• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    REGULARITY OF WEAK SOLUTIONS TO A CLASS OF NONLINEAR PROBLEM?

    2021-11-13 01:11:15周建豐

    (周建豐)

    School of Mathematical Sciences,Peking University,Beijing 100871,China E-mail:jianfengzhou xmu@163.com

    Zhong TAN (譚忠)

    School of Mathematical Sciences,Xiamen University,Xiamen 361005,China E-mail:ztan85@163.com

    Abstract We study the regularity of weak solutions to a class of second order parabolic system under only the assumption of continuous coefficients.We prove that the weak solution u to such system is locally Hlder continuous with any exponent α∈(0,1)outside a singular set with zero parabolic measure.In particular,we prove that the regularity point in QTis an open set with full measure,and we obtain a general criterion for the weak solution to be regular in the neighborhood of a given point.Finally,we deduce the fractional time and fractional space differentiability of Du,and at this stage,we obtain the Hausdorff dimension of a singular set of u.

    Key words Parabolic system;regularity;weak solution;Hausdorff dimension

    1 Introduction

    Letting ??Rn(n≥2)be a bounded domain,we aim in this paper to study the regularity of a weak solution to the inhomogeneous parabolic system

    withz=(x,t)∈?×(?T,0)≡QT,andT>0.a(·):QT×RN×RNn→RNn,u:QT→RN,b:QT×RN×RNn→RN,N∈Z+,N≥1.In general,the solution of parabolic system(1.1)cannot be expected to be regular everywhere on the domain,even the homogeneous case

    It is worth noting that everywhere regularity can be obtained only with a special structure ona(z,u,Du),such as the evolutionaryp?Laplacian system

    for which the regularity problem was settled by the fundamental contributions of Dibenedetto and Friedman[19–21],otherwise it fails in general(see[44–46],for example).

    One can,however,expect partial regularity results;this is regularity away from a singular set that is in some sense small.The partial regularity for general parabolic(1.2)was a longstanding open problem until it was solved by Duzaar and Mingione[28],Duzaar,Mingione and Steffen[29],C.Scheven[40]and also Duzaar et al.[8,9,25];their proofs are based on theAcaloric approximation method to the parabolic setting.Subsequently,Scheven[40]derived an analogous result for the subquadratic case of(1.2).Moreover,Baroni[3]showed the continuity of the gradientDuwhile only assuming the Dini continuity ofa(·,·,Du).Under the assumption of continuous coefficients,Bgelein-Foss-Mingione[11]proved partial Hlder continuity results for(1.2)with polynomial growth.When considering the boundary regularity of the parabolic system,the same authors[8,9]showed that almost every parabolic boundary point is a Hlder continuity point forDu.There have been many research articles on the regularity of weak solutions to parabolic system,for example,[1,12,34,39,47]and the reference therein.

    The above results for parabolic problems are analogous to results for the elliptic case(see[37]),the application of the so called harmonic approximation to prove regularity theorems goes back to Simon[41,43]and Duzaar et al.[26,27].In terms of related results for problems with continuous coefficients,Campanato[17](see also[16])derived the Hlder continuity of the solutions of some nonlinear elliptic system in R.For higher dimension cases,Foss-Mingione[31]proved the partial Hlder continuity for solutions to the elliptic system,and the proof relies upon an iteration scheme of a decay estimate for a new type of excess functional measuring the oscillations in the solution and its gradient.Afterwards,Beck[4]showed the boundary regularity of the elliptic system with a Dirichlet condition.When considering the Dini continuous coefficients,Duzzar-Gastel[24]presented a general low-order partial regularity theory.In particular,for the system with variable exponentp(x),Habermann[33](see also[2])derived the partial Hlder continuity for a weak solution to a nonlinear problem with a continuous growth exponent.For more details,one can also refer to[5,7,22,30,32,35,48,50]and the reference therein.

    Turning to the technically more challenging case of(1.1),as far as we are aware,there has been no previous work addressing the partial regularity of a weak solutionuto(1.1)with continuous coefficients(cf.[11]for the homogeneous case(1.2)).Thus,in the present paper,we aim to fill a gap in the partial regularity theory of the quasi-linear parabolic system(1.1).This turns out to be a difficult task,since the inhomogeneous termb(z,u,Du)will lead to several new difficulties:

    1.When establishing the Poincarinequality in Section 4,we are not able to obtain(4.13)directly,due to the lack of a zero-boundary condition ofuon?Bρfor anyBρ??.In order to avoid this flaw,a iteration argument will be needed;

    2.For proving Caccioppoli’s inequality(3.1),the key point is boundingb(z,u,Du)in terms ofDu?Dloru?l(lis an affine function,which will be de fined in later).However,one cannot use the inequalityl(z)≤l(z0)+Dl≤Mdirectly for a.e.z∈Qρ,ρ≤1 withM≥1 being a constant;otherwise,the constant after(5.12)would depend onMwithM=Hλ(see(5.7)and(Aj)).As a consequence,all constants in Lemma 5.3 depend onλso that the estimates could blow up during the iteration process.At this stage,we shall use a weighted Sobolev interpolation inequality(see[6,13]).For a suitable functionw(·):??→R+satis fing

    wherecdepends onp0,p1,n,q,r,k.Here,we have de fined

    withs1∈N,k1,s2≥1 ands∈R.

    The main result of this paper is as follows:

    Theorem 1.1Letp≥2 andu∈C0(?T,0;L2(?;RN))∩Lp(?T,0;W1,p(?;RN))be a weak solution of the parabolic system(1.1)inQTunder the assumptions(2.1)–(2.5).Then,there exists an open subsetQ0?QTsuch that

    for everyα∈(0,1).Moreover,we have the singular set satis fingQTQ0?Σ1∪Σ2,where

    The main technique we have used in the proof of Theorem 1.1 is theA-caloric approximation lemma.Here,Ais a bilinear form on RNn×RNnwith constant coefficients.IfAsatis fies certain growth and ellipticity conditions,then the weak solutionhto(5.6)isA-caloric and has good decay properties.In order to look for such a‘good’function,we shall use theA-caloric approximation lemma(see Lemma 2.7),which enables us to transfer the property of theAcaloric to some‘bad’function(target function).When applying theA-caloric approximation lemma,we need to pay attention to three necessary conditions:

    i)the target function is bounded from above on the scale of theL2-norm and theLp-norm;

    ii)the target function satis fies a linearized system;

    iii)the target function satis fies the smallness condition in the sense of distribution.

    To justify such conditions,we will establish the Caccioppoli inequality and linearize the system(1.1)in Section 3 and Section 5.On the other hand,with the help of a linearization lemma(see Lemma 5.1),we shall show thatw:=u?lρa(bǔ)pproximately solves

    From this,we are able to measure the oscillation inuwith respect to an affine mapping.Moreover,in order to provide a bilinear form that satis fies the growth and ellipticity bounds needed to apply theA-caloric approximation lemma,we may need the integral estimate on intrinsic cylinders,that is,parabolic cylinders stretched according to the size of the solutionuitself.The rough asymptotic is given by

    According to Theorem 1.1,we immediately deduce that

    whereK:=Σ1∪Σ2and 1K=1 forx∈K;otherwise,1K=0.Then we have the following result:

    whereγ≤min{α,2θ}.

    The rest of this paper is organised as follows:in Section 2,we state some assumptions about the structure functiona(·)and the inhomogeneity termb(·).Moreover,we present some notation,de finition of a weak solution to(1.1),and some useful lemmas which will be used in our proof.Next,in Section 3 and Section 4,we provide some preliminary material which will be quite useful in the proof of main result.The first step of our proof is to establish a Caccioppoli’s type inequality.Subsequently,we establish a Poincartype inequality in Section 4,from which we will be in a position to show the boundness of|Dl|.In Section 5,we first provide a linearizati on strategy for context,then we show a decay estimate of Φλj(?jρ),and finally obtain a Campana to type estimate.This,combined with a standard argument,implies Theorem 1.1.Finally,in Section 6,we derive the fractional time and space differentiability ofDu,from which we estimate the Hausdorff dimension of a singular set of a weak solutionuto(1.1).

    2 Preliminaries

    2.1 Notation

    Lettingx0∈Rn,t0∈R,z0=(x0,t0),we denote

    as an open ball in Rn,and let

    as a cylinder in Rn+2.LetBρ(x0),Qρ(z0)?QT,andf(x,t)be integrable onBρ(x0)andQρ(z0).Then the average integrals offoverBρ(x0)andQρ(z0)are de fined by

    In what follows,we shall repeatedly use the scaled parabolic cylinders of the form

    with radiusρ>0,scaling factorλ>0,and

    Based on the parabolic metric,the spacesCk;α1,α2(QT)are those of functionsu∈Ck(QT)which areα1-Hlder continuous in the space variables andα2-Hlder continuous in the time variables.More precisely,we say thatu∈Ck;α,α/2(?T;RN)(k≥0 being an integer)if

    We say thatu(QT;RN)if and only if,for allA?QT,it holds thatu∈Ck;α,α/2(A;RN).Finally,throughout the paper,we use the notation(·,·)to denote the inner product.Fors∈[0,n+2]andE?Rn+1,we de fine the(parabolic)Hausdorffmeasure as

    From above,the Hausdorff dimension is usually de fined by

    Moreover,in this paper we useDor?to denote the‘gradient’,and we will use the following notations:

    Here,ei=(0,...0,1i?th,0,...,0),i=1,...,n.Finally,let us recall the de finition of parabolic fractional Sobolev space(refer to[36]for details).We say thatu∈L2(QT)belongs to the fractional Sobolev spaceWα,θ;2(QT),α,θ∈(0,1)if

    2.2 Assumptions about the structure functions a(·)and b(·)

    We impose the condition on the structure functionsa(z,u,F)andb(z,u,F)forp≥2 as follows:

    ?The growth condition

    with(z,u,F)∈QT×RN×RNn,L≥1 being a constant.

    ?The ellipticity condition

    for all(z,u,F)∈QT×RN×RNn,∈RNn,0<ν≤1≤Lbeing a constant.

    Moreover,we also need the following two continuity conditions:

    ?The continuity of lower order term

    ?The continuity of higher order term

    for allz,z0∈QT,u,u0∈RNandF,F0∈RNn.Here,ω,μ:[0,∞)→[0,1]are two bounded,concave,and non-decreasing functions satisfying

    The termb(z,u,F)satis fies a controllable growth condition

    2.3 Definition of weak solution

    Lettingp≥2,we say thatu∈C0(?T,0;L2(?;RN))∩Lp(?T,0;W1,p(?;RN))is a weak solution to(1.1)if and only if the identity

    From[19](see also[36]),we recall the definition of the Steklov averages that allow us to restate(2.6)in an equivalent way.Lettingv∈L1(QT)and 0

    respectively,for allt∈(?T,0).We note that ifv∈Lr(?T,0;Lq(?))withr,q≥1,thenvh?→vinLr(?T+ε,0;Lq(?))ash?→0 for everyt∈(?T+ε,0)andε∈(0,T),and the same result holds forvˉh.

    By virtue of the convergence properties of the Steklov averages,we have the following equivalent definition of weak solution to(1.1):

    Definition 2.1(An equivalent definition of a weak solution)Let 2≤p<∞andu0∈L2(?).Thenu∈L∞(?T,0;L2(?))∩Lp(?T,0;W1,p(?))is called a weak solution to(1.1)if

    Employing(2.1)and(2.2),we have

    Lemma 2.2Letting 2≤p<∞,there exists a constantc=c(L,n,p)>0 such that,for anyF1,F2∈RNn,it holds that

    The following lemma,as an auxiliary tool,will be heavily used in the remainder of the paper(see[14]).

    Lemma 2.3LetA,B∈Rk,k≥1 andσ>?1.Then there exists a constantc=c(σ),such that

    As a consequence,from Lemma 2.3 and(2.2),it follows that the monotonicity ofa(z,u,·)is

    wherec=c(n,p,ν).

    In the next proposition we recall the parabolic version of the well known relation between Nikolski spaces and Fractional Sobolev spaces(see[42]).

    Proposition 2.4Lettingu∈L2(QT;RN),suppose that

    for allγ∈(0,θ).Furthermore,suppose that

    From Proposition 2.4,we can see that in order to prove the fractional differentiability ofDuin Theorem 1.2,it is only needed to prove

    On the other hand,for estimating the Hausdorff dimension of singular set ofude fined in Theorem 1.1,we shall use the following arguments(see[23,38]):

    2.4 Minimizing affine function

    amongst all affine functionl(z)=l(x)independent oft.We note that such a unique minimizing affine function exists and takes the form

    for anya(x)=ξ+A(x?x0)withξ∈RN,A∈RNn.This implies,in particular,that

    Furthermore,we need the following argument,which can be proven analogously to[49]:for anyξ∈RnandA∈RNn,it holds that

    2.5 A-caloric approximation

    A strongly elliptic bilinear formAon RNnmeans that

    In order to obtain the decay estimate(5.11),we introduce the followingA-caloric approximation lemma(see[29]).

    Lemma 2.7There exists a positive functionδ0=δ0(n,p,ν,L,ε)∈(0,1]with the property that,for eachγ∈(0,1],and each bilinear formAin RNnwith ellipticity constantνand upper boundL,εis a positive number wheneveru∈Lp(Λρ(t0);W1,p(Bρ(x0);RN))satisfying

    is approximatelyA-caloric,in the sense that for eachδ∈(0,δ0]it holds that

    3 Caccioppoli Type Inequality

    In this section,we propose to derive a Caccioppoli type inequality under the conditions(2.1)–(2.3)and(2.5).Such a result provides a bridge between theA-caloric approximate lemma and Lemma 5.1.

    Lemma 3.1(Caccioppoli type inequality)Letu∈C0(?T,0;L2(?;RN))∩Lp(?T,0;W1,p(?;RN))be a weak solution to(1.1)under the assumptions(2.1)–(2.3)and(2.5),and letbe a scaled parabolic cylinder with reference pointz0=(x0,t0)and 0<ρ≤1 being suitably small,with scaling factorλ≥1 and affine functionl:Rn→RNsuch thatλ≤1+|Dl|.Then it holds that

    Thus,inserting(3.3)–(3.4)into(3.2)and noting thatl(z)=l(x),we arrive at

    Firstly,we focus our attention on estimating the term on the left side of(3.5).Appealing to(2.2)and Lemma 2.3,we infer that

    Now,we turn to estimating the termsI?Vin(3.5).For the termI,we first note that,from(2.1),it holds that

    whereε∈(0,1)will be specified later,and in the previous inequality,we have taken into account that|Du|≤|Dl|+|Du?Dl|.

    Next,using(2.3),we deduce that

    For termIV,note thatλ≤1+|Dl|,so we have

    Finally,we estimate termV.From(2.5),we have

    By Young’s inequality,it is clear that

    withε1∈(0,1)to bespeci fied later.

    For termV2,first we divideBσinto two parts:and

    Therefore,by the weighted Sobolev interpolation inequality(1.3)and Hlder’s inequality,we are in a position to obtain

    whereε2∈(0,1)will be specified in later.

    This implies that

    As a consequence,from(3.12)–(3.13),it follows that

    Inserting(3.6)–(3.11)and(3.14)into(3.5),we conclude that

    and lettingδ1→0,we have(3.1).

    4 Poincar Type Inequality

    In this section,we aim to establish a Poincartype inequality of a weak solution to(1.1)under the assumptions(2.1),(2.3)and(2.5).We note that such an inequality plays a key role in this paper,especially in Section 5,where we will show that for everyz0∈QT(Σ1∪Σ2)and suitable 0≤ρ0≤1,the assumption of Lemma 5.3 is valid.

    Lemma 4.1(Poincartype inequality)Letu∈Lp(?T,0;W1,p(?;RN))∩C0(?T,0;L2(?;RN))be a weak solution of(1.1)inQTunder the assumptions(2.1),(2.3)and(2.5),withQρ(z0)?QTbeing a parabolic cylinder with referencez0=(x0,t0)and 0<ρ≤1.Then,it holds that

    wherec=c(n,N,p,L).

    ProofFor simplicity,we may also omit the reference pointz0ofQρ(z0),Bρ(z0)and Λρ(z0),using insteadQρ,Bρa(bǔ)nd Λρ,respectively,as long as there is no danger of any confusion.Letbe a nonnegative weight function satisfying

    wherecη=cη(n),and de fine

    as a weighted mean ofu(x,t)onBρfor a.e.t∈(?T,0).To begin with,we shall show the following argument for a.e.t,τ∈Λρ:

    wherec=c(n,N,p,L).

    Now,we concentrate our attention on the proof of(4.3)–(4.4).Without loss of generality,we may assume thatt>τ,and letξθ(s)∈((τ,t))be a cut-offfunction,de fined by

    withθ∈(0,(t?τ)/2).We now choose?θ:Rn+2→RNto be a test function in the weak formulation(2.6)with(?θ)i=ηξθand(?θ)j=0 forj/=iandi,j∈{1,...,N},which implies that

    Taking intoaccount the Steklov arguments and the definition of(u)η(t),we first deduce that

    Next,lettingθ→0 in the right side of(4.5),we arrive at

    By virtue of(2.5),(4.6),and noting thatt,τ∈Λρ,we infer that

    Now we focus our attention on estimating the rightmost term in(4.7).Employing an interpolation inequality(G-N-S inequality),it holds that

    where in the last inequality we have taken into account that

    It is clear that the termW1can be split as

    where Λρ=J1∪J2,and

    Thus,we are in a position to obtain

    and,by iteratively estimating,we have

    Plugging(4.10)–(4.12)into(4.8),we conclude that

    Now,combining(4.13)and(4.7),and summing up overi=1,...,N,we have(4.3).Hence,it remains to prove(4.4).

    Observing that

    and making use of(4.6),we infer that

    Applying(2.1)and Lemma 2.3,for the termK1we have

    In addition,making use of(2.3)and Jensen’s inequality,the termsK2andK3can be estimated as

    For the termK4,in view of(4.6)–(4.7)and(4.13),we have

    Inserting(4.15)–(4.17)into(4.14),and summing up overi=1,...,N,we get(4.4).

    Now,we turn to proving(4.1)–(4.2).First,appealing to(4.3),Poincar’s inequality with a weighed function,and Hlder’s inequality,we infer that

    where=(x,τ)andc=c(n,N,p,L).Thus,we have(4.1).

    withc=c(n,N,p,L),where in the second inequality,we have used Poincar’s inequality for a.e.t∈Λρa(bǔ)nd the fact that

    Taking into account the concavity ofω(·),and(4.1)forq=2,implies that

    Thus,combining(4.18)and(4.19),we are in a position to obtain

    whence we get(4.2).

    5 Partial Regularity of u

    According to Lemma 3.1,we now de fine some excess functionals.For reference pointz0=(x0,t0)∈QT,u∈Lp(?T,0;W1,p(?;RN)),affine functionl:Rn→RN,andl(z)=l(x),in what follows we denote

    and hybrid excess functional

    5.1 Linearization

    The following lemma is a prerequisite for applying theA-caloric approximation technique:

    Then,from weak formulation(2.6),we deduce that

    Now we start to estimateI1–I4.For the termI1,applying(2.4),as well as the Hlder and Young inequalities,we have

    wherec=c(n,p,ν,L).

    wherec=c(n,p,L,ν)andθ2∈(0,1)is the same as withθ1in(4.9).

    Plugging(5.3)–(5.5)into(5.2),we have

    wherec=c(n,p,ν,L).By a general scaling argument,we have(5.1).

    5.2 Decay estimate

    The aim of this section is to provide a decay estimate of Φλj(z0,?jρ,lj),withλj,?,ljto be speci fied in later,from which we can obtain a Campanato type estimate of a weak solutionuto(1.1),then derive the regularity ofuby a standard argument from Campanato space.First,we introduce a standard estimate for a weak solution to linear parabolic systems with constant coefficients(see[15]Lemma 5.1),which is necessary in the proof of the decay estimate of‖u?(u)z0,r‖L2(Qr(z0)).

    Lemma 5.2Leth∈L2(Λρ(t0);W1,2(Bρ(x0);RN))be a weak solution inQρ(z0)of the following linear parabolic system with constant coefficients:

    for any∈RNn.Then,his smooth inQρ(z0),and for alls≥1,θ∈(0,1],it holds that

    for a constantcpa=cpa(n,N,L/ν)≥1.

    TheA-caloric approximation lemma(Lemma 2.7)allows one to translate these decay estimates onhinto a certain excess functional.This eventually allows one to derive the partial regularity ofu.Based on Lemmas 5.1–5.2,we have the following result:

    and the smallness condition

    and for anyr∈(0,ρ],it holds that

    wherec=c(n,N,p,ν,L,H,α).

    ProofIn virtue of(3.1)we can see that

    wherec=c(n,p,ν,L),and.At this stage,by Lemma 5.1,Lemma 5.2 and an iteration argument,one can prove(5.7)–(5.11);the process is similar to the proof of main theorem in[11],here we just skip it.

    According to Lemma 4.1 and Lemma 5.3,we now are able to prove Theorem 1.1.

    Proof of Theorem 1.1Letz0∈QT(Σ1∪Σ2).Then by the de finitions of Σ1and Σ2,there exist some constantsε2∈(0,1],M0≥1 such that

    Now,in virtue of(2.12),(5.13),(5.14)and(4.1),we are in a position to obtain

    Sinceε2≤1≤M0,the previous inequality implies that

    Furthermore,by the minimality oflz0,ρ,(4.2)and(5.13)–(5.14),we can see that

    withc=c(n,N,p,L).

    Appealing to(5.15)–(5.16),for suitably smallε2∈(0,1),we can deduce the existence ofH≥1 and 0<ρ≤ρ0(H)such thatQ2ρ(z0)?QT,and at this stage,we further obtain that

    Note that the mappings

    are continuous.Thus,there existssuch that

    withc=c(n,N,p,ν,L,H,α).By the Campanato space argument(see[18]),we haveu∈C0;α,α/2in a neighborhood of any pointz0∈QT(Σ1∪Σ2),and we further obtain|Σ1∪Σ2|=0,which means|Q0|=|QT|.

    6 Estimate of the Singular Set

    In this section,with Theorem 1.1 in hand,we proceed to prove Theorem 1.2.This will be achieved by combining the fractional time and fractional space differentiability of the gradient of weak solutionuto(1.1).

    6.1 Fractional time differentiability

    In this subsection,we aim to prove the fractional time differentiability ofDuforp=2.First,we estimate theL2-norm ofτhu.

    ProofFirst,we restrict ourselves to the caseh>0.Choosingη2τhuas a test function in the Steklov averages formulation of(2.7),and integrating with respect tot∈(t0,t1),we deduce

    Taking into account(2.1),(2.3)and Young’s inequality,it holds that

    For the termI2,from Hlder’s inequality,it follows that

    Similarly,forp=2,by applying(4.8)–(4.13),the termI3can be estimated as

    Finally,we note that the estimation in the other one is the same usinguˉhinstead ofuh.Now,inserting(6.3)–(6.5)into(6.2),we obtain

    wherec=c(L).Thus,we have(6.1).

    From Lemma 6.1,we have the following direct result:

    Remark 6.2Letu∈L∞(?T,0;L2(?;RN))∩L2(?T,0;H1(?;RN))be a weak solution to(1.1).Let(t0,t1)??(?T,0)and ?′???.Then,whenever,it holds that

    wherec=c(L,dist(?′,??)).

    Based on Lemma 6.1,we now propose to estimate the time derivative ofDu,which will be regarded as the starting point of an iteration process.

    ProofWe chooseχε:R[0,1]to be a continuous affine function satisfying

    approximating the characteristic function of(?∞,l)withl∈(?T,0).Letξ(t)andη(x)be cut-offfunctions in the time and space variables,respectively,such that

    We takeφ(x,t)=τh(η2(x)ξ2(t)χε(t)τ?huλ(x,t))as a test function in(2.7),and integrating in time respect to(?T,0)yields that

    We first note that

    This,combined with(6.9),implies that

    Recalling the de finition ofχε,we find that

    Moreover,note thatH4=0.Then,by passing to the limit forλ?→0 in(6.8),we obtain

    By the aid of(2.8),it holds that

    wherec1depends onν.Furthermore,applying(2.3),(1.4)and Young’s inequality,it holds that

    For the termH51,making use of(6.6),we obtain

    Applying the properties ofξ(t)andη(x),and lettingε?→0 andl?→0,we have(6.7).

    According to(6.7),we can re-estimate the termI2in(6.4)as follows:

    From(6.15),and noting that|h|<1,we can rewrite(6.6)as

    wherec2=c2(L,ν,dist(supp(η),??)).

    Similarly,in the proof of Lemma 6.3,we can use(6.16)instead of(6.6)to arrive at

    As with the estimation of(6.15)–(6.17),by an iteration argument,we finally obtain

    6.2 Fractional space differentiability

    In this subsection,we propose to deduce the fractional space differentiability of the gradient of the weak solutionuto(1.1).To begin with,we discuss the general case forp≥2.

    Lemma 6.4Let ??Rn(n=2,3)be a bounded domain.Letu∈L∞(?T,0;L2(?;RN))∩Lp(?T,0;W1,p(?;RN))(p≥2)be a weak solution to(1.1).Then,we have

    and for anyQ2ρ(z0)?QT,it holds that

    ProofFirst,replace the test function?in(2.6)byτ?h?with

    Then we infer that

    By approximation,we choose?≡φτhuin the previous equation with.Thus,we are in a position to obtain that

    Now,let us chooseφ(x,t)=(t)χ(t)ψ2(x)withχ∈W1,∞((?T,0)),χ(?T)=0,?tχ≥0 and 0≤χ≤1,,0≤ψ≤1 andχˉ:(?T,0)?→R being a Lipschitz continuous function,de fined by

    with?T0.Lettingδ?→0,(6.21)then becomes

    whereQt0:=Bρ(x0)×(?T,t0).

    We observe that

    Then,applying(2.2)and Lemma 2.3,we can find that

    Here we have used abbreviated notation

    Thus,we conclude that

    Moreover,from(2.3)and(1.4),it follows that

    Using(2.1),we further obtain that

    Therefore,applying(6.25)and Young’s inequality,we have

    Furthermore,by virtue of(2.3),it holds that

    wherec=c(n,L,p,ν).

    LetQρ(z0)?QTwithρsuitably small such that 2ρ

    Note that,for anyθ∈(0],the right-most term of(6.28)can be estimated as

    Employing(6.28)and(6.29),we finally obtain

    By Lemma 2.2,the previous inequality implies that

    Dividing both sides in(6.30)by|h|2θ,we can see that

    Using the standard estimate for difference quotients and letting|h|?→0,we then have(6.20)and(6.19).

    Proof of Theorem 1.2Taking into account Proposition 2.4,(2.9)and Section 6.1,forp=2,we have proved the fractional time differentiability ofDu.Hence,what remains is to prove the fractional space differentiability ofDu.From(6.20)we can see that,forp=2,

    This,combined with(2.10),implies the fractional space differentiability ofDu.Finally,applying Lemma 2.5,we obtain(1.5).Thus,we have completed the proof of Theorem 1.2.

    1024视频免费在线观看| 久久人人爽av亚洲精品天堂| 高清欧美精品videossex| 老司机靠b影院| 男女下面进入的视频免费午夜 | 色老头精品视频在线观看| 色哟哟哟哟哟哟| 80岁老熟妇乱子伦牲交| 久久人妻熟女aⅴ| aaaaa片日本免费| 久久午夜综合久久蜜桃| 亚洲国产精品合色在线| 在线观看一区二区三区激情| 国产精品自产拍在线观看55亚洲| 亚洲色图 男人天堂 中文字幕| 久久久久精品国产欧美久久久| 一本大道久久a久久精品| 欧美+亚洲+日韩+国产| 99国产精品免费福利视频| 久久精品91无色码中文字幕| 亚洲精品国产色婷婷电影| 亚洲一区中文字幕在线| 欧美黑人精品巨大| 中国美女看黄片| 老司机福利观看| 女人爽到高潮嗷嗷叫在线视频| 一边摸一边做爽爽视频免费| 深夜精品福利| 国产熟女午夜一区二区三区| 免费在线观看日本一区| 成人国产一区最新在线观看| 久久中文字幕一级| 色婷婷av一区二区三区视频| 亚洲中文日韩欧美视频| 男女午夜视频在线观看| 国内毛片毛片毛片毛片毛片| 精品久久久久久电影网| 精品欧美一区二区三区在线| 好看av亚洲va欧美ⅴa在| 大型黄色视频在线免费观看| 国产精品二区激情视频| 久久精品亚洲av国产电影网| 亚洲成a人片在线一区二区| 久久久久九九精品影院| 人人澡人人妻人| 女人被狂操c到高潮| 视频区图区小说| 婷婷丁香在线五月| 国产亚洲欧美精品永久| 黄色a级毛片大全视频| 午夜91福利影院| 欧美精品亚洲一区二区| 亚洲 欧美 日韩 在线 免费| 久久国产精品影院| 悠悠久久av| 999久久久国产精品视频| av中文乱码字幕在线| 在线观看免费视频日本深夜| 一进一出抽搐gif免费好疼 | 国产精品免费一区二区三区在线| 国产深夜福利视频在线观看| 麻豆久久精品国产亚洲av | 制服诱惑二区| 久9热在线精品视频| 操美女的视频在线观看| 欧美日韩视频精品一区| 如日韩欧美国产精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人av教育| 露出奶头的视频| 十八禁网站免费在线| 国产精品二区激情视频| 91麻豆精品激情在线观看国产 | 国产日韩一区二区三区精品不卡| 中文字幕最新亚洲高清| 激情在线观看视频在线高清| 一级a爱片免费观看的视频| 亚洲第一青青草原| 99在线视频只有这里精品首页| 亚洲精品av麻豆狂野| 国产欧美日韩一区二区三区在线| 欧美日韩亚洲综合一区二区三区_| 99久久精品国产亚洲精品| 亚洲国产欧美网| 久久久久亚洲av毛片大全| 露出奶头的视频| 女人精品久久久久毛片| 欧美不卡视频在线免费观看 | 一级毛片精品| 亚洲自拍偷在线| 国产亚洲精品久久久久5区| 日本撒尿小便嘘嘘汇集6| 一本大道久久a久久精品| 巨乳人妻的诱惑在线观看| 国产成人精品无人区| 熟女少妇亚洲综合色aaa.| 在线观看66精品国产| 他把我摸到了高潮在线观看| 国产极品粉嫩免费观看在线| 丝袜美足系列| 国产一区在线观看成人免费| www.www免费av| 我的亚洲天堂| 涩涩av久久男人的天堂| 亚洲黑人精品在线| 50天的宝宝边吃奶边哭怎么回事| 女人高潮潮喷娇喘18禁视频| 母亲3免费完整高清在线观看| 级片在线观看| 欧美亚洲日本最大视频资源| 国产精品自产拍在线观看55亚洲| 老司机午夜福利在线观看视频| 一本大道久久a久久精品| 男人舔女人下体高潮全视频| 大香蕉久久成人网| 91九色精品人成在线观看| 久久国产乱子伦精品免费另类| 亚洲av第一区精品v没综合| 老司机福利观看| 亚洲专区国产一区二区| 成人免费观看视频高清| 欧美日韩亚洲国产一区二区在线观看| 黄色成人免费大全| 国产午夜精品久久久久久| 热99re8久久精品国产| 一级毛片高清免费大全| 一级a爱片免费观看的视频| 久久久久久久久久久久大奶| 免费观看精品视频网站| 亚洲国产精品999在线| 大型av网站在线播放| 免费av中文字幕在线| 亚洲欧美激情在线| 国产精品爽爽va在线观看网站 | 日日干狠狠操夜夜爽| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人免费电影在线观看| 久久人妻福利社区极品人妻图片| 亚洲欧洲精品一区二区精品久久久| 夜夜看夜夜爽夜夜摸 | 久久国产精品人妻蜜桃| 97碰自拍视频| 视频在线观看一区二区三区| 一级毛片高清免费大全| 天天影视国产精品| 欧美人与性动交α欧美精品济南到| 麻豆一二三区av精品| 国产精品久久久av美女十八| 一区在线观看完整版| 欧美日韩国产mv在线观看视频| 天天影视国产精品| 亚洲五月婷婷丁香| 一本综合久久免费| 午夜福利一区二区在线看| 国产精华一区二区三区| 亚洲自偷自拍图片 自拍| 男女下面进入的视频免费午夜 | 桃色一区二区三区在线观看| 精品少妇一区二区三区视频日本电影| 久久久久久大精品| 精品久久久久久成人av| 不卡一级毛片| 久久中文字幕人妻熟女| 校园春色视频在线观看| 不卡一级毛片| 51午夜福利影视在线观看| 精品久久久久久成人av| 久久欧美精品欧美久久欧美| 在线看a的网站| 国内久久婷婷六月综合欲色啪| 悠悠久久av| 午夜亚洲福利在线播放| 久久久久精品国产欧美久久久| 纯流量卡能插随身wifi吗| 欧美激情高清一区二区三区| 精品一区二区三区av网在线观看| 亚洲欧美日韩无卡精品| 大香蕉久久成人网| 亚洲一区中文字幕在线| 90打野战视频偷拍视频| 高清在线国产一区| 亚洲专区中文字幕在线| www.www免费av| 亚洲精品av麻豆狂野| 成人三级黄色视频| 99riav亚洲国产免费| 色综合婷婷激情| 国产又色又爽无遮挡免费看| 亚洲人成伊人成综合网2020| 午夜两性在线视频| 叶爱在线成人免费视频播放| 久久青草综合色| 久久久国产欧美日韩av| 欧美日韩视频精品一区| 日韩免费高清中文字幕av| 黄色 视频免费看| av国产精品久久久久影院| 久久久国产成人免费| 视频在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| 亚洲欧美激情综合另类| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久久久久免费视频 | 国产成+人综合+亚洲专区| 最好的美女福利视频网| 一进一出抽搐gif免费好疼 | 黄色毛片三级朝国网站| 色综合婷婷激情| 精品国产超薄肉色丝袜足j| 欧美日韩精品网址| 日韩精品青青久久久久久| videosex国产| 亚洲黑人精品在线| 久久精品亚洲精品国产色婷小说| 天堂√8在线中文| www国产在线视频色| 麻豆久久精品国产亚洲av | 热re99久久精品国产66热6| 天天添夜夜摸| 淫妇啪啪啪对白视频| 国产亚洲精品第一综合不卡| 操出白浆在线播放| 在线观看免费视频日本深夜| 大型av网站在线播放| 久久 成人 亚洲| 婷婷六月久久综合丁香| 十分钟在线观看高清视频www| 激情视频va一区二区三区| 51午夜福利影视在线观看| 精品国内亚洲2022精品成人| 亚洲激情在线av| 极品人妻少妇av视频| 亚洲五月色婷婷综合| 国产精品爽爽va在线观看网站 | 麻豆国产av国片精品| 91九色精品人成在线观看| 国产精品免费一区二区三区在线| 亚洲国产中文字幕在线视频| 天天躁夜夜躁狠狠躁躁| 久久性视频一级片| 侵犯人妻中文字幕一二三四区| 露出奶头的视频| 国产日韩一区二区三区精品不卡| 男女做爰动态图高潮gif福利片 | 91老司机精品| 国产又爽黄色视频| 日本vs欧美在线观看视频| 亚洲熟女毛片儿| 色综合站精品国产| 久久伊人香网站| 久久欧美精品欧美久久欧美| 91国产中文字幕| 女性被躁到高潮视频| 19禁男女啪啪无遮挡网站| 高清av免费在线| 亚洲 国产 在线| 桃红色精品国产亚洲av| 侵犯人妻中文字幕一二三四区| 叶爱在线成人免费视频播放| 国产成人精品久久二区二区免费| 99在线人妻在线中文字幕| 国内久久婷婷六月综合欲色啪| 91成人精品电影| 制服诱惑二区| 日本黄色视频三级网站网址| 成人亚洲精品av一区二区 | 一进一出抽搐gif免费好疼 | 日韩欧美国产一区二区入口| 亚洲国产欧美一区二区综合| 美国免费a级毛片| 中文字幕人妻丝袜一区二区| 日本三级黄在线观看| 日本五十路高清| 久久九九热精品免费| 午夜激情av网站| 成在线人永久免费视频| 久久久久久久久免费视频了| 国产免费av片在线观看野外av| 99久久精品国产亚洲精品| 丝袜在线中文字幕| 在线观看免费日韩欧美大片| 一边摸一边做爽爽视频免费| 亚洲五月天丁香| 免费在线观看日本一区| 99国产精品免费福利视频| svipshipincom国产片| 亚洲国产精品sss在线观看 | 亚洲av五月六月丁香网| 天堂中文最新版在线下载| 丁香六月欧美| 宅男免费午夜| 国产av一区在线观看免费| 亚洲成人免费av在线播放| 久久香蕉激情| 亚洲国产欧美日韩在线播放| 如日韩欧美国产精品一区二区三区| 亚洲色图av天堂| 叶爱在线成人免费视频播放| 国产熟女xx| 久久久水蜜桃国产精品网| 真人做人爱边吃奶动态| 一进一出好大好爽视频| 多毛熟女@视频| 亚洲少妇的诱惑av| 国产国语露脸激情在线看| 亚洲成人免费电影在线观看| 嫁个100分男人电影在线观看| 久久久久国产精品人妻aⅴ院| 淫秽高清视频在线观看| 黄色毛片三级朝国网站| 国产亚洲欧美在线一区二区| xxxhd国产人妻xxx| 欧美日本中文国产一区发布| 精品国内亚洲2022精品成人| 99在线人妻在线中文字幕| 国产aⅴ精品一区二区三区波| 国产真人三级小视频在线观看| 免费在线观看亚洲国产| 人人妻,人人澡人人爽秒播| 欧美色视频一区免费| 天堂俺去俺来也www色官网| 国产主播在线观看一区二区| xxxhd国产人妻xxx| 免费观看精品视频网站| 高清在线国产一区| 一本大道久久a久久精品| 亚洲 国产 在线| 久久精品91蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美日韩高清在线视频| 一进一出好大好爽视频| 99久久综合精品五月天人人| 亚洲一区中文字幕在线| 亚洲国产欧美日韩在线播放| 香蕉国产在线看| 中国美女看黄片| 桃红色精品国产亚洲av| 两性夫妻黄色片| 老司机午夜十八禁免费视频| 99久久99久久久精品蜜桃| 99国产精品免费福利视频| 一级片'在线观看视频| 涩涩av久久男人的天堂| av片东京热男人的天堂| av天堂在线播放| 日韩人妻精品一区2区三区| 99国产精品一区二区三区| 99精国产麻豆久久婷婷| 成人精品一区二区免费| 国产成人精品在线电影| netflix在线观看网站| 欧美黑人欧美精品刺激| 国产精品一区二区免费欧美| 少妇被粗大的猛进出69影院| 在线播放国产精品三级| 日韩欧美一区二区三区在线观看| 美女扒开内裤让男人捅视频| 国产高清激情床上av| 精品欧美一区二区三区在线| 国产又爽黄色视频| 欧美一级毛片孕妇| 久久国产精品男人的天堂亚洲| 免费不卡黄色视频| 村上凉子中文字幕在线| 性欧美人与动物交配| 亚洲伊人色综图| 日本一区二区免费在线视频| 亚洲全国av大片| 亚洲色图 男人天堂 中文字幕| 亚洲欧美日韩另类电影网站| a级毛片在线看网站| 日韩精品中文字幕看吧| 久久精品国产亚洲av高清一级| 国产伦一二天堂av在线观看| 免费观看人在逋| 咕卡用的链子| 久久久国产精品麻豆| 亚洲精品av麻豆狂野| 国产成人av激情在线播放| 日韩欧美一区二区三区在线观看| 国产日韩一区二区三区精品不卡| 亚洲视频免费观看视频| 正在播放国产对白刺激| 美女高潮喷水抽搐中文字幕| 黄色a级毛片大全视频| 99国产精品免费福利视频| 精品国产乱子伦一区二区三区| 18禁国产床啪视频网站| 国产精品一区二区在线不卡| 国产精品免费一区二区三区在线| 亚洲情色 制服丝袜| 亚洲,欧美精品.| 久久热在线av| 亚洲精品美女久久久久99蜜臀| 国产成人av激情在线播放| 亚洲精品美女久久久久99蜜臀| 看免费av毛片| 日韩三级视频一区二区三区| 色综合婷婷激情| 俄罗斯特黄特色一大片| 日韩精品中文字幕看吧| 丝袜人妻中文字幕| 国产无遮挡羞羞视频在线观看| 亚洲人成电影观看| 精品少妇一区二区三区视频日本电影| 久久久久国内视频| 精品国产超薄肉色丝袜足j| 久久性视频一级片| 国产一区二区三区视频了| 国产av又大| 欧美亚洲日本最大视频资源| 国产欧美日韩综合在线一区二区| 伊人久久大香线蕉亚洲五| 午夜老司机福利片| 色在线成人网| 中出人妻视频一区二区| 黑人巨大精品欧美一区二区mp4| 成人亚洲精品一区在线观看| 国产不卡一卡二| 免费搜索国产男女视频| 国产成人免费无遮挡视频| 18禁观看日本| 亚洲国产欧美一区二区综合| 精品国产乱子伦一区二区三区| 啦啦啦免费观看视频1| 最近最新免费中文字幕在线| 99久久综合精品五月天人人| 不卡一级毛片| av超薄肉色丝袜交足视频| 亚洲精品国产区一区二| av中文乱码字幕在线| 精品福利永久在线观看| 成人影院久久| 免费在线观看影片大全网站| 免费观看人在逋| 精品第一国产精品| 亚洲全国av大片| 国产亚洲欧美在线一区二区| 中出人妻视频一区二区| 一区二区三区激情视频| 国产精品日韩av在线免费观看 | 精品久久久精品久久久| 欧美老熟妇乱子伦牲交| 亚洲成国产人片在线观看| 亚洲成人久久性| 久久99一区二区三区| 看免费av毛片| 国产xxxxx性猛交| 一区在线观看完整版| 欧美性长视频在线观看| 岛国视频午夜一区免费看| 免费不卡黄色视频| 中文亚洲av片在线观看爽| 露出奶头的视频| 国产高清国产精品国产三级| 女人高潮潮喷娇喘18禁视频| 色精品久久人妻99蜜桃| 99久久99久久久精品蜜桃| 1024香蕉在线观看| 桃色一区二区三区在线观看| 国产精品亚洲一级av第二区| 亚洲九九香蕉| 人妻久久中文字幕网| 欧美日韩精品网址| 亚洲久久久国产精品| 国产麻豆69| 啦啦啦在线免费观看视频4| 亚洲熟女毛片儿| 免费观看人在逋| 国内久久婷婷六月综合欲色啪| 成年版毛片免费区| 色综合站精品国产| 天堂影院成人在线观看| 国产精品久久久av美女十八| 国产欧美日韩一区二区精品| 色婷婷久久久亚洲欧美| 国产欧美日韩精品亚洲av| 国产成人啪精品午夜网站| 日本五十路高清| 又大又爽又粗| 美女国产高潮福利片在线看| 国产一区二区激情短视频| 亚洲欧美日韩高清在线视频| 亚洲视频免费观看视频| 丰满人妻熟妇乱又伦精品不卡| 婷婷六月久久综合丁香| www国产在线视频色| 波多野结衣av一区二区av| 老司机午夜十八禁免费视频| 男人舔女人的私密视频| 成人黄色视频免费在线看| 亚洲人成网站在线播放欧美日韩| 夜夜爽天天搞| 国产成+人综合+亚洲专区| 亚洲性夜色夜夜综合| 免费在线观看日本一区| 国产精品免费一区二区三区在线| 亚洲精品国产色婷婷电影| 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产真人三级小视频在线观看| 十分钟在线观看高清视频www| av中文乱码字幕在线| 极品人妻少妇av视频| 欧美+亚洲+日韩+国产| 久久香蕉激情| 国产99白浆流出| 99riav亚洲国产免费| 黄色成人免费大全| 日韩av在线大香蕉| 欧美乱色亚洲激情| 精品国产乱码久久久久久男人| 久久久久久久久中文| 日韩三级视频一区二区三区| 午夜免费鲁丝| 国产欧美日韩精品亚洲av| 91老司机精品| 国产不卡一卡二| 欧洲精品卡2卡3卡4卡5卡区| 在线观看一区二区三区| 亚洲国产中文字幕在线视频| 一级a爱片免费观看的视频| 免费不卡黄色视频| 久久久国产欧美日韩av| 女人精品久久久久毛片| 国产三级在线视频| 精品国产一区二区久久| 成人国产一区最新在线观看| 精品一区二区三区四区五区乱码| 久久久久亚洲av毛片大全| 亚洲成a人片在线一区二区| 人人妻,人人澡人人爽秒播| 国产麻豆69| 国产三级在线视频| 欧美丝袜亚洲另类 | 老司机午夜十八禁免费视频| 日韩精品青青久久久久久| 别揉我奶头~嗯~啊~动态视频| 妹子高潮喷水视频| 欧美乱妇无乱码| 久久婷婷成人综合色麻豆| 69精品国产乱码久久久| 悠悠久久av| 在线观看日韩欧美| 欧美日韩黄片免| 操出白浆在线播放| 自线自在国产av| 久9热在线精品视频| 妹子高潮喷水视频| 亚洲一区二区三区欧美精品| 国产精品一区二区精品视频观看| 交换朋友夫妻互换小说| 午夜激情av网站| 18美女黄网站色大片免费观看| 欧美精品亚洲一区二区| 一级片免费观看大全| 黄色成人免费大全| 一边摸一边抽搐一进一小说| 麻豆成人av在线观看| 又大又爽又粗| 在线观看www视频免费| tocl精华| 欧美一区二区精品小视频在线| 免费在线观看黄色视频的| 91字幕亚洲| aaaaa片日本免费| 亚洲自拍偷在线| 精品日产1卡2卡| av欧美777| 欧美大码av| 日韩欧美三级三区| 国产激情欧美一区二区| 久久久国产精品麻豆| 一本综合久久免费| 99国产精品一区二区蜜桃av| 一级a爱视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 黄网站色视频无遮挡免费观看| 国产色视频综合| 日本免费一区二区三区高清不卡 | 成人18禁在线播放| 日韩欧美三级三区| 日日爽夜夜爽网站| 国产精品av久久久久免费| 国产精品久久久久成人av| 精品福利永久在线观看| 日韩中文字幕欧美一区二区| 欧美人与性动交α欧美精品济南到| 99久久久亚洲精品蜜臀av| 精品熟女少妇八av免费久了| 亚洲伊人色综图| 校园春色视频在线观看| 岛国视频午夜一区免费看| 精品国内亚洲2022精品成人| 成人亚洲精品一区在线观看| 热99国产精品久久久久久7| av网站免费在线观看视频| 夜夜看夜夜爽夜夜摸 | 国产精品野战在线观看 | 香蕉久久夜色| 免费搜索国产男女视频| 激情视频va一区二区三区| 久9热在线精品视频| 女人高潮潮喷娇喘18禁视频| 久久久久国产一级毛片高清牌| 国产蜜桃级精品一区二区三区| 精品国产乱子伦一区二区三区| videosex国产| 亚洲av成人一区二区三| 久久99一区二区三区| 久久精品91蜜桃| 热99re8久久精品国产| 搡老岳熟女国产| 亚洲欧洲精品一区二区精品久久久| 国产一区二区三区综合在线观看|