave passes through the plasma at the same speed of laser.[12,41]Massive charge displacements cause a high electric wake-field for electron acceleration to relativistic energy in a very short distance. The radiation damage experiment has been performed with a compact state-of-the-art Ti:sapphire laser system at Shanghai Jiao Tong University.[42]Here,the laser pulse with an energy ofE ~5.8 J was delivered in 29 fs over a 30μm diameter focus. The laser was focused on a gas-jet target by off-axis parabola (OAP) where the gas-jet ejected the mixed gas (0.5% N2+99.5% He) at each shot to produce a broadband electron beam by self-truncated ionization injection.[42]The whole experimental process was carried out in a vacuum chamber,as described in Fig.2.

    Fig.2. The setup of the radiation chamber for online monitoring electron beam. The indent laser system was strongly focused on the gas jet by OAP where the radiation was produced. Focus diagnostic microscope objective(2D stage),permanent magnet-based spectrometer,IP,and DRZ in the forward direction were positioned next to the gas jet.

    An infrared camera(CCD1, Spiricon OPHIR Photonics)and 2D stage were used to monitor dynamically the focused laser spot when adjusting the laser path to maximize the laser intensity on the gas jet. The top-view image of plasma channel formed by laser–plasma interaction was captured by a 12-bit CCD camera (CCD2, Pixelfly). The electron beam was recorded by the magnetic spectrometer which consists of a permanent dipole magnet,an Image Stack(IP,Fusji),a scintillator screen (DRZ, Mitsubishi Chemical), and an intensified charge-coupled device (ICCD, Andor) camera. The dipole magnet was 16 cm long, 1.0 T magnetic field strength with a 1 cm gap. The direction of magnetic field in the gap was perpendicular to its horizontal plane during installation. The distance between the exit of dipole magnet and the IP was 16.5 cm, which fully resolves the peak electron energy up to~400 MeV.The energetic electron flux could penetrate the IP to image on the DRZ,and then the fluorescence signals emitted from DRZ were recorded by ICCD online. A cumulative electron signals with 5 shots in IP are presented in Fig. 3(a).Based on the gyroradius of the electron trajectory in dipole magnet and electron signals recorded by IP, an average electron number of 1.2×107per shot is produced. The fluence of LPA-produced electron beam per shot is approximately equivalent to the electron beams with energies greater than 0.2 MeV in Earth’s radiation belt. The broadband electron spectrum is depicted in Fig.3(b)(black line).

    In order to make FePS3samples with cross-section of about 1×1 cm fully irradiated by an electron beam with a few milliradian divergence,an 8 mm thick aluminum foil has been used to enlarge the electron beam spot. Meanwhile, an InSe film has been used to monitor the uniformity and spot size of the electron beam,while the magnetic spectrometer and DRZ were positioned in the front of FePS3sample for dynamic monitoring electron beam.The schematic diagram of radiation test is depicted in Fig. 4(a), where the accumulated electron beams with 3 shots were irradiated on the FePS3samples. The transportation process of energetic electron beam in aluminum foil has been simulated with Geant4 (Version 4.10.7).[43,44]The“FTFP BERTGE”physics package was used to describe the transportation of energetic electrons and secondary particles. It was assumed that a plane particle source of 1 mm radius,50 milliradian divergence degree shot electrons to aluminum foil after 50 cm flight in vacuum. Based on the simulation results,the spot radius of the outgoing electron beam was expanded to 5 mm, fully covering the surface of testing samples(see Fig.4(b)).The simulated outgoing electron spectrum is presented in Fig.3(b)(red line).

    The energetic electron beams produced by LPA are well beyond the energy limit of Earth’s radiation belt where the majority of electrons have energies up to 15 MeV. However, it shall be pointed out that the most important aspect is the exponential electron spectrum produced by LPA.[12]Moreover, based on the simulation results, the deposited energies to FePS3sample via electron–nucleus scattering are rather constant for electron energy range above 3 MeV (see Fig. 5). The total absorbed dose of FePS3sample irradiated by LPA-produced electron beams is about 1.2 mGy, which is 10% higher than that produced by electron beams at geosynchronous orbit at the same electron intensity.

    Fig.3. The exponential electron beam produced from LPA.(a)The raw information of electron beams obtained by IP. (b) The induced broadband electron spectra before (black line, the experimental result) and after(red line,the simulated result)passing through Al foil.

    Fig.4. (a)Schematic diagram of the electron beam for radiation test. (b)The spot size of electron flux after propagating Al foil.

    Fig. 5. The simulated results of deposited energy for electron energy from 3 MeV to 400 MeV in the FePS3 sheet sample.

    3. Results and discussion

    Electron stopping is mainly controlled by inelastic scattering between the incoming energetic electron beam and the electrons in the target.[45]Inelastic scattering can excite target electrons to relatively high energy(keV),which can transfer electron excitation energy away from the central region of the lattice, causing damage far away from the collision region. When the transferred energy is large enough to exceed the threshold for target atom displacing from lattice position,it causes to ionization and bond breakage. Once electron beams transfer enough energy, or numerous inelastic scatterings occur close to each other, the cascade process develops into a complex multi-body phenomenon,leading to the lattice breakup. The region of overlapping collisions can be regarded as “hot”, called a “heat spike”,[46–48]which may lead to intense heating of crystal lattice and damage to the cylindrical heat spikes.[49]Near the sample surface, the heat spike can lead to massive sputtering evaporation.[50]The optical image of InSe film exposed to the energetic electron beam is presented in Fig. 6(a). There are significantly light spots corresponding to the thinner area formed from the massive evaporation,whereas the optical characteristics of InSe film also indicate that the electron flux uniformity was good after propagating Al foil. The energies transferred to the FePS3sample were much larger than the bond energy and Van Der Waals gap,causing the bond to broke and massive particle evaporation.As a result,electron radiation led to bulk sample cleavage and damage between areas of uneven thickness (see Figs. 6(b)–6(c)).

    The energy of electron beam far exceeds the threshold for knock-on damage,and hole formation to the crystal lattice can be initiated at energy as low as tens of keV.[51]The optical image of sheet sample after electron radiation is presented in Fig. 7(a). It has numerous cyan holes on the FePS3surface caused by electron sputtering. The electron radiation effect on the surface topography of FePS3was also characterized with AFM at ambient temperature,while the surface image and the height information of multilayer FePS3sample following radiation are shown in Figs.7(b)–7(c). The thin sheet sample has smaller average roughness (Ra) than the thick sample, which is ascribed to more average energy acquired by sample target atoms during radiation and impurities on the surface. During the preparation of sheet samples, H2O and O2molecules adhere inevitably to the sample surface. Electron radiation breaks the structure of [P2S6]4?, and the dangling bonds of S and P can combine H2O and O2molecules to form S=O and P=O bonds.

    Fig.6. (a)Optical image of InSe with obvious light spots after radiation. (b)Optical image of bulk FePS3 sample before radiation. (c) The electron-induced cleavage of bulk FePS3 sample after radiation.

    Fig. 7. (a) Brightfield microscope image of sheet samples after electron radiation. (b) AFM surface topography of FePS3 sheets following energetic electron radiation. (c)The cross-sectional height along line A in(b).

    Fig. 8. The Raman spectra of FePS3 sample before and after electron radiation. (a) Out-of-plane vibration: Eu mode. (b) Out-of-plane vibration: A(11g) mode and in-plane vibration: E(14g) mode. (c)Out-of-plane vibration: A(12g) mode.

    4. Conclusion

    In combination with the established conventional radiation source, LPA, as a complementary radiation source, can allow us to reproduce space radiation for electronic tests. In this work, a compact state-of-the-art Ti:sapphire laser system at a laser intensity ofI=2.8×1019W/cm2has been used to produce broadband electron beams for studying space radiation effects on the 2D material. In this experiment of laserplasma interaction,we have produced an exponential energetic electron beam with an average intensity of 1.4×107/shot.

    The effects of electron beam radiation on tens of layers FePS3samples have been systematically investigated with different kinds of characterization tools. Electron radiation led to the bulk sample cleavage and damage between areas of uneven thickness, while the energetic electron beam caused massive sputtering and ablation of the FePS3sheet sample, resulting in the surface of FePS3samples rough dramatically. Electron radiation also caused severe damage on the bipyramid structure of[P2S6]4?unit and the cleavage of P–P and P–S bonds,resulting in all the characteristic peaks sharply weakened to some extent, or even disappearing. It has a radiation threshold on the 2D material and device for normal operation under such harsh electron radiation. Our results pave the way towards testing the property of 2D materials under intense radiation and the allowable radiation dose for the application of 2D material and device.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 11975308), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25050200), and Science Challenge Project (Grant No.TZ2018001).

    猜你喜歡
    陳浩楊俊
    Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice
    楊俊德:農(nóng)業(yè)豐收的“守護神”
    CONSTRUCTION OF IMPROVED BRANCHING LATIN HYPERCUBE DESIGNS?
    Investigation of hypersonic flows through a cavity with sweepback angle in near space using the DSMC method*
    DYNAMICS ANALYSIS OF A DELAYED HIV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND ANTIBODY IMMUNE RESPONSE?
    陳浩悼亡詩淺析附《楚帆集》校語
    李泊城 隋邦平 楊俊顯 王綠竹 作品
    大眾文藝(2019年3期)2019-01-24 13:39:44
    《紅蜻蜓》教案
    Current Reversals of an Underdamped Brownian Particle in an Asymmetric Deformable Potential?
    醉你
    咕卡用的链子| 中文字幕人妻熟女乱码| a在线观看视频网站| 麻豆国产av国片精品| 国产国语露脸激情在线看| av片东京热男人的天堂| av又黄又爽大尺度在线免费看| 欧美精品av麻豆av| 精品少妇内射三级| 日韩免费高清中文字幕av| 久久久久网色| 韩国高清视频一区二区三区| 嫩草影视91久久| 精品国产一区二区三区四区第35| 午夜福利一区二区在线看| 在线永久观看黄色视频| 亚洲人成77777在线视频| 精品国产一区二区三区久久久樱花| 亚洲av日韩在线播放| 在线观看免费日韩欧美大片| 国产极品粉嫩免费观看在线| 成人国产av品久久久| 青草久久国产| 欧美日韩一级在线毛片| 国产亚洲午夜精品一区二区久久| 丰满迷人的少妇在线观看| 中文字幕av电影在线播放| 久久 成人 亚洲| 在线十欧美十亚洲十日本专区| 动漫黄色视频在线观看| av线在线观看网站| kizo精华| 成在线人永久免费视频| 亚洲精品自拍成人| 俄罗斯特黄特色一大片| 麻豆av在线久日| 性少妇av在线| 久久人人爽av亚洲精品天堂| 丰满少妇做爰视频| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久精品古装| 午夜福利视频在线观看免费| 国产精品国产av在线观看| 日韩视频一区二区在线观看| 色精品久久人妻99蜜桃| 日韩一卡2卡3卡4卡2021年| 中文精品一卡2卡3卡4更新| 黄色怎么调成土黄色| netflix在线观看网站| 国产视频一区二区在线看| 久久久久久久国产电影| 男女无遮挡免费网站观看| 欧美黑人欧美精品刺激| 日韩欧美免费精品| 18在线观看网站| 亚洲av男天堂| 法律面前人人平等表现在哪些方面 | 久久九九热精品免费| 久久久久国产一级毛片高清牌| 黄片播放在线免费| 国产在视频线精品| 妹子高潮喷水视频| avwww免费| 成人亚洲精品一区在线观看| 亚洲精品自拍成人| 亚洲精品乱久久久久久| 日本av手机在线免费观看| 曰老女人黄片| 狠狠精品人妻久久久久久综合| 久久精品熟女亚洲av麻豆精品| 午夜福利免费观看在线| 亚洲精品久久久久久婷婷小说| 国产精品亚洲av一区麻豆| 免费在线观看日本一区| a 毛片基地| 十八禁高潮呻吟视频| 国产又色又爽无遮挡免| 黄色视频,在线免费观看| 欧美精品一区二区免费开放| 一本—道久久a久久精品蜜桃钙片| 青青草视频在线视频观看| 丝袜脚勾引网站| 国产野战对白在线观看| 国产精品二区激情视频| 纵有疾风起免费观看全集完整版| 亚洲欧美成人综合另类久久久| www.熟女人妻精品国产| 女人爽到高潮嗷嗷叫在线视频| 老汉色∧v一级毛片| 男女无遮挡免费网站观看| 精品久久久久久久毛片微露脸 | 亚洲精品久久午夜乱码| 欧美日韩精品网址| 女人高潮潮喷娇喘18禁视频| 亚洲精品美女久久av网站| 亚洲精华国产精华精| 国产97色在线日韩免费| 一区二区三区四区激情视频| 老司机在亚洲福利影院| 极品少妇高潮喷水抽搐| 亚洲精品美女久久久久99蜜臀| 国产精品久久久久久人妻精品电影 | 中文字幕另类日韩欧美亚洲嫩草| 免费观看a级毛片全部| 成人三级做爰电影| 精品国产国语对白av| 欧美亚洲日本最大视频资源| 亚洲视频免费观看视频| 91av网站免费观看| 精品国产乱码久久久久久小说| 欧美国产精品一级二级三级| 一级毛片女人18水好多| 两性午夜刺激爽爽歪歪视频在线观看 | 大香蕉久久成人网| 精品国产一区二区久久| 中文字幕色久视频| 久久久久久久久免费视频了| 国产成人a∨麻豆精品| 久久久久国产精品人妻一区二区| 欧美日韩亚洲高清精品| 亚洲国产看品久久| 国产在线免费精品| 久久精品国产亚洲av高清一级| 91av网站免费观看| 大陆偷拍与自拍| 99精国产麻豆久久婷婷| 岛国毛片在线播放| 国产男女超爽视频在线观看| 91精品三级在线观看| 亚洲第一青青草原| 一二三四社区在线视频社区8| 视频区欧美日本亚洲| 美女大奶头黄色视频| 99久久精品国产亚洲精品| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区mp4| 日韩电影二区| 中文字幕人妻丝袜制服| 99久久国产精品久久久| 久久ye,这里只有精品| 高清欧美精品videossex| 亚洲 国产 在线| 妹子高潮喷水视频| 久久久欧美国产精品| 欧美xxⅹ黑人| 久久久精品国产亚洲av高清涩受| 久久99热这里只频精品6学生| 亚洲欧美日韩另类电影网站| 日韩精品免费视频一区二区三区| 99精国产麻豆久久婷婷| 一区二区av电影网| av国产精品久久久久影院| 久久人人爽人人片av| h视频一区二区三区| 亚洲精品中文字幕一二三四区 | 成人国产av品久久久| 国产成人av激情在线播放| 亚洲精品第二区| 欧美变态另类bdsm刘玥| 一级片免费观看大全| 2018国产大陆天天弄谢| 老司机影院成人| 日本91视频免费播放| 亚洲精品美女久久久久99蜜臀| 天天添夜夜摸| 久久精品久久久久久噜噜老黄| 亚洲精品久久午夜乱码| 777久久人妻少妇嫩草av网站| videos熟女内射| 国产av精品麻豆| 日本wwww免费看| 99久久99久久久精品蜜桃| 中文字幕制服av| 人人妻人人爽人人添夜夜欢视频| av超薄肉色丝袜交足视频| 国产男人的电影天堂91| 久久精品国产综合久久久| 男人舔女人的私密视频| 亚洲精品国产精品久久久不卡| 成人黄色视频免费在线看| 精品国产乱子伦一区二区三区 | 91国产中文字幕| 国产片内射在线| 亚洲专区国产一区二区| 国产一卡二卡三卡精品| av超薄肉色丝袜交足视频| 国产成人啪精品午夜网站| 在线 av 中文字幕| 波多野结衣av一区二区av| 国产一区二区三区在线臀色熟女 | 国产精品一区二区在线不卡| 久久人人爽人人片av| 欧美午夜高清在线| 老鸭窝网址在线观看| √禁漫天堂资源中文www| 下体分泌物呈黄色| 午夜福利乱码中文字幕| 视频在线观看一区二区三区| www.熟女人妻精品国产| 侵犯人妻中文字幕一二三四区| 国产精品久久久人人做人人爽| 美女大奶头黄色视频| 国产精品 欧美亚洲| 狂野欧美激情性bbbbbb| 国产免费av片在线观看野外av| 男女边摸边吃奶| 正在播放国产对白刺激| 一区二区三区激情视频| 精品乱码久久久久久99久播| 日本av免费视频播放| 精品国产乱子伦一区二区三区 | 色婷婷久久久亚洲欧美| 99国产精品一区二区三区| 精品人妻1区二区| 国产有黄有色有爽视频| 十分钟在线观看高清视频www| 菩萨蛮人人尽说江南好唐韦庄| 欧美乱码精品一区二区三区| 久久精品国产a三级三级三级| 亚洲人成77777在线视频| 国产成人欧美在线观看 | bbb黄色大片| netflix在线观看网站| 91成人精品电影| 免费观看av网站的网址| 亚洲精品乱久久久久久| 不卡av一区二区三区| 男女无遮挡免费网站观看| 美女大奶头黄色视频| 国产片内射在线| 超碰97精品在线观看| 老汉色av国产亚洲站长工具| bbb黄色大片| 午夜福利影视在线免费观看| 亚洲国产毛片av蜜桃av| 狠狠狠狠99中文字幕| 亚洲国产中文字幕在线视频| 亚洲精品一卡2卡三卡4卡5卡 | av福利片在线| 国产免费一区二区三区四区乱码| 精品亚洲成a人片在线观看| 成年美女黄网站色视频大全免费| 精品欧美一区二区三区在线| 国产精品久久久久久精品电影小说| 国产真人三级小视频在线观看| 日韩人妻精品一区2区三区| 高清在线国产一区| 国产精品久久久久久精品古装| 五月开心婷婷网| 国产精品秋霞免费鲁丝片| 国产精品久久久久成人av| 国产主播在线观看一区二区| 久久天躁狠狠躁夜夜2o2o| 91老司机精品| 纯流量卡能插随身wifi吗| bbb黄色大片| 美女福利国产在线| 国产亚洲精品第一综合不卡| 亚洲欧美精品自产自拍| 久久久精品94久久精品| 久久久精品区二区三区| 女性生殖器流出的白浆| 99热网站在线观看| 免费在线观看视频国产中文字幕亚洲 | 成年人免费黄色播放视频| 午夜老司机福利片| 夜夜骑夜夜射夜夜干| 精品一品国产午夜福利视频| 男女边摸边吃奶| 色视频在线一区二区三区| 成人国产一区最新在线观看| 男女之事视频高清在线观看| svipshipincom国产片| 在线观看www视频免费| 亚洲精品粉嫩美女一区| 亚洲伊人久久精品综合| 亚洲午夜精品一区,二区,三区| 热99久久久久精品小说推荐| 香蕉国产在线看| 午夜福利视频精品| 丝袜喷水一区| 亚洲av欧美aⅴ国产| 欧美大码av| 天天躁夜夜躁狠狠躁躁| 免费观看av网站的网址| 国产高清videossex| 国产无遮挡羞羞视频在线观看| 亚洲av日韩精品久久久久久密| 日韩中文字幕视频在线看片| 久久久久国产精品人妻一区二区| 国产欧美日韩精品亚洲av| 精品久久久久久电影网| 欧美激情久久久久久爽电影 | 男女午夜视频在线观看| cao死你这个sao货| 国产一区二区 视频在线| 999久久久国产精品视频| 男女免费视频国产| 91大片在线观看| 日韩制服丝袜自拍偷拍| 满18在线观看网站| 一级毛片电影观看| 12—13女人毛片做爰片一| 成年美女黄网站色视频大全免费| 成人影院久久| 精品亚洲乱码少妇综合久久| 欧美精品一区二区大全| 91老司机精品| 99久久人妻综合| 永久免费av网站大全| 两个人看的免费小视频| 国产在线一区二区三区精| 国产精品久久久久久人妻精品电影 | 日韩一卡2卡3卡4卡2021年| 曰老女人黄片| 在线天堂中文资源库| 国产成人免费观看mmmm| 精品少妇一区二区三区视频日本电影| 亚洲精品国产精品久久久不卡| 亚洲国产欧美在线一区| 日韩中文字幕欧美一区二区| 亚洲av电影在线进入| 日本猛色少妇xxxxx猛交久久| 欧美日韩亚洲高清精品| 亚洲精品中文字幕一二三四区 | 王馨瑶露胸无遮挡在线观看| 一区二区日韩欧美中文字幕| 欧美日韩福利视频一区二区| 国产精品熟女久久久久浪| 国产伦理片在线播放av一区| 一进一出抽搐动态| 久久精品亚洲熟妇少妇任你| 亚洲国产精品999| e午夜精品久久久久久久| 亚洲五月色婷婷综合| 国产免费现黄频在线看| 国产成人啪精品午夜网站| 亚洲精品国产av蜜桃| 天天操日日干夜夜撸| av在线播放精品| h视频一区二区三区| 99热国产这里只有精品6| 免费日韩欧美在线观看| 捣出白浆h1v1| 自拍欧美九色日韩亚洲蝌蚪91| 蜜桃国产av成人99| 中文字幕人妻丝袜制服| 丰满迷人的少妇在线观看| 波多野结衣av一区二区av| 中文欧美无线码| 老司机亚洲免费影院| 一二三四社区在线视频社区8| 91麻豆av在线| 少妇粗大呻吟视频| cao死你这个sao货| 啦啦啦视频在线资源免费观看| 日韩 欧美 亚洲 中文字幕| 国产熟女午夜一区二区三区| 一边摸一边抽搐一进一出视频| www.999成人在线观看| 色综合欧美亚洲国产小说| 好男人电影高清在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲成人手机| 国产一卡二卡三卡精品| 桃花免费在线播放| 国产亚洲一区二区精品| 黄频高清免费视频| 久久99热这里只频精品6学生| 美女午夜性视频免费| bbb黄色大片| 麻豆乱淫一区二区| 免费观看人在逋| 色视频在线一区二区三区| 亚洲国产看品久久| 精品久久久久久电影网| 欧美成人午夜精品| 久久人妻熟女aⅴ| 亚洲欧美日韩高清在线视频 | 美女高潮喷水抽搐中文字幕| 久久久久久亚洲精品国产蜜桃av| 欧美日韩黄片免| 永久免费av网站大全| 热re99久久国产66热| 欧美午夜高清在线| 各种免费的搞黄视频| 少妇粗大呻吟视频| 1024视频免费在线观看| 午夜福利影视在线免费观看| 国产一区二区三区综合在线观看| 国产男人的电影天堂91| 日韩欧美国产一区二区入口| 大香蕉久久成人网| 老司机影院成人| 色94色欧美一区二区| 成人影院久久| 天天影视国产精品| bbb黄色大片| 日韩中文字幕欧美一区二区| 亚洲国产精品一区二区三区在线| 99国产精品99久久久久| 久久天堂一区二区三区四区| 热re99久久国产66热| 80岁老熟妇乱子伦牲交| 一本色道久久久久久精品综合| 亚洲国产成人一精品久久久| 久久99一区二区三区| 91精品伊人久久大香线蕉| 欧美老熟妇乱子伦牲交| 国产男女内射视频| 亚洲精品一区蜜桃| 国产成人影院久久av| 真人做人爱边吃奶动态| 成年动漫av网址| 日本撒尿小便嘘嘘汇集6| 国产日韩欧美视频二区| 精品免费久久久久久久清纯 | 两个人免费观看高清视频| 久9热在线精品视频| www日本在线高清视频| 国产精品.久久久| 黄色怎么调成土黄色| 国产真人三级小视频在线观看| 成人黄色视频免费在线看| 女人爽到高潮嗷嗷叫在线视频| 考比视频在线观看| 欧美人与性动交α欧美精品济南到| 精品少妇内射三级| 在线观看免费视频网站a站| 国产欧美日韩综合在线一区二区| 欧美日韩黄片免| 一级,二级,三级黄色视频| 成人18禁高潮啪啪吃奶动态图| 成人av一区二区三区在线看 | 少妇猛男粗大的猛烈进出视频| 久久天堂一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看 | 欧美变态另类bdsm刘玥| 可以免费在线观看a视频的电影网站| 日韩制服丝袜自拍偷拍| 少妇 在线观看| 国产精品一区二区在线观看99| 国产精品一区二区免费欧美 | 多毛熟女@视频| 精品福利永久在线观看| 欧美另类一区| 巨乳人妻的诱惑在线观看| 免费不卡黄色视频| 老司机靠b影院| 亚洲精品自拍成人| 手机成人av网站| 成年美女黄网站色视频大全免费| 亚洲国产欧美网| 日韩三级视频一区二区三区| 亚洲欧洲精品一区二区精品久久久| 国产一区有黄有色的免费视频| 热99re8久久精品国产| 亚洲国产欧美日韩在线播放| 91国产中文字幕| 久久人人爽人人片av| 国产精品 国内视频| 老司机影院成人| 国产伦人伦偷精品视频| 丝袜美足系列| 五月开心婷婷网| 一区二区三区四区激情视频| 欧美老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 国产淫语在线视频| 爱豆传媒免费全集在线观看| 亚洲av成人不卡在线观看播放网 | 性色av一级| 嫁个100分男人电影在线观看| 水蜜桃什么品种好| 69av精品久久久久久 | 日韩中文字幕欧美一区二区| 一级,二级,三级黄色视频| 亚洲国产精品成人久久小说| 亚洲九九香蕉| 99九九在线精品视频| 91成年电影在线观看| 看免费av毛片| 精品人妻熟女毛片av久久网站| 久久热在线av| 国产伦理片在线播放av一区| 成人影院久久| 欧美午夜高清在线| 伦理电影免费视频| 在线永久观看黄色视频| 精品一区在线观看国产| 另类亚洲欧美激情| 黑人猛操日本美女一级片| 人妻 亚洲 视频| 亚洲国产中文字幕在线视频| avwww免费| 国产精品免费大片| 国产淫语在线视频| 国产精品免费大片| 国产精品香港三级国产av潘金莲| 人妻久久中文字幕网| avwww免费| 国产精品欧美亚洲77777| av欧美777| 国产成人啪精品午夜网站| 国产真人三级小视频在线观看| 亚洲国产欧美在线一区| 青春草视频在线免费观看| av网站在线播放免费| av欧美777| 欧美少妇被猛烈插入视频| 一区二区日韩欧美中文字幕| 国产激情久久老熟女| 久久精品熟女亚洲av麻豆精品| 人妻久久中文字幕网| 人妻 亚洲 视频| 搡老乐熟女国产| 国产伦理片在线播放av一区| 国产一区二区 视频在线| 深夜精品福利| 久久综合国产亚洲精品| 一二三四社区在线视频社区8| 日本av手机在线免费观看| 久久久久精品人妻al黑| 亚洲精品av麻豆狂野| 国产精品.久久久| 亚洲欧美一区二区三区久久| 亚洲九九香蕉| 欧美激情久久久久久爽电影 | 久久天堂一区二区三区四区| √禁漫天堂资源中文www| 国产不卡av网站在线观看| 国产人伦9x9x在线观看| 亚洲国产精品999| 精品国产乱子伦一区二区三区 | 日日摸夜夜添夜夜添小说| videosex国产| 在线观看舔阴道视频| 国产亚洲精品久久久久5区| www日本在线高清视频| 久久久久久久久久久久大奶| 狂野欧美激情性bbbbbb| 汤姆久久久久久久影院中文字幕| www.av在线官网国产| 丝袜美足系列| 日韩欧美免费精品| 我要看黄色一级片免费的| 99国产精品一区二区蜜桃av | 日韩中文字幕视频在线看片| 青春草视频在线免费观看| svipshipincom国产片| 国产91精品成人一区二区三区 | 夜夜骑夜夜射夜夜干| 精品福利永久在线观看| 久久人人爽人人片av| 国产一区二区三区av在线| 亚洲精品国产av蜜桃| 久久久久久亚洲精品国产蜜桃av| 日本欧美视频一区| 免费久久久久久久精品成人欧美视频| 久久精品国产亚洲av香蕉五月 | 永久免费av网站大全| 久久人人爽人人片av| 国产熟女午夜一区二区三区| 丝瓜视频免费看黄片| 最新在线观看一区二区三区| 亚洲国产看品久久| 正在播放国产对白刺激| 十八禁网站网址无遮挡| 午夜日韩欧美国产| 亚洲国产精品一区二区三区在线| 久热爱精品视频在线9| 久久精品亚洲av国产电影网| 亚洲精品国产av蜜桃| 一本—道久久a久久精品蜜桃钙片| 国产淫语在线视频| 国产日韩一区二区三区精品不卡| 成年人免费黄色播放视频| 91九色精品人成在线观看| 在线看a的网站| 一级黄色大片毛片| 中文字幕人妻熟女乱码| av在线app专区| 老司机福利观看| 亚洲第一青青草原| 真人做人爱边吃奶动态| 狠狠婷婷综合久久久久久88av| 亚洲一区中文字幕在线| 国产黄频视频在线观看| 丝瓜视频免费看黄片| 久久久国产一区二区| 亚洲视频免费观看视频| 国精品久久久久久国模美| 欧美激情高清一区二区三区| 手机成人av网站| 国产av又大| 精品人妻一区二区三区麻豆| 国产激情久久老熟女| 中文字幕人妻丝袜一区二区| 丰满少妇做爰视频| a级毛片在线看网站| 午夜视频精品福利| av又黄又爽大尺度在线免费看| 亚洲成人国产一区在线观看| 免费一级毛片在线播放高清视频 | 亚洲av美国av| 国产成人a∨麻豆精品| 满18在线观看网站| 亚洲精品在线美女| 操美女的视频在线观看| 80岁老熟妇乱子伦牲交| 一区二区三区四区激情视频| 国产伦人伦偷精品视频| 国产精品国产三级国产专区5o| 99久久国产精品久久久| 日韩精品免费视频一区二区三区|