• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    JULIA LIMITING DIRECTIONS OF ENTIRE SOLUTIONS OF COMPLEX DIFFERENTIAL EQUATIONS?

    2021-09-06 07:55:00王珺

    (王珺)

    School of Mathematical Sciences,Fudan University,Shanghai 200433,China E-mail:majwang@fudan.edu.cn

    Xiao YAO (姚瀟)?

    School of Mathematical Sciences and LPMC,Nankai University,Tianjin 300071,China E-mail:yaoxiao@nankai.edu.cn

    Chengchun ZHANG (張城純)

    School of Mathematical Sciences,Fudan University,Shanghai 200433,China E-mail:18210180014@fudan.edu.cn

    Abstract For entire or meromorphic function f,a value θ∈[0,2π)is called a Julia limiting direction if there is an unbounded sequence{zn}in the Julia set satisfyingOur main result is on the entire solution f of P(z,f)+F(z)fs=0,where P(z,f)isadifferential polynomial of f with entire coefficients of growth smaller than that of the entire transcendental F,with the integer s being no more than the minimum degree of all differential monomials in P(z,f).We observe that Julia limiting directions of f partly come from the directions in which F grows quickly.

    Key words Julia set;meromorphic function;Julia limiting direction;complex differential equations

    1 Introduction and Main Results

    There are a lot of works centered around the dynamics of classes of transcendental functions,such as the Speier class and the Eremenko-Lyubich class.This paper is another contribution in this direction,and we focus on transcendental entire solutions of complex differential equations.For these transcendental solutions,we investigate the geometric property of their Julia sets near∞,which is one of the questions in transcendental iteration theory distinct from the iteration of rational functions.

    Baker[2]observed that,when

    f

    is a transcendental entire function,J(

    f

    )cannot be contained in any finite set of straight lines.However,this is not true for transcendental meromorphic functions,such as J(tan

    z

    )=R.From the viewpoint of angular distribution,Qiao[11]introduced the limiting direction of the Julia set.A value

    θ

    ∈[0

    ,

    2

    π

    )is said to be a limiting direction of the Julia set of

    f

    if there is an unbounded sequence{

    z

    }?J(

    f

    )such that

    For brevity,in this paper we call a limiting direction of the Julia set of

    f

    a Julia limiting direction of

    f

    .We denote by

    L

    (

    f

    )the set of all Julia limiting directions of

    f

    ;it is a non-empty closed set in[0

    ,

    2

    π

    )and will reveal the large-scale geometry property of J(

    f

    ).Since any rational function,as well as any polynomial,can be treated as a map between two Riemann spheres,it makes no sense for us to consider the Julia limiting direction for rational functions.Furthermore,we identify[0

    ,

    2

    π

    )with the circle S:={

    z

    ∈C:|

    z

    |=1}and intervals in[0

    ,

    2

    π

    )with arcs on the circle for convenience.Value distribution theory plays an important role in studying transcendental meromorphic functions,and its standard notations as well as its well-known theorems can be found in[7,8].For example,we denote by

    T

    (

    r,f

    )and

    N

    (

    r,f

    )the characteristic function and the integrated counting function of poles,respectively,with respect to

    f

    .The order

    ρ

    (

    f

    )and the lower order

    μ

    (

    f

    )are de fined by

    For transcendental entire functions,Qiao[11]noticed a relation between the Lebesgue measure of

    L

    (

    f

    )and the growth order of

    f

    .

    Theorem 1.1

    ([11])Let

    f

    be a transcendental entire function of lower order

    μ<

    ∞.Then there exists a closed interval

    I

    ?

    L

    (

    f

    )such that

    where meas(

    I

    )is the Lebesgue measure of the set

    I

    .The condition that

    μ<

    ∞in Theorem 1.1 is necessary,since Baker[2]proved that there exists an entire function

    f

    of in finite lower order with a property implying that

    L

    (

    f

    )is a single point set.Furthermore,Qiao[11]showed that the estimate in Theorem 1.1 is sharp,which is veri fied by modifying functions in the Mittag-Leffler class.Recalling J(tan

    z

    )=R,Theorem 1.1 fails for general meromorphic functions,but under some certain conditions,Theorem 1.1 can be generalized;see[12,21]for the details.For entire functions of in finite lower order,what is the sufficient condition for the existence of the lower bound of meas(

    L

    (

    f

    ))?There are already some considerations regarding solutions of complex differential equations,for example,the linear equations

    (see[9]),and the nonlinear equations,such as Riccati equations

    (see[20]).We only state the result on linear equations(1.2)here.

    Theorem 1.2

    ([9])Suppose that all coefficients of(1.2)are entire functions of finite lower order,that

    a

    is transcendental and that

    T

    (

    r,a

    )=

    o

    (

    T

    (

    r,a

    ))(

    i

    =1

    ,

    2

    ,...,n

    ?1).Then every nonzero solution

    f

    of(1.2)is of in finite lower order,and

    Furthermore,under the hypothesis of Theorem 1.2,there even exists(see[17])

    where

    f

    (

    n

    ∈Z)denote the derivatives for

    n

    ∈N and the anti-derivatives for?

    n

    ∈N,and

    f

    =

    f

    .In addition,a corresponding investigation has been done for equations(1.2)with exponential coefficients[16].However,it is not clear what is behind the inequalities(1.1)and(1.4).Recently,we found out that for the entire function

    f

    ,the direction in which

    f

    grows more quickly than any polynomial is a Julia limiting direction of

    f

    ;see Lemma 2.2 in the next section.We introduce the following concept of transcendental direction to describe these directions in which

    f

    grows quickly:a value

    θ

    ∈[0

    ,

    2

    π

    )is said to be a transcendental direction of

    f

    if there exists an unbounded sequence of{

    z

    }such that

    We use

    TD

    (

    f

    )to denote the union of all transcendental directions;clearly

    TD

    (

    f

    )is a non-empty compact set in[0

    ,

    2

    π

    ).We will see that Julia limiting directions of solutions to(1.2)partly come from the transcendental directions of the dominanting coefficient

    a

    .Furthermore,in this paper,we investigate more general differential equations,which even contain some non-linear differential equations.Before stating our results,we first introduce the terminology of differential polynomials of

    f

    .The differential polynomial

    P

    (

    z,f

    )is a finite sum of differential monomials generated by

    f

    ,that is,

    where the coefficients

    a

    (

    z

    )are meromorphic,and the powers

    n

    ,n

    ,...,n

    are non-negative integers.We use

    γ

    to denote the minimum degree of

    M

    as

    Theorem 1.3

    Suppose that

    s,n

    are integers,

    F

    (

    z

    )is a transcendental entire function of finite lower order,and that

    P

    (

    z,f

    )is a differential polynomial in

    f

    with

    γ

    s

    ,where all coefficients

    a

    (

    j

    =1

    ,

    2

    ,...,l

    )are polynomials if

    μ

    (

    F

    )=0,or all

    a

    (

    j

    =1

    ,

    2

    ,...,l

    )are entire functions and

    ρ

    (

    a

    )

    (

    F

    ).Then,for every nonzero transcendental entire solution

    f

    of the differential equation

    we have

    TD

    (

    f

    )∩

    TD

    (

    F

    )?

    L

    (

    f

    )and

    Clearly,when

    s

    =1

    ,F

    =

    a

    (

    z

    )and

    P

    (

    z,f

    )=

    f

    +

    a

    (

    z

    )

    f

    +

    ...

    +

    a

    (

    z

    )

    f

    ,we immediately obtain the following corollary from Theorem 1.3:

    Corollary 1.4

    Suppose that all coefficients of(1.2)are entire functions of finite lower order,that

    a

    is transcendental and that all

    a

    (

    i

    =1

    ,

    2

    ,...,n

    ?1)are polynomials if

    μ

    (

    a

    )=0,or that all

    a

    (

    i

    =1

    ,

    2

    ,...,n

    ?1)satisfy

    ρ

    (

    a

    )

    (

    a

    ).Then,for every nonzero solution

    f

    of(1.2),we have

    TD

    (

    f

    )∩

    TD

    (

    a

    )?

    L

    (

    f

    )

    ,k

    ∈Z and

    As for the case that

    s

    =0,there is another corollary from Theorem 1.3 which can treat not only the non-homogeneous linear equation corresponding to(1.2)but also the non-linear differential equations

    P

    (

    z,f

    )=

    F

    (

    z

    ).

    Corollary 1.5

    Suppose that

    F

    and

    P

    (

    z,f

    )are de fined as in Theorem 1.3.Then,for every nonzero entire solution

    f

    of the equation

    P

    (

    z,f

    )=

    F

    (

    z

    ),we have

    TD

    (

    f

    )∩

    TD

    (

    F

    )?

    L

    (

    f

    )

    ,n

    ∈Z and(1.7).

    Remark 1.6

    The general Riccati differential equations

    f

    =

    a

    (

    z

    )+

    a

    (

    z

    )

    f

    +

    a

    (

    z

    )

    f

    can be rewritten as

    If

    a

    ,a

    ,a

    are entire functions of finite lower order such that

    ρ

    (

    a

    )

    (

    a

    )and

    ρ

    (

    a

    )

    (

    a

    ),then meas(

    L

    (

    f

    ))≥min{2

    π,π/μ

    (

    a

    )}follows from Corollary 2.Clearly,(1.3)is different from our case of Riccati differential equation.

    The remainder of this paper is organized as follows:in Section 2,we show some basic properties of Julia limiting directions for entire functions,which contain the relation between transcendental directions and Julia limiting directions.The proof of Theorem 1.3 is given in Section 3,and some examples given here.Our method is somewhat different and simpler than that of[9,17].

    2 Basic Property of Julia Limiting Directions

    The relation between

    TD

    (

    f

    )and

    L

    (

    f

    )is important for our proof of Theorem 1.3.Before proving the theorem,we need a result which can be deduced from the proof of[11,Lemma 1]in order to deal with the case that F(

    f

    )contains an angular domain.

    One Friday evening I came home from work to find a big beautiful German shepherd on our doorstep. This wonderful strong animal gave every indication that he intended to enter the house and make it his home. I, however, was wary4. Where did this obviously well-cared-for dog come from? Was it safe to let the children play with a strange dog? Even though he seemed gentle, he still was powerful and commanded respect. The children took an instant liking5 to German and begged me to let him in. I agreed to let him sleep in the basement until the next day, when we could inquire around the neighborhood for his owner. That night I slept peacefully for the first time in many weeks.

    Lemma 2.1

    Let

    f

    be analytic in the angular domain

    Suppose that

    f

    (?(

    z

    ,θ,δ

    ))is contained in a simply connected hyperbolic domain in C.Then

    for any

    δ

    ∈(0

    ).

    Now by Lemma 2.1,we establish the relation between transcendental directions and Julia limiting directions as follows:

    Lemma 2.2

    Let

    f

    be a transcendental entire function.Then

    TD

    (

    f

    )?

    L

    (

    f

    ).

    Proof

    We first treat the case in which F(

    f

    )has a multiply connected component.We claim that in this case,

    L

    (

    f

    )=[0

    ,

    2

    π

    ).Otherwise,there exists one value

    θ

    /∈

    L

    (

    f

    ),so there exist

    ?>

    0

    ,a

    ∈C and arg

    a

    =

    θ

    such that

    Next,we consider the remaining case that all components of the Fatou set are simply connected.For any given value

    θ

    TD

    (

    f

    ),we assume that

    θ

    /∈

    L

    (

    f

    ),so we have ?(

    a,θ,

    2

    ?

    )?F(

    f

    )for two constants

    ?>

    0 and

    a

    with arg

    a

    =

    θ

    .At the same time,there is an unbounded sequence{

    z

    }??(

    a,θ,

    2

    ?

    )such that

    as

    n

    →∞.Clearly,

    f

    (?(

    a,θ,?

    ))is contained in a simply connected hyperbolic domain.By Lemma 2.1,there exist positive constants

    k

    and

    A

    such that

    With Lemma 2.2 in hand,for the entire

    f

    ,we can investigate the Julia limiting directions by first finding the transcendental directions.By the radial growth of

    e

    ,that is,|exp(

    re

    )|=

    e

    ,it is easy to see that

    L

    (sin

    z

    )=

    L

    (cos

    z

    )=[0

    ,

    2

    π

    )since

    TD

    (sin

    z

    )=

    TD

    (cos

    z

    )=[0

    ,

    2

    π

    ).There are a few more examples as follows:

    Example 2.3

    We recall that Mittag-Leffler function

    has the uniform asymptotic behavior[7,Chapter 1,(5.40)]

    From this fact,it follows that

    Example 2.4

    From[19,(6.3.15)],the entire function

    in the angle ?(

    ε,

    2

    π

    ?

    ε

    )={

    z

    :

    ε<

    arg

    z<

    2

    π

    ?

    ε

    }for every positive number

    ε

    .Since

    ε

    is arbitrarily small,it is easy to see that

    L

    (

    f

    )=

    TD

    (

    f

    )=[0

    ,

    2

    π

    ).

    Example 2.5

    By[19,Lemma 7.9],for 1

    /

    2

    <μ<

    1,we know that

    is an entire function,and for a sufficiently small

    ε>

    0,

    uniformly in

    θ

    for|

    θ

    |

    ?

    ε.

    This implies that

    Thus,to measure

    L

    (

    f

    ),one possible way is to estimate the directions in which

    f

    grows quickly.To do this,we recall Baerstein’s result on the spread relation[1],which shows that for

    f

    with not so many poles,log|

    f

    |is‘large enough’on a substantial portion of circles{|

    z

    |=

    r

    }.

    Lemma 2.6

    ([1])Let

    f

    be a transcendental meromorphic function with finite lower order

    μ

    and positive de ficiency

    Clearly,

    E

    (

    f

    )?

    TD

    (

    f

    ),so

    E

    (

    f

    )?

    L

    (

    f

    ),by Lemma 2.2.Next,by Lemma 2.6 and the monotone convergence theorem,we derive the lower bound of meas(

    L

    (

    f

    )).

    Lemma 2.8

    Let

    f

    be a transcendental meromorphic function with finite lower order

    μ

    and

    δ

    (∞

    ,f

    )

    >

    0,and let Λ(

    r

    )be a positive function such that Λ(

    r

    )=

    o

    (

    T

    (

    r,f

    ))and Λ(

    r

    )

    /

    (log

    r

    )→∞as

    r

    →∞.Then,

    Proof It follows from Lemma 2.6 that

    Noting that

    D

    (

    r

    )?

    B

    for each

    n

    ,we get that

    Combining this fact with(2.8)and

    E

    (

    f

    )?

    L

    (

    f

    )yields inequality(2.7).In addition,we easily have the following lemma for

    L

    (

    f

    )∩

    L

    (

    f

    ):

    Lemma 2.9

    Let

    f

    be a transcendental entire function,and let

    n

    be a positive integer.Then

    TD

    (

    f

    )?

    TD

    (

    f

    )and

    TD

    (

    f

    )?

    L

    (

    f

    )∩

    L

    (

    f

    ).

    Proof

    For any given

    θ

    /∈

    TD

    (

    f

    ),it follows from the de finition of transcendental directions that there exist positive

    ?

    and

    K

    such that

    We note the fact that

    where

    c

    is a constant,and the integral path is the segment of a straight line from 0 and

    z

    .From this and(2.9),it is easy to see that|

    f

    (

    z

    )|≤(

    K

    +1)|

    z

    |for all

    z

    ∈?(0

    ,θ,?

    ).Repeating this discussion

    n

    times yields

    This means that

    θ

    /∈

    TD

    (

    f

    )if

    θ

    /∈

    TD

    (

    f

    ),which implies that

    TD

    (

    f

    )?

    TD

    (

    f

    ).By Lemma 2.2,

    TD

    (

    f

    )?

    L

    (

    f

    )and

    TD

    (

    f

    )?

    L

    (

    f

    ),so

    TD

    (

    f

    )?

    L

    (

    f

    )∩

    L

    (

    f

    ).

    3 Proof of Theorem 1.3 and Some Examples

    To prove Theorem 1.3,we still need the Nevanlinna theory in angular domains.For the convenience of the reader,we recall some basic de finitions here(for example see[7,22]).

    Let

    g

    (

    z

    )be an entire function on the closure of ?(

    α,β

    )={

    z

    ∈C:arg

    z

    ∈(

    α,β

    )},where

    β

    ?

    α

    ∈(0

    ,

    2

    π

    ].De fine

    where

    ω

    =

    π/

    (

    β

    ?

    α

    )and

    b

    =|

    b

    |

    e

    are the poles of

    g

    in the closure of ?(

    α,β

    )appearing according to their multiplicities.Nevanlinna’s angular characteristic of

    g

    is de fined by

    and the order of

    S

    (

    r,g

    )is de fined by

    Lemma 3.1

    ([9,Lemma 2.2])Suppose that

    n

    ∈N,and that

    g

    (

    z

    )is analytic in ?(

    α,β

    )with

    ρ

    (

    g

    )

    <

    ∞.Then,for

    ε

    =0,

    outside a set whose Lebesgue measure is zero,where

    and there exist positive constants

    M,K

    only depending on

    g,ε

    ,...,ε

    ,

    ?(

    α,β

    )such that for all

    m

    =1

    ,

    2

    ,...,n

    and

    z

    =

    re

    ∈?(

    α

    ),holds outside an R-set,where

    k

    =

    π/

    (

    β

    ?

    α

    )(

    j

    =1

    ,

    2

    ,...,n

    ).

    Lemma 3.2

    ([22,Theorem 2.5.1])Let

    f

    (

    z

    )be a meromorphic function on ?(

    α

    ?

    ε,β

    +

    ε

    )for

    ε>

    0 and 0

    <α<β<

    2

    π

    .Then

    for

    r>

    1,possibly excepting a set with finite linear measure,and also we have the constant

    K>

    0.

    Proof of Theorem 1.3

    In what follows,we will treat three cases:

    n

    =0

    ,n>

    0 and

    n<

    0.Case 1.We assume that

    n

    =0.For every

    θ

    /∈

    TD

    (

    f

    ),by the de finiti on of transcendental direction,there exist positive

    ?

    and

    K

    such that

    This implies that

    ρ

    (

    f

    )

    <

    ∞.By Lemma 3.1,there are positive

    M

    ,K

    and

    ?

    <?

    such that

    holds for

    z

    ∈?(

    θ,?

    )outside an

    R

    -set

    G

    ,where

    H

    ={

    r

    =|

    z

    |

    ,z

    G

    }is a set of finite Lebesgue measure,and

    m

    =1

    ,

    2

    ,...,k

    .

    We rewrite(1.6)as

    Taking(3.1)and(3.2)into(3.3)yields

    for

    z

    ∈?(

    θ,?

    )outside

    G

    ,where

    n

    +

    n

    +

    ...

    +

    n

    ?

    s

    γ

    ?

    s

    ≥0.When

    μ

    (

    F

    )

    >

    0,we take Λ(

    r

    )=

    r

    with

    for a subsequence{

    r

    }of{

    r

    }.

    For any given

    taking(3.6)into(3.4)yields

    It follows from the de finition of order by maximum modulus that the above inequality implies that

    This is an contradiction,which means that

    E

    (

    F

    )

    TD

    (

    f

    )=?

    ,

    so,by Lemma 2.2,

    At the same time,

    E

    (

    F

    )?

    TD

    (

    F

    ).Therefore,we have

    and(1.7)follows from(3.5).

    Case 2.We assume that

    n>

    0.It follows from Lemma 2.9 that

    TD

    (

    F

    )∩

    TD

    (

    f

    )?

    TD

    (

    F

    )∩

    TD

    (

    f

    ),thus

    by

    E

    (

    F

    )?

    TD

    (

    f

    ),which similarly leads to(1.7).Case 3.We assume that

    n<

    0.For

    θ

    /∈

    TD

    (

    f

    ),we know that

    where

    ?>

    0 and

    K

    >

    0.Thus,

    S

    (

    r,f

    )=

    O

    (1),so

    ρ

    (

    f

    )

    <

    ∞.Then,by Lemma 3.1,there are positive

    M

    ,K

    and

    ?

    <?

    such that

    holds for

    z

    ∈?(

    θ,?

    )outside an

    R

    -set

    G

    ,where

    H

    ={

    r

    =|

    z

    |

    ,z

    G

    }is of finite Lebesgue measure.It follows from Lemma 3.2 that

    with

    nε<?/

    2.Repeating this discussion

    n

    times yields that

    At the same time,by Lemmas 2.6 and 2.8,and Remark 2.7,there exists an unbound sequence{

    r

    }such that all

    r

    /∈

    H

    H

    ,and for

    θ

    E

    (

    F

    ),we have(3.5)and(3.6),where Λ(

    r

    )is de fined as in Case 1.We rewrite(1.6)as

    For

    θ

    E

    (

    F

    )

    TD

    (

    f

    ),substituting(3.2),(3.6),(3.7)and(3.8)into the above equation yields

    In a fashion similar to Case 1,this is impossible.This means that

    E

    (

    F

    )

    TD

    (

    f

    )=?,so,by Lemma 2.2,

    Therefore,we have

    and(1.7)follows from(3.5)again.

    This completes the proof of Theorem 1.3.

    Remark 3.3

    From the proof of Theorem 1.3,we know that

    Finally,we give some examples for applications of Theorem 1.3.

    Example 3.4

    The solutions of the Mathieu differential equation

    Since the set of transcendental directions is closed,we deduce that

    Example 3.5

    Every non-zero solution of the equation

    Example 3.7

    Every entire solution of the equation satis fies[0

    ,

    2

    π

    )=

    L

    (

    f

    ),since

    久久中文看片网| 在线观看舔阴道视频| 欧美色视频一区免费| 五月伊人婷婷丁香| 欧美激情久久久久久爽电影| 在线播放国产精品三级| 最近最新中文字幕大全免费视频| 日本黄大片高清| 久久国产精品影院| 精品久久久久久久人妻蜜臀av| 欧美一级毛片孕妇| 给我免费播放毛片高清在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲精品色激情综合| 国产精品久久久av美女十八| 99久久久亚洲精品蜜臀av| 少妇熟女aⅴ在线视频| 成人一区二区视频在线观看| 琪琪午夜伦伦电影理论片6080| 国内揄拍国产精品人妻在线| 国产极品精品免费视频能看的| 在线十欧美十亚洲十日本专区| 黄色片一级片一级黄色片| 色精品久久人妻99蜜桃| 啪啪无遮挡十八禁网站| 精品一区二区三区四区五区乱码| 熟女少妇亚洲综合色aaa.| 啦啦啦观看免费观看视频高清| 搡老熟女国产l中国老女人| 老司机深夜福利视频在线观看| 亚洲专区国产一区二区| 黄色 视频免费看| 午夜免费成人在线视频| 非洲黑人性xxxx精品又粗又长| 成人鲁丝片一二三区免费| 精品久久久久久成人av| 9191精品国产免费久久| 亚洲色图av天堂| 黄色成人免费大全| 男人舔奶头视频| 日本 av在线| 99在线人妻在线中文字幕| 18禁美女被吸乳视频| 两人在一起打扑克的视频| 丰满人妻熟妇乱又伦精品不卡| 国产av麻豆久久久久久久| 757午夜福利合集在线观看| www日本在线高清视频| 看免费av毛片| 在线a可以看的网站| 麻豆成人av在线观看| 老熟妇乱子伦视频在线观看| 国产视频一区二区在线看| 少妇的逼水好多| 成人高潮视频无遮挡免费网站| 久久久久国产精品人妻aⅴ院| 亚洲精品在线美女| 在线观看免费视频日本深夜| 中文资源天堂在线| 黄色丝袜av网址大全| 99久久综合精品五月天人人| 真实男女啪啪啪动态图| x7x7x7水蜜桃| 俺也久久电影网| 性色avwww在线观看| 麻豆av在线久日| 亚洲国产欧美一区二区综合| 啦啦啦免费观看视频1| 亚洲 欧美 日韩 在线 免费| 欧美高清成人免费视频www| 国产在线精品亚洲第一网站| 国产视频内射| 十八禁人妻一区二区| 日本免费a在线| 亚洲成人久久性| 亚洲天堂国产精品一区在线| 国产精华一区二区三区| 哪里可以看免费的av片| 草草在线视频免费看| 午夜a级毛片| 亚洲片人在线观看| 色综合站精品国产| 在线观看免费午夜福利视频| 成人鲁丝片一二三区免费| 最近在线观看免费完整版| 91av网站免费观看| 日韩 欧美 亚洲 中文字幕| 亚洲专区国产一区二区| 悠悠久久av| 黄色成人免费大全| 白带黄色成豆腐渣| 国内精品一区二区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产综合久久久| 国产免费男女视频| 婷婷精品国产亚洲av在线| av欧美777| 天堂√8在线中文| 亚洲av日韩精品久久久久久密| 亚洲熟妇熟女久久| 美女大奶头视频| 成年女人看的毛片在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 中文字幕精品亚洲无线码一区| 非洲黑人性xxxx精品又粗又长| 久久久久性生活片| 三级毛片av免费| x7x7x7水蜜桃| 黄色片一级片一级黄色片| 色尼玛亚洲综合影院| 日韩国内少妇激情av| 好男人电影高清在线观看| 99re在线观看精品视频| 午夜亚洲福利在线播放| 女人被狂操c到高潮| 啦啦啦韩国在线观看视频| 欧美不卡视频在线免费观看| 亚洲专区中文字幕在线| 亚洲av成人av| 麻豆国产av国片精品| 中文字幕最新亚洲高清| 日韩精品中文字幕看吧| 亚洲 国产 在线| 深夜精品福利| 亚洲国产欧美一区二区综合| 黄色片一级片一级黄色片| 91老司机精品| 我的老师免费观看完整版| 国产亚洲欧美在线一区二区| 色av中文字幕| 天堂影院成人在线观看| 日韩有码中文字幕| 搡老妇女老女人老熟妇| 久久这里只有精品19| 免费在线观看亚洲国产| 看免费av毛片| 国产乱人视频| 亚洲av美国av| 国产伦人伦偷精品视频| 成年免费大片在线观看| 亚洲国产日韩欧美精品在线观看 | 欧美激情在线99| 免费看日本二区| 色老头精品视频在线观看| 国产精品久久久av美女十八| 久久中文看片网| а√天堂www在线а√下载| 俺也久久电影网| 亚洲人与动物交配视频| 国产成人aa在线观看| 特大巨黑吊av在线直播| 亚洲欧洲精品一区二区精品久久久| 免费一级毛片在线播放高清视频| 免费看光身美女| 婷婷精品国产亚洲av| 伊人久久大香线蕉亚洲五| 亚洲成人中文字幕在线播放| 国产欧美日韩精品亚洲av| 少妇裸体淫交视频免费看高清| 精品国产乱码久久久久久男人| a级毛片a级免费在线| 精品久久久久久久末码| 别揉我奶头~嗯~啊~动态视频| 国产亚洲欧美98| 熟女少妇亚洲综合色aaa.| 日本三级黄在线观看| 亚洲国产精品久久男人天堂| 最新在线观看一区二区三区| 最新在线观看一区二区三区| 99久国产av精品| 天堂影院成人在线观看| 国产1区2区3区精品| 人妻夜夜爽99麻豆av| 精品乱码久久久久久99久播| cao死你这个sao货| 色尼玛亚洲综合影院| 国产黄片美女视频| 91av网一区二区| 精品国产乱码久久久久久男人| 日本撒尿小便嘘嘘汇集6| 亚洲在线自拍视频| 亚洲国产高清在线一区二区三| 欧美一区二区精品小视频在线| 欧美在线黄色| 男女午夜视频在线观看| 悠悠久久av| 国产一级毛片七仙女欲春2| 99国产精品99久久久久| 天堂av国产一区二区熟女人妻| 国产成人av激情在线播放| 啦啦啦韩国在线观看视频| 黑人操中国人逼视频| 成人高潮视频无遮挡免费网站| 国产视频一区二区在线看| 国产亚洲av高清不卡| 国产一区二区在线观看日韩 | 一级毛片精品| 97碰自拍视频| or卡值多少钱| 国产亚洲欧美98| 欧美高清成人免费视频www| 久久欧美精品欧美久久欧美| 国产精品自产拍在线观看55亚洲| 久久久久国产一级毛片高清牌| 99久久99久久久精品蜜桃| 我的老师免费观看完整版| 亚洲精品色激情综合| 成年人黄色毛片网站| 欧美大码av| 国产精品一区二区三区四区免费观看 | 99re在线观看精品视频| 夜夜爽天天搞| xxx96com| 日韩免费av在线播放| 久久精品综合一区二区三区| 久久草成人影院| 国产亚洲精品综合一区在线观看| 男女午夜视频在线观看| 久久中文字幕一级| 国产精品永久免费网站| 亚洲熟女毛片儿| 国内揄拍国产精品人妻在线| 国产成人影院久久av| 亚洲av电影不卡..在线观看| 女同久久另类99精品国产91| 精品乱码久久久久久99久播| 后天国语完整版免费观看| 怎么达到女性高潮| 国产极品精品免费视频能看的| 天堂√8在线中文| 国产成人av教育| 久久久久免费精品人妻一区二区| avwww免费| 亚洲五月天丁香| 黄色丝袜av网址大全| 日本黄色视频三级网站网址| 99在线人妻在线中文字幕| 热99re8久久精品国产| 一级毛片精品| 精品电影一区二区在线| 天天添夜夜摸| 欧美丝袜亚洲另类 | 又爽又黄无遮挡网站| 好看av亚洲va欧美ⅴa在| 小说图片视频综合网站| 黄色女人牲交| 色综合欧美亚洲国产小说| 黄色日韩在线| 国产午夜精品久久久久久| bbb黄色大片| 精品久久久久久久人妻蜜臀av| 亚洲专区国产一区二区| av中文乱码字幕在线| 90打野战视频偷拍视频| 久久精品91蜜桃| 久久天堂一区二区三区四区| 99精品久久久久人妻精品| 成人欧美大片| av天堂在线播放| 老汉色av国产亚洲站长工具| 久久草成人影院| 国产精品1区2区在线观看.| 他把我摸到了高潮在线观看| 午夜激情欧美在线| 亚洲自偷自拍图片 自拍| 无遮挡黄片免费观看| 一个人免费在线观看电影 | 亚洲专区国产一区二区| 变态另类丝袜制服| 成人鲁丝片一二三区免费| 婷婷亚洲欧美| 久久中文看片网| 一本一本综合久久| 一级毛片精品| 在线免费观看的www视频| 成人av在线播放网站| 免费一级毛片在线播放高清视频| 嫩草影视91久久| 免费观看人在逋| 欧美国产日韩亚洲一区| 美女大奶头视频| 精品无人区乱码1区二区| 丰满人妻一区二区三区视频av | 亚洲美女视频黄频| 真人一进一出gif抽搐免费| h日本视频在线播放| 91av网站免费观看| 91九色精品人成在线观看| 国产黄a三级三级三级人| 亚洲欧洲精品一区二区精品久久久| 成人三级黄色视频| 夜夜夜夜夜久久久久| 身体一侧抽搐| 给我免费播放毛片高清在线观看| 又紧又爽又黄一区二区| 欧美xxxx黑人xx丫x性爽| 中文资源天堂在线| 国产精品自产拍在线观看55亚洲| 亚洲av片天天在线观看| 色综合站精品国产| 夜夜躁狠狠躁天天躁| 精品国产三级普通话版| 特大巨黑吊av在线直播| 国产真人三级小视频在线观看| 午夜激情欧美在线| 又粗又爽又猛毛片免费看| 美女cb高潮喷水在线观看 | 99精品久久久久人妻精品| 日韩中文字幕欧美一区二区| 嫁个100分男人电影在线观看| 在线十欧美十亚洲十日本专区| 国产精品自产拍在线观看55亚洲| 亚洲成av人片在线播放无| 女生性感内裤真人,穿戴方法视频| 天堂影院成人在线观看| 香蕉av资源在线| 色综合欧美亚洲国产小说| 国产野战对白在线观看| 欧美黄色淫秽网站| 天天躁狠狠躁夜夜躁狠狠躁| 女人被狂操c到高潮| 人人妻,人人澡人人爽秒播| 麻豆国产av国片精品| 亚洲 欧美 日韩 在线 免费| 国产成人影院久久av| 亚洲欧美精品综合一区二区三区| 久久久久久久精品吃奶| 白带黄色成豆腐渣| 久久天躁狠狠躁夜夜2o2o| 色老头精品视频在线观看| 一个人免费在线观看电影 | 日韩高清综合在线| 黄色成人免费大全| 啪啪无遮挡十八禁网站| 黄色成人免费大全| www.www免费av| 国产毛片a区久久久久| 俄罗斯特黄特色一大片| 亚洲成av人片在线播放无| 久久精品综合一区二区三区| 可以在线观看毛片的网站| 亚洲熟妇中文字幕五十中出| 国产精品电影一区二区三区| 久久久久久久午夜电影| 高潮久久久久久久久久久不卡| 99热只有精品国产| 99热这里只有是精品50| 国产高清视频在线观看网站| 脱女人内裤的视频| 久久精品影院6| 久久久精品大字幕| 九色成人免费人妻av| 啦啦啦观看免费观看视频高清| 深夜精品福利| 99精品在免费线老司机午夜| 麻豆国产97在线/欧美| 看免费av毛片| 琪琪午夜伦伦电影理论片6080| 美女被艹到高潮喷水动态| 久久久水蜜桃国产精品网| 精品国产乱子伦一区二区三区| 免费电影在线观看免费观看| 最新美女视频免费是黄的| 亚洲激情在线av| 日本在线视频免费播放| 色吧在线观看| 日韩大尺度精品在线看网址| 亚洲中文av在线| 天堂av国产一区二区熟女人妻| 国产亚洲欧美在线一区二区| 91在线观看av| 我要搜黄色片| 色老头精品视频在线观看| 99国产精品一区二区蜜桃av| 免费无遮挡裸体视频| 欧美黑人巨大hd| 国产精品1区2区在线观看.| 久久天躁狠狠躁夜夜2o2o| 在线观看66精品国产| 亚洲国产欧美一区二区综合| 亚洲成人免费电影在线观看| 国产亚洲精品久久久com| 国产99白浆流出| 1024手机看黄色片| 日韩人妻高清精品专区| 老司机午夜十八禁免费视频| 色在线成人网| 国产激情久久老熟女| 国产高清激情床上av| 精品99又大又爽又粗少妇毛片 | 一级毛片精品| 久久久久久国产a免费观看| 久久久久久久久中文| 天天添夜夜摸| bbb黄色大片| 91字幕亚洲| 美女 人体艺术 gogo| www.自偷自拍.com| av片东京热男人的天堂| 中文字幕人成人乱码亚洲影| 欧洲精品卡2卡3卡4卡5卡区| 97超视频在线观看视频| 中文在线观看免费www的网站| 国产精品av视频在线免费观看| 欧美国产日韩亚洲一区| 国产成年人精品一区二区| 看免费av毛片| 国产一区二区三区在线臀色熟女| 免费看光身美女| 国产精品久久久久久人妻精品电影| 又黄又粗又硬又大视频| 母亲3免费完整高清在线观看| 亚洲欧美精品综合一区二区三区| 欧美乱妇无乱码| 999精品在线视频| av女优亚洲男人天堂 | 亚洲欧美精品综合久久99| avwww免费| 国产人伦9x9x在线观看| 男女床上黄色一级片免费看| 日韩大尺度精品在线看网址| 久久久精品欧美日韩精品| 又黄又粗又硬又大视频| 日本免费a在线| 激情在线观看视频在线高清| 成人无遮挡网站| 亚洲中文字幕日韩| 操出白浆在线播放| 日韩成人在线观看一区二区三区| 国产久久久一区二区三区| 黄片小视频在线播放| 99热精品在线国产| 亚洲狠狠婷婷综合久久图片| 好看av亚洲va欧美ⅴa在| 两个人视频免费观看高清| 国产精品1区2区在线观看.| 午夜福利视频1000在线观看| 又粗又爽又猛毛片免费看| 色视频www国产| 91字幕亚洲| 欧美丝袜亚洲另类 | 一级毛片女人18水好多| 色综合站精品国产| 在线十欧美十亚洲十日本专区| 日本 欧美在线| 精品国产超薄肉色丝袜足j| 国产淫片久久久久久久久 | 欧美乱码精品一区二区三区| 日日干狠狠操夜夜爽| 亚洲欧美精品综合一区二区三区| 99在线视频只有这里精品首页| 国产精品影院久久| 亚洲男人的天堂狠狠| 国产精品,欧美在线| 真实男女啪啪啪动态图| 成人特级av手机在线观看| 91九色精品人成在线观看| 91久久精品国产一区二区成人 | 婷婷精品国产亚洲av在线| 又大又爽又粗| 国内精品美女久久久久久| 女警被强在线播放| 夜夜看夜夜爽夜夜摸| 18禁黄网站禁片午夜丰满| 国产精品久久久av美女十八| 最近最新中文字幕大全电影3| 丰满人妻一区二区三区视频av | 国产精品国产高清国产av| 亚洲精品久久国产高清桃花| 91字幕亚洲| 欧美一级毛片孕妇| 99精品欧美一区二区三区四区| 午夜日韩欧美国产| 色播亚洲综合网| 亚洲中文字幕一区二区三区有码在线看 | 麻豆一二三区av精品| 国产精品自产拍在线观看55亚洲| 国产精品98久久久久久宅男小说| 在线观看日韩欧美| 啦啦啦免费观看视频1| 久久国产精品人妻蜜桃| 舔av片在线| 老司机深夜福利视频在线观看| 一边摸一边抽搐一进一小说| 国产爱豆传媒在线观看| 老司机福利观看| 亚洲精品色激情综合| 亚洲国产欧美网| 亚洲av成人av| 日日夜夜操网爽| 极品教师在线免费播放| 在线a可以看的网站| 成人无遮挡网站| 又紧又爽又黄一区二区| 久久午夜亚洲精品久久| 成人国产一区最新在线观看| 成人三级做爰电影| 久久精品影院6| 老司机深夜福利视频在线观看| www.www免费av| 男人舔奶头视频| 99热这里只有精品一区 | 日韩欧美国产在线观看| 国产精品日韩av在线免费观看| 又黄又粗又硬又大视频| 青草久久国产| 亚洲欧美日韩无卡精品| 国产 一区 欧美 日韩| 国产一区二区三区在线臀色熟女| 黄色日韩在线| 美女 人体艺术 gogo| 国产主播在线观看一区二区| 免费观看精品视频网站| 少妇裸体淫交视频免费看高清| 熟女电影av网| 日本黄色片子视频| 在线免费观看的www视频| 韩国av一区二区三区四区| 一边摸一边抽搐一进一小说| 99国产极品粉嫩在线观看| 欧美另类亚洲清纯唯美| 国产一区二区激情短视频| 成人国产综合亚洲| 欧美日韩福利视频一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 淫妇啪啪啪对白视频| 日本免费a在线| 国产精品乱码一区二三区的特点| 夜夜爽天天搞| 伊人久久大香线蕉亚洲五| 日韩欧美在线二视频| 久久精品综合一区二区三区| 国产精品98久久久久久宅男小说| 在线免费观看不下载黄p国产 | 免费一级毛片在线播放高清视频| 免费搜索国产男女视频| 成人国产一区最新在线观看| 黄色丝袜av网址大全| 中文字幕熟女人妻在线| 中文亚洲av片在线观看爽| 亚洲人成伊人成综合网2020| 久久精品国产清高在天天线| 一区二区三区国产精品乱码| av视频在线观看入口| 一进一出抽搐gif免费好疼| 性欧美人与动物交配| 中文字幕人妻丝袜一区二区| 欧美精品啪啪一区二区三区| 99精品久久久久人妻精品| 一区福利在线观看| 久久久久久久久中文| 成人无遮挡网站| 2021天堂中文幕一二区在线观| 黑人欧美特级aaaaaa片| 偷拍熟女少妇极品色| 午夜福利在线观看免费完整高清在 | 中文字幕久久专区| 中文字幕熟女人妻在线| 激情在线观看视频在线高清| 久久性视频一级片| 国产99白浆流出| 老司机午夜十八禁免费视频| 悠悠久久av| 久久人人精品亚洲av| 国产亚洲欧美98| 此物有八面人人有两片| 老司机午夜福利在线观看视频| 国产又色又爽无遮挡免费看| 高清在线国产一区| 在线免费观看的www视频| 丁香六月欧美| 免费观看人在逋| 老司机在亚洲福利影院| 一边摸一边抽搐一进一小说| 1000部很黄的大片| 亚洲人与动物交配视频| 亚洲欧美日韩无卡精品| 亚洲第一电影网av| 亚洲av成人av| 久久精品国产综合久久久| 欧美激情在线99| 熟女电影av网| 三级毛片av免费| 久久久久久九九精品二区国产| 精品欧美国产一区二区三| 午夜福利在线在线| 狂野欧美激情性xxxx| 草草在线视频免费看| 国产在线精品亚洲第一网站| 淫秽高清视频在线观看| 曰老女人黄片| 男人和女人高潮做爰伦理| 国产精品久久久久久亚洲av鲁大| 精品日产1卡2卡| 精品乱码久久久久久99久播| 成人一区二区视频在线观看| 精品国产乱码久久久久久男人| 婷婷精品国产亚洲av| 久久午夜亚洲精品久久| 免费看a级黄色片| 亚洲国产精品久久男人天堂| 亚洲精品美女久久久久99蜜臀| 久久久久免费精品人妻一区二区| а√天堂www在线а√下载| 日本成人三级电影网站| 国产真实乱freesex| 精品久久久久久,| 中出人妻视频一区二区| 97人妻精品一区二区三区麻豆| 制服人妻中文乱码| 久久久久久国产a免费观看| 国内精品一区二区在线观看| 亚洲欧美日韩高清专用| 最好的美女福利视频网| 欧美极品一区二区三区四区|