• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONSTRUCTION OF IMPROVED BRANCHING LATIN HYPERCUBE DESIGNS?

    2021-09-06 07:54:04陳浩
    關(guān)鍵詞:陳浩

    (陳浩)

    School of Statistics,Tianjin University of Finance and Economics,Tianjin 300222,China E-mail:chlh1985@126.com

    Jinyu YANG (楊金語) Min-Qian LIU (劉民千)?

    School of Statistics and Data Science,LPMC&KLMDASR,Nankai University,Tianjin 300071,China E-mail:jyyang@nankai.edu.cn;mqliu@nankai.edu.cn

    Abstract In this paper,we propose a new method,called the level-collapsing method,to construct branching Latin hypercube designs(BLHDs).The obtained design has a sliced structure in the third part,that is,the part for the shared factors,which is desirable for the qualitative branching factors.The construction method is easy to implement,and(near)orthogonality can be achieved in the obtained BLHDs.A simulation example is provided to illustrate the effectiveness of the new designs.

    Key words Branching and nested factors;computer experiment;Gaussian process model;orthogonality

    1 Introduction

    Many experiments involve factors that only exist within the levels of another factor.Take printed circuit board(PCB)manufacturing,for example([1]).Here,the surface preparation method is a qualitative factor having two levels:mechanical scrubbing and chemical treatment.Under each of the two levels,there exist two different factors:pressure and micro-etch.More precisely,the factor pressure only exists when the method involves mechanical scrubbing,and micro-etch rate only exists under the level of chemical treatment.Following the de finitions in[1],the factors that only exist within the levels of another factor(like the pressure and the microetch rate)are called nested factors.Accordingly,a factor within which other factors are nested is called a branching factor;these include things such as the surface preparation method for PCB manufacturing.Such experimental situations are often encountered in computer experiments as well,for example,the motivation example of[1].The objective of that example is to optimize a turning process for hardened bearing steel with a cBN cutting tool.There is one branching factor,called the cutting edge shape,which has two levels:chamfer and hone edge.Within the chamfer,two factors(length and angle)are nested,while no factor is nested in the hone edge.In addition,there are six other factors(cutting edge radius,tool nose radius,rake angle,cutting speed,feed and depth of cut),called shared factors,which are common to both the branching and nested factors.

    Although experiments with branching and nested factors are commonly encountered,there is little literature on the design construction for such experiments.Taguchi[2]proposed pseudofactor designs by carefully assigning branching and nested factors to the columns of orthogonal arrays(OAs,[3]),where the pseudo-factor is in fact the nested factor.Later,in[4],such designs were called branching designs.However,as stated in[1],Taguchi’s method is not sufficiently general to be applied to computer experiments.Instead,Hung et al.[1]developed branching Latin hypercube designs(BLHDs)to suit computer experiments with branching and nested factors.A BLHD consists of three parts:(i)an OA for the branching factors;(ii)several Latin hypercube designs(LHDs)([5])for the nested factors;(iii)an LHD for the shared factors.An example of a BLHD is given in Table 1(Table 3 in[1]);here the BLHD has eight runs,one branching factor

    z

    ,one nested factor

    v

    ,and two shared factors:

    x

    and

    x

    .As pointed out in[1],the same levels of

    v

    (for example two 1’s)do not have the same meaning.Such a frame of a BLHD looks attractive,however the third part has no sliced structure to accommodate the qualitative branching factor.The superiority of sliced Latin hypercube designs(SLHDs)over ordinary LHDs was proved by both theoretical and simulated results in[6]when being used for computer experiments with both qualitative and quantitative factors.Thus an SLHD is more effective as the third part of a BLHD than an LHD.For an SLHD,not only the whole design,but also its slices achieve the maximum strati fication in any one-dimensional projection.Such a good property ensures that when the third part is collapsed onto the branching factor,each factor in the third part gets maximum strati fication under each level of the branching factor.Take the design in Table 1 as an example;when the third part is collapsed onto

    z

    ,it becomes the following matrix:

    Table 1 An example of a BLHD

    It is easy to see that the first column

    x

    does not get the maximum strati fication under either level of

    z

    ,which can be seen more clearly from the scatter plot in Figure 1(a);that is,when considering the projection on

    x

    ,there are two points falling into either of the intervals[1

    /

    4

    ,

    2

    /

    4)and[2

    /

    4

    ,

    3

    /

    4).Note that the levels of

    x

    and

    x

    in Figure 1 are mapped into[0

    ,

    1)through(

    x

    ?0

    .

    5)

    /

    8,where

    x

    is the

    i

    th level of factor

    x

    for

    i

    =1

    ,...,

    8 and

    j

    =1

    ,

    2.However,if we exchange the second and seventh elements of

    x

    in Table 1,then the third part becomes an SLHD with 8 runs,2 factors and 2 slices.Now,the collapsed matrix becomes

    Figure 1 (a)Scatter plot of the third part of the BLHD in Table 1;(b)Scatter plot of the third part obtained by exchanging the 2nd and 7th elements of x1in Table 1.The symbols ‘?’and ‘+’represent the four runs from the first and second slices,respectively.

    The scatter plot is presented in Figure 1(b),which shows that there is only one point from each slice falling into one of the intervals[0

    ,

    1

    /

    4)

    ,

    [1

    /

    4

    ,

    2

    /

    4)

    ,

    [2

    /

    4

    ,

    3

    /

    4)

    ,

    [3

    /

    4

    ,

    1)in each dimension;that is,each slice gets the maximum strati fication in any 4×1 or 1×4 grid.In this paper,we focus on introducing a sliced structure into the third part of BLHDs,and propose a levelcollapsing method to construct BLHDs.The obtained designs,referred to as improved BLHDs(IBLHDs),have a better structure than existing BLHDs,and can achieve near orthogonality more easily.

    The remainder of this paper is organized as follows:Section 2 provides the level-collapsing method for constructing IBLHDs.Section 3 discusses the(near)orthogonality of the IBLHDs.An example for illustrating their effectiveness is presented in Section 4.Section 5 contains some concluding remarks.

    2 Construction of IBLHDs

    First,we give some de finitions and notation.For any real number

    r

    ,「

    r

    ?denotes the smallest integer greater than or equal to

    r

    ,and for a real vector or matrix

    M

    ,「

    M

    ?is de fined to its elements.A permutation on

    Z

    is a rearrangement of 1

    ,...,n

    ,and all

    n

    !rearrangements are equally probable.An

    n

    ×

    q

    matrix is called a Latin hypercube design(LHD),denoted by

    L

    (

    n,q

    ),if each column is a permutation on

    Z

    ,and these columns are obtained independently.Denote an SLHD with

    n

    runs,

    q

    factors and

    s

    slices by

    SL

    (

    n,q,s

    ).Next,we propose the level-collapsing method for constructing IBLHDs.Without loss of generality,assume that there is only one branching factor,

    z

    ,with

    s

    levels,under each of which an

    L

    (

    n

    ,m

    )is nested.In addition,

    t

    shared factors are involved.

    Algorithm 2.1

    Step 1

    Let

    z

    =(1

    ,...,

    1

    ,...,s,...,s

    )be the branching factor,where each level

    i

    appears

    n

    times for

    i

    =1

    ,...,s

    .

    Step 2

    Construct an

    SL

    (

    sn

    ,m

    +

    t,s

    )by the method in[6],denoted by

    S

    =(

    S

    ,S

    ),where

    S

    includes

    m

    columns of

    S

    ,and

    S

    includes the left

    t

    columns.

    For the IBLHD in Table 2,there are two structural differences compared with BLHDs:(i)the third part is an

    SL

    (

    n,t,s

    )instead of an

    L

    (

    n,t

    ),which guarantees that each shared factor gets the maximum strati fication under each level of the branching factor;(ii)the LHDs in the second part are obtained by collapsing some columns of the SLHDs constructed in Step 2,which makes it easier to develop(near)orthogonality between factors.

    Table 2 IBLHD with one branching factor

    Table 3 IBLHD in Example 3.3

    Table 4 Correlations among v1,v2,x1and x2

    Remark 2.2

    Note that for a BLHD,it may happen that there is no nested factor under some level of the branching factor([1]).In this case,we just need to delete the corresponding LHD in the second part of an IBLHD.

    3 Nearly Orthogonal IBLHDs

    Orthogonality is a desirable property for experimental designs,because it guarantees that the main effects can be estimated uncorrelatedly under the first-order polynomial model.In this section,we consider nearly orthogonal IBLHDs,in which nested factors are orthogonal to each other,orthogonal to the shared factors for the whole IBLHD,and nearly orthogonal to the shared factors within each slice.

    Let us now see some further de finitions.A design is said to be orthogonal if the correlation between any two distinct columns is zero.An

    SL

    (

    n,q,s

    )is called a sliced orthogonal LHD(SOLHD,[7–12]),denoted by

    SOL

    (

    n,q,s

    ),if both the whole design and its slices are orthogonal.From the construction method in Algorithm 2.1,if the original SLHD in Step 2 is an SOLHD,then the obtained IBLHD will inherit the orthogonality to some extent.In this paper,we only take the SOLHDs constructed by Algorithm 1 in[10]as the SLHDs in Step 2 of Algorithm 2.1.Other SOLHDs in the aforementioned literature can also be used of course,and the results will be similar,that is,the resulting IBLHDs are nearly orthogonal.To present the results in Proposition 3.1,we first brie fly introduce Algorithm 1 in[10].

    Using

    OD

    (

    m

    )’s,Yang et al.[10]constructed

    SOL

    (2

    sm,m,s

    )by

    where

    D

    ,...,D

    are

    OD

    (

    m

    )’s with(

    a,b

    )

    ,...,

    (

    a,b

    ),respectively,and

    a

    =2

    s

    and

    b

    =?

    a

    +(2

    j

    ?1)for

    j

    =1

    ,...,s

    .When projected onto each dimension,each of the 2

    m

    equally spaced intervals[?2

    sm,

    ?2

    s

    (

    m

    ?1))

    ,

    [?2

    s

    (

    m

    ?1)

    ,

    ?2

    s

    (

    m

    ?2))

    ,...,

    [?2

    s,

    0)

    ,

    [0

    ,

    2

    s

    )

    ,...,

    [2

    s

    (

    m

    ?1)

    ,

    2

    sm

    )contains exactly one point of each slice.

    Proposition 3.1

    Without loss of generality,assume that there is only one branching factor with

    s

    levels.If the SLHD

    S

    =(

    S

    ,S

    )in Step 2 of Algorithm 2.1 is an

    SOL

    (2

    sm,m,s

    )in(3.1),then(i)the nested factors are orthogonal to the shared factors for the whole IBLHD,and nearly orthogonal to the shared factors within each slice,and the upper bound for the absolute correlations between any nested factor and any shared factor in the

    j

    th slice is

    (ii)the nested factors are orthogonal to each other for both the whole design and its slices.

    Before proving Proposition 3.1,we present an obvious lemma with its proof omitted.

    Lemma 3.2

    Assume that

    D

    is an

    OD

    (

    m

    ),where

    m

    =2and

    r

    ≥1 is an integer,and let

    T

    =(

    T

    ,...,T

    )=(

    D

    ,

    ?

    D

    ).Then(i)

    T

    is one permutation on set{?

    ma

    ?

    b,

    ?(

    m

    ?1)

    a

    ?

    b,...,

    ?

    a

    ?

    b,a

    +

    b,...,

    (

    m

    ?1)

    a

    +

    b,ma

    +

    b

    },

    j

    =1

    ,...,m

    ;(ii)

    T

    can be collapsed to one permutation on{1

    ,...,

    2

    m

    }by linear transformation

    where

    T

    is the

    i

    th element of

    T

    ,

    P

    =

    b/a

    +

    m

    +1for the negative levels of

    T

    ,and

    P

    =?

    b/a

    +

    m

    for the positive levels of

    T

    .

    Because the inner product is a sum that does not depend on the order of the product pairs,so we can always arrange the order of summation so that the first

    m

    levels of

    A

    are negative.Then based on the structure of the

    SOL

    (2

    sm,m,s

    )in(3.1),

    Therefore,the correlation between

    C

    and

    B

    is

    Thus,the nested factors are orthogonal to the shared factors for the whole IBLHD.This completes the proof of(i).

    (ii)Denote the columns of any two nested factors in the

    j

    th slice of the IBLHD by

    C

    and

    C

    ,respectively,which are collapsed from

    A

    and

    A

    by linear transformation based on(3.3),

    j

    =1

    ,...,s

    .Note that 〈

    A

    ,A

    〉=0,and thus,

    so corr(

    C

    ,C

    )=0.Therefore,the nested factors are orthogonal to each other within each slice.The orthogonality also holds for the whole design.This completes the proof of(ii).Note that in Proposition 3.1,the nested factors are orthogonal to the shared factors for the whole IBLHD,however,if some other SOLHDs are used as the SLHDs in Step 2 of Algorithm 2.1,the nested factors may only be nearly orthogonal to the shared factors for the whole IBLHD.Usually,the values of(3.2)are small,for example,when

    m

    =8

    ,s

    =3

    ,a

    =6

    ,b

    =?5

    ,b

    =?3

    ,b

    =?1.In this case,the upper bounds(3.2)for the three slices are 0

    .

    0162

    ,

    0

    .

    0153 and 0

    .

    0431,respectively.An illustrative example is given below.

    Example 3.3

    Consider a computer experiment with 16 runs,one branching factor

    z

    with two levels?1 and+1,two nested factors

    v

    and

    v

    ,and two shared factors

    x

    and

    x

    .According to Algorithm 2.1 and Proposition 3.1,we take an

    SOL

    (16

    ,

    4

    ,

    2)from[10]with

    a

    =4,

    b

    =?3,

    b

    =?1,which is

    Without loss of generality,the nested factors are assigned to the first two columns of

    S

    ,and after they are collapsed over

    z

    ,the final IBLHD is presented in Table 3.We can compute the upper bounds given in(3.2),which are 0

    .

    0525 and 0

    .

    0434 for the two slices.The real correlations between the nested factors and shared factors for the two slices and the whole design are listed in Table 4,which verify the conclusions in Proposition 3.1.Moreover,we can see that the upper bounds(3.2)are attainable.

    4 Effectiveness of IBLHDs

    In this section,we mainly study the performance of IBLHDs when they are used for building Gaussian process(GP)models.Although integrated analysis has been proven to be better than independent analysis([14]),we insist on using independent analysis in this paper,because different levels of the branching factor often represent remarkably different things,such as the two surface treatment methods in[1].That is to say,the data under one level of the branching factor is probably irrelevant with the data under another one,therefore,they can borrow no strength from one another to improve the fitted model.

    where f(x)=(

    f

    (x)

    ,...,f

    (x))is a vector of pre-speci fied regression functions and β=(

    β

    ,...,β

    )is a vector of unknown coefficients.The residual

    ε

    is assumed to be a stationary GP with zero mean and covariance

    where R(x

    ,

    x)is the Gaussian correlation function,whose popular form is the product exponential correlation function([15])that will be used in this paper:

    Here,θ=(

    θ

    ,...,θ

    )is a vector of scale parameters.Usually,a maximum likelihood method is adopted to estimate the parameters(β

    ,

    θ).Following the normality assumption of the GP model,the log-likelihood function of the collected data is

    where R(

    θ

    )is the

    n

    ×

    n

    correlation matrix with the(

    i,j

    )th element being R(x

    ,

    x)and F=(f(x)

    ,...,

    f(x)).As is stated in[16],simultaneous maximization over(β

    ,

    θ)is unstable because R(θ)may be nearly singular and

    σ

    could be very small.Furthermore,β and θ play different roles:β is used to model overall trend,while θ is a smoothing parameter vector.Thus it is desirable to estimate these things separately.After giving θ,the maximum likelihood estimators(MLE)of β and

    σ

    can be derived from(4.1)as follows:

    Then the MLE of θ can be obtained as

    Finally,the best linear unbiased predictor(BLUP)of

    y

    at an untried point xis

    Next,we present an illustrative example which was implemented using the Matlab toolbox DACE([17]).

    Example 4.1

    Assume there is a branching factor

    z

    with two levels,?1 and+1,and under each of these the nested factor

    v

    has eight levels:1

    ,...,

    8.In addition,three shared factors,

    x

    ,x

    and

    x

    ,are involved,and sixteen runs are available.The real response function is assumed to be

    Figure 2 Boxplots of the 1000 RMSPEs corresponding to BLHDs and IBLHDs.

    Table 5 Mean and standard deviation values of RMPSEs in Example 4.1

    Note that in this section we fit a separate GP model for each level of the branching factor,otherwise we would need a special kernel function.

    5 Concluding Remarks

    In this paper,we proposed a new method for constructing BLHDs,and showed that the obtained IBLHDs improve the BLHDs in terms of the projection property under each level of the branching factor;that is,not only the whole design but also the slices get maximum strati fication in one-dimensional projection.In addition,if the original SLHDs are orthogonal,then in the obtained IBLHDs,the nested factors are orthogonal to each other,orthogonal to the shared factors for the whole design,and nearly orthogonal to the shared factors within each slice.Furthermore,the example shows that the IBLHDs outperform the BLHDs when used for building a GP model and for predictions at new points.

    Note that all the optimization criteria in[1],including maximin distance,minimum correlation and orthogonal-maximin,can be applied on IBLHDs to get corresponding optimal IBLHDs.Although the nested factors are quantitative in both this paper and[1],they can be qualitative sometimes.Chen et al.[12]constructed SLHDs with both the branching and nested factors being qualitative.In addition,we can also construct the second and third parts of an IBLHD using the OA-based idea([18–20]).

    猜你喜歡
    陳浩
    《快樂足球》
    Molecular mechanism study of Astragalus adsurgens Pall synergistically induced by plasma and plasma-activated water
    你好,姐姐
    生死時速:陌生女孩的語音暗藏求救信號
    Investigation of hypersonic flows through a cavity with sweepback angle in near space using the DSMC method*
    陳浩悼亡詩淺析附《楚帆集》校語
    Current Reversals of an Underdamped Brownian Particle in an Asymmetric Deformable Potential?
    智能變電站繼電保護(hù)系統(tǒng)可靠性分析
    醉你
    被『電』住了
    成年女人在线观看亚洲视频| 国产伦精品一区二区三区视频9| 亚洲av男天堂| 我要看日韩黄色一级片| 免费黄色在线免费观看| 国产成人午夜福利电影在线观看| 国产精品不卡视频一区二区| 成人无遮挡网站| 伊人亚洲综合成人网| 欧美变态另类bdsm刘玥| 两个人免费观看高清视频 | 精品视频人人做人人爽| 国产午夜精品一二区理论片| 18+在线观看网站| 久久鲁丝午夜福利片| 大陆偷拍与自拍| 午夜福利网站1000一区二区三区| 男女边摸边吃奶| 亚洲精品日韩av片在线观看| 一级毛片 在线播放| 久久久国产一区二区| 午夜免费鲁丝| 能在线免费看毛片的网站| 王馨瑶露胸无遮挡在线观看| 中文字幕亚洲精品专区| 免费av不卡在线播放| 国产精品偷伦视频观看了| 自拍欧美九色日韩亚洲蝌蚪91 | 一级爰片在线观看| 两个人免费观看高清视频 | 亚洲欧洲精品一区二区精品久久久 | 91久久精品国产一区二区三区| 黄色怎么调成土黄色| 精品卡一卡二卡四卡免费| 国产精品久久久久久久电影| 国内少妇人妻偷人精品xxx网站| 黄片无遮挡物在线观看| 精品久久久久久电影网| 久久久精品94久久精品| 日韩成人av中文字幕在线观看| 成人漫画全彩无遮挡| 王馨瑶露胸无遮挡在线观看| 久久久久国产精品人妻一区二区| 精品一品国产午夜福利视频| 午夜福利网站1000一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 久久午夜福利片| 国产爽快片一区二区三区| 亚洲欧美日韩东京热| 2022亚洲国产成人精品| 国产精品无大码| av福利片在线| 亚洲美女视频黄频| 99热国产这里只有精品6| 亚洲欧洲国产日韩| 高清av免费在线| 免费观看性生交大片5| 国产亚洲精品久久久com| 日韩一区二区三区影片| 日日啪夜夜爽| 国产精品不卡视频一区二区| 欧美最新免费一区二区三区| 男女啪啪激烈高潮av片| 国产伦精品一区二区三区视频9| 国产日韩一区二区三区精品不卡 | 日本欧美国产在线视频| 国产又色又爽无遮挡免| 亚洲真实伦在线观看| 久久久久人妻精品一区果冻| 狠狠精品人妻久久久久久综合| 国产在线视频一区二区| 亚洲av.av天堂| 久久国产亚洲av麻豆专区| 啦啦啦啦在线视频资源| 蜜桃在线观看..| 欧美精品一区二区大全| 日韩不卡一区二区三区视频在线| 日韩中字成人| 七月丁香在线播放| 久久久国产一区二区| 在线观看美女被高潮喷水网站| 国语对白做爰xxxⅹ性视频网站| 国产精品一二三区在线看| 丝袜喷水一区| 欧美激情极品国产一区二区三区 | 乱码一卡2卡4卡精品| 中文资源天堂在线| 欧美日韩综合久久久久久| 欧美亚洲 丝袜 人妻 在线| 日日撸夜夜添| 色视频在线一区二区三区| 女性被躁到高潮视频| 九九爱精品视频在线观看| 中国美白少妇内射xxxbb| 日韩一本色道免费dvd| 各种免费的搞黄视频| 女性被躁到高潮视频| 国产欧美日韩精品一区二区| freevideosex欧美| 久久久久久久精品精品| 高清在线视频一区二区三区| 国产免费一级a男人的天堂| 我的老师免费观看完整版| 国产精品无大码| 91久久精品国产一区二区三区| 一级毛片 在线播放| 丰满乱子伦码专区| 一区二区三区四区激情视频| 亚洲欧美一区二区三区国产| 美女中出高潮动态图| 欧美xxⅹ黑人| 久久精品国产自在天天线| 久久人人爽av亚洲精品天堂| 亚洲精品国产av成人精品| 国产亚洲一区二区精品| 亚洲av不卡在线观看| 人妻 亚洲 视频| 熟女电影av网| 一区在线观看完整版| 国产精品三级大全| 好男人视频免费观看在线| 免费看av在线观看网站| 大又大粗又爽又黄少妇毛片口| 欧美最新免费一区二区三区| 国产午夜精品久久久久久一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 美女xxoo啪啪120秒动态图| 99久国产av精品国产电影| 日日啪夜夜爽| h日本视频在线播放| 亚洲天堂av无毛| 成人特级av手机在线观看| 欧美3d第一页| 午夜福利在线观看免费完整高清在| 有码 亚洲区| 麻豆乱淫一区二区| av福利片在线观看| 2018国产大陆天天弄谢| 色视频www国产| 女性生殖器流出的白浆| 亚洲一级一片aⅴ在线观看| 国产精品一区www在线观看| 国产又色又爽无遮挡免| 肉色欧美久久久久久久蜜桃| 在线亚洲精品国产二区图片欧美 | 国产精品久久久久成人av| 成人黄色视频免费在线看| 日韩中文字幕视频在线看片| av国产精品久久久久影院| 一级黄片播放器| 国产在线一区二区三区精| 黄色日韩在线| 精品久久久久久电影网| 色视频在线一区二区三区| 婷婷色综合www| 超碰97精品在线观看| 国产91av在线免费观看| 精品久久久噜噜| 亚洲av二区三区四区| 国产女主播在线喷水免费视频网站| 精品久久久久久久久亚洲| 精品久久国产蜜桃| 一本久久精品| 亚洲av在线观看美女高潮| 国产在线视频一区二区| 国产黄频视频在线观看| 多毛熟女@视频| 精品一区二区三区视频在线| videos熟女内射| 岛国毛片在线播放| 日本与韩国留学比较| 欧美精品国产亚洲| 亚洲精品国产av成人精品| 精品人妻一区二区三区麻豆| 99视频精品全部免费 在线| 久久久久精品久久久久真实原创| 亚洲av免费高清在线观看| a级片在线免费高清观看视频| 精品国产乱码久久久久久小说| 我要看黄色一级片免费的| 国产精品国产av在线观看| 3wmmmm亚洲av在线观看| 国产美女午夜福利| 九九在线视频观看精品| 久久99热这里只频精品6学生| av在线app专区| 日韩人妻高清精品专区| 亚洲国产最新在线播放| 亚洲,欧美,日韩| 亚洲一级一片aⅴ在线观看| 人妻系列 视频| 亚洲经典国产精华液单| 成人漫画全彩无遮挡| 中文字幕亚洲精品专区| 久久国产精品大桥未久av | 久久久久精品性色| 大香蕉久久网| 国产亚洲最大av| 久久久久久久国产电影| 亚洲真实伦在线观看| 午夜老司机福利剧场| 国产在线男女| 各种免费的搞黄视频| 在线观看www视频免费| 国产男女超爽视频在线观看| 免费大片18禁| 日韩一区二区视频免费看| 观看av在线不卡| 日本欧美国产在线视频| 波野结衣二区三区在线| 人人澡人人妻人| 欧美精品高潮呻吟av久久| 欧美精品一区二区免费开放| 亚洲欧美一区二区三区国产| 久久国产精品大桥未久av | 成人亚洲精品一区在线观看| 中国国产av一级| 极品少妇高潮喷水抽搐| 一区在线观看完整版| 国产老妇伦熟女老妇高清| 亚洲欧美日韩东京热| 免费久久久久久久精品成人欧美视频 | 少妇人妻 视频| 最近2019中文字幕mv第一页| 精品熟女少妇av免费看| 久久国产亚洲av麻豆专区| 成人午夜精彩视频在线观看| av又黄又爽大尺度在线免费看| 国产一级毛片在线| 纵有疾风起免费观看全集完整版| 国产高清有码在线观看视频| 在线播放无遮挡| 日日撸夜夜添| 成年av动漫网址| 男人舔奶头视频| 插阴视频在线观看视频| 国产成人一区二区在线| 一级毛片电影观看| 久久狼人影院| av免费在线看不卡| 丝瓜视频免费看黄片| 91午夜精品亚洲一区二区三区| 亚洲成人手机| 国产探花极品一区二区| 午夜久久久在线观看| 亚洲国产精品国产精品| 五月伊人婷婷丁香| 青春草国产在线视频| 日本黄大片高清| 久久97久久精品| 国产午夜精品一二区理论片| 一边亲一边摸免费视频| 日本91视频免费播放| 哪个播放器可以免费观看大片| a 毛片基地| 波野结衣二区三区在线| 91久久精品国产一区二区成人| a级一级毛片免费在线观看| 少妇人妻久久综合中文| 99热这里只有是精品在线观看| 午夜福利在线观看免费完整高清在| 亚洲,一卡二卡三卡| 日本欧美视频一区| 久久久久久久久大av| 久热久热在线精品观看| 国产精品无大码| 黄色视频在线播放观看不卡| 我的老师免费观看完整版| 亚洲成人手机| 女性生殖器流出的白浆| 久久97久久精品| 欧美老熟妇乱子伦牲交| 97在线视频观看| 极品少妇高潮喷水抽搐| 精品国产一区二区久久| 女的被弄到高潮叫床怎么办| 街头女战士在线观看网站| 精品一区二区三区视频在线| 亚洲国产精品一区二区三区在线| 最近手机中文字幕大全| av福利片在线观看| 精品少妇内射三级| 国产探花极品一区二区| 观看美女的网站| 少妇的逼水好多| 国产精品人妻久久久影院| 成年av动漫网址| 日本av免费视频播放| 欧美精品亚洲一区二区| 日韩欧美 国产精品| 亚洲精品国产av成人精品| 少妇高潮的动态图| 久久99热这里只频精品6学生| 另类亚洲欧美激情| av一本久久久久| 日韩视频在线欧美| 国产成人精品婷婷| 精品一区二区三卡| 2018国产大陆天天弄谢| 日韩电影二区| 国产男人的电影天堂91| 高清在线视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 免费播放大片免费观看视频在线观看| 啦啦啦啦在线视频资源| 久久99蜜桃精品久久| 国产精品一区www在线观看| 免费观看在线日韩| 亚洲欧美清纯卡通| 国产av码专区亚洲av| 精品少妇内射三级| 亚洲中文av在线| 精品少妇久久久久久888优播| 少妇被粗大的猛进出69影院 | 男的添女的下面高潮视频| 亚洲va在线va天堂va国产| 看十八女毛片水多多多| 久久 成人 亚洲| 久久精品国产亚洲av涩爱| 亚洲av电影在线观看一区二区三区| a级一级毛片免费在线观看| 亚洲av福利一区| 伊人久久国产一区二区| 国产成人免费观看mmmm| 亚洲人成网站在线播| 如日韩欧美国产精品一区二区三区 | 国产av国产精品国产| 中文资源天堂在线| 少妇裸体淫交视频免费看高清| 午夜视频国产福利| 91久久精品国产一区二区三区| 一级毛片aaaaaa免费看小| 亚洲自偷自拍三级| 国产淫语在线视频| 国产精品欧美亚洲77777| 国产精品蜜桃在线观看| 男女免费视频国产| 又粗又硬又长又爽又黄的视频| 自拍欧美九色日韩亚洲蝌蚪91 | 男女边摸边吃奶| 夜夜骑夜夜射夜夜干| 在线精品无人区一区二区三| 亚洲欧美成人综合另类久久久| 亚洲欧美一区二区三区国产| 成人亚洲欧美一区二区av| 久久ye,这里只有精品| 亚洲av在线观看美女高潮| 亚洲精品视频女| 高清欧美精品videossex| 看十八女毛片水多多多| 久久久久人妻精品一区果冻| 又黄又爽又刺激的免费视频.| 国产一区二区三区av在线| 国模一区二区三区四区视频| 久久亚洲国产成人精品v| 少妇人妻 视频| 久久久久国产精品人妻一区二区| 中文字幕人妻丝袜制服| 久久99热这里只频精品6学生| 中文字幕久久专区| 亚洲怡红院男人天堂| 国产精品久久久久久精品古装| 人人妻人人澡人人爽人人夜夜| 天堂8中文在线网| 黑人巨大精品欧美一区二区蜜桃 | 香蕉精品网在线| 亚洲激情五月婷婷啪啪| 热re99久久国产66热| 国产成人一区二区在线| 久久人人爽人人爽人人片va| 婷婷色av中文字幕| 永久网站在线| 在线观看美女被高潮喷水网站| 久久久a久久爽久久v久久| av播播在线观看一区| 一本久久精品| 99国产精品免费福利视频| 啦啦啦在线观看免费高清www| 一级av片app| 交换朋友夫妻互换小说| 亚洲高清免费不卡视频| 亚洲精品一二三| 爱豆传媒免费全集在线观看| 欧美成人精品欧美一级黄| 男女啪啪激烈高潮av片| 国语对白做爰xxxⅹ性视频网站| 日韩成人伦理影院| 日韩三级伦理在线观看| 女的被弄到高潮叫床怎么办| 亚洲精品乱码久久久久久按摩| 美女内射精品一级片tv| 久久亚洲国产成人精品v| av又黄又爽大尺度在线免费看| 中文字幕免费在线视频6| 亚洲精品自拍成人| 丰满人妻一区二区三区视频av| 亚洲激情五月婷婷啪啪| 男男h啪啪无遮挡| 国产欧美日韩一区二区三区在线 | 国产精品国产av在线观看| 黑人高潮一二区| 久久精品国产鲁丝片午夜精品| 观看av在线不卡| 最近2019中文字幕mv第一页| 全区人妻精品视频| 国精品久久久久久国模美| 国产亚洲av片在线观看秒播厂| 永久免费av网站大全| 9色porny在线观看| 在线观看免费视频网站a站| 最近最新中文字幕免费大全7| 丰满饥渴人妻一区二区三| 永久免费av网站大全| av卡一久久| 日韩成人伦理影院| 一级毛片电影观看| 久久久国产欧美日韩av| av播播在线观看一区| 亚洲精品第二区| 国产av码专区亚洲av| 嫩草影院新地址| 午夜免费观看性视频| 美女国产视频在线观看| 久久久久国产精品人妻一区二区| 成人亚洲精品一区在线观看| 欧美性感艳星| 久久婷婷青草| 亚洲国产欧美在线一区| 久久久久久久久久久丰满| 亚洲欧美精品专区久久| 熟女人妻精品中文字幕| 午夜福利在线观看免费完整高清在| 久久国产亚洲av麻豆专区| 色5月婷婷丁香| 一级毛片电影观看| 欧美一级a爱片免费观看看| 国产亚洲欧美精品永久| 精品人妻一区二区三区麻豆| 久久久国产一区二区| 蜜桃在线观看..| 久久99热这里只频精品6学生| 三级经典国产精品| 男人和女人高潮做爰伦理| 成人18禁高潮啪啪吃奶动态图 | 大陆偷拍与自拍| 久久久久网色| av在线观看视频网站免费| 国产欧美日韩一区二区三区在线 | 国产精品久久久久成人av| 美女大奶头黄色视频| 青春草国产在线视频| 久久精品国产自在天天线| 中文字幕人妻熟人妻熟丝袜美| 五月玫瑰六月丁香| 亚洲国产精品999| 久久精品久久精品一区二区三区| 国产有黄有色有爽视频| 欧美xxxx性猛交bbbb| 国产 一区精品| 欧美成人午夜免费资源| 高清av免费在线| 亚洲无线观看免费| 国产高清有码在线观看视频| 肉色欧美久久久久久久蜜桃| 99热全是精品| 少妇人妻 视频| 国产成人精品一,二区| 日韩强制内射视频| 久久久国产精品麻豆| 一本一本综合久久| 黄片无遮挡物在线观看| 新久久久久国产一级毛片| 国产精品三级大全| 九草在线视频观看| 老司机亚洲免费影院| 欧美亚洲 丝袜 人妻 在线| 免费黄网站久久成人精品| 亚洲一级一片aⅴ在线观看| 国产在线男女| 美女福利国产在线| 久久99一区二区三区| 日本黄色片子视频| 亚洲av男天堂| 国产又色又爽无遮挡免| 国产精品久久久久久av不卡| 久久99一区二区三区| 国产亚洲一区二区精品| 日日撸夜夜添| 蜜桃在线观看..| 国产精品久久久久久av不卡| 22中文网久久字幕| 香蕉精品网在线| 爱豆传媒免费全集在线观看| 国产伦理片在线播放av一区| 亚洲国产最新在线播放| 亚洲av中文av极速乱| 如何舔出高潮| 欧美精品国产亚洲| 国产在线视频一区二区| 在现免费观看毛片| 国产午夜精品久久久久久一区二区三区| 亚洲国产精品国产精品| 伦理电影免费视频| 亚洲av二区三区四区| 欧美日韩av久久| 成人黄色视频免费在线看| 国产色爽女视频免费观看| 我要看日韩黄色一级片| 大陆偷拍与自拍| 在线免费观看不下载黄p国产| 日韩精品有码人妻一区| 成年女人在线观看亚洲视频| 免费观看无遮挡的男女| 成人毛片a级毛片在线播放| 国产精品伦人一区二区| 亚洲自偷自拍三级| 十八禁网站网址无遮挡 | 国产精品偷伦视频观看了| 97在线人人人人妻| 成人18禁高潮啪啪吃奶动态图 | 男人舔奶头视频| 老熟女久久久| 日韩强制内射视频| 美女脱内裤让男人舔精品视频| 亚洲精品第二区| 日本wwww免费看| 日韩一区二区视频免费看| 日日摸夜夜添夜夜爱| 91久久精品电影网| 亚洲国产成人一精品久久久| 国产精品免费大片| 久久久国产精品麻豆| 亚洲欧美一区二区三区国产| 国产精品秋霞免费鲁丝片| av视频免费观看在线观看| 少妇猛男粗大的猛烈进出视频| av网站免费在线观看视频| 久久久久久久大尺度免费视频| 国产国拍精品亚洲av在线观看| 精品少妇黑人巨大在线播放| 久久国内精品自在自线图片| 欧美日韩视频精品一区| 美女中出高潮动态图| 啦啦啦视频在线资源免费观看| 中文天堂在线官网| 亚洲精品乱码久久久v下载方式| 97在线视频观看| 免费av不卡在线播放| 秋霞在线观看毛片| 日日撸夜夜添| 欧美+日韩+精品| 国产精品嫩草影院av在线观看| 一区在线观看完整版| 精品视频人人做人人爽| 毛片一级片免费看久久久久| 亚洲av中文av极速乱| 精品人妻一区二区三区麻豆| 久久综合国产亚洲精品| 日本免费在线观看一区| 另类精品久久| 国产国拍精品亚洲av在线观看| 五月开心婷婷网| 97精品久久久久久久久久精品| 国产成人91sexporn| a级片在线免费高清观看视频| 夜夜骑夜夜射夜夜干| 成人黄色视频免费在线看| 美女中出高潮动态图| 男男h啪啪无遮挡| 亚洲精品久久久久久婷婷小说| 老女人水多毛片| 国产综合精华液| 两个人的视频大全免费| 中文字幕制服av| 丰满乱子伦码专区| 国产有黄有色有爽视频| 国产精品伦人一区二区| 一级a做视频免费观看| 国产白丝娇喘喷水9色精品| 99热全是精品| 国产一区亚洲一区在线观看| 岛国毛片在线播放| 久久人人爽人人片av| 国产精品国产三级国产av玫瑰| 熟女av电影| 色婷婷久久久亚洲欧美| 亚洲av成人精品一二三区| 国产精品不卡视频一区二区| 国产精品熟女久久久久浪| 日韩精品有码人妻一区| 欧美老熟妇乱子伦牲交| 女性被躁到高潮视频| 亚洲av成人精品一二三区| 亚洲国产精品999| 国产片特级美女逼逼视频| 26uuu在线亚洲综合色| 国产精品人妻久久久久久| 亚洲四区av| 日韩不卡一区二区三区视频在线| 日韩成人伦理影院| 亚洲国产精品成人久久小说| 搡女人真爽免费视频火全软件| 午夜福利,免费看| 下体分泌物呈黄色| 亚洲av.av天堂| 成年人免费黄色播放视频 | 两个人的视频大全免费| 久久精品国产鲁丝片午夜精品| 观看美女的网站| 日韩av不卡免费在线播放| av在线老鸭窝| 国产成人a∨麻豆精品| 欧美精品一区二区免费开放| 在线观看免费视频网站a站| 一级毛片我不卡|