• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CLASSIFICATION OF SOLUTIONS TO HIGHER FRACTIONAL ORDER SYSTEMS?

    2021-09-06 07:55:08

    Faculty of Economic Mathematics,University of Economics and Law,Ho Chi Minh City,Vietnam Vietnam National University,Ho Chi Minh City,Vietnam E-mail:phuongl@uel.edu.vn

    Abstract Let 0<α,β0f oralls,t≥0.The main technique we use is the method of moving spheres in integral forms.Since our assumptionsare more general than those in the previous literature,some new ideas are introduced to overcome this difficulty.

    Key words Higher fractional order system;integral system;general nonlinearity;method of moving spheres;classification of solutions

    1 Introduction

    Let

    n

    ≥2 be an integer,

    α,β

    be real numbers satisfying 0

    <α,β<n

    ,and

    f,g

    C

    ([0

    ,

    ∞)×[0

    ,

    ∞))be two nonnegative functions.We study the semilinear elliptic system

    and the related integral system

    Throughout this paper,we study nonnegative solutions of(1.1)in classical sense.That is,we call(

    u,v

    )a nonnegative solution of(1.1)if

    u,v

    ≥0,

    and(

    u,v

    )veri fies(1.1)point wise,where

    ε>

    0 is arbitrarily small.Moreover,(

    u,v

    )is called trivial if(

    u,v

    )≡(0

    ,

    0).

    In their pioneering article[2],Chen,Li and Ou introduced the method of moving planes in integral forms and used it to establish the radial symmetry of any nonnegative solution to the integral equation

    Hence they solved an open problem posed by Lieb[3]regarding the best constant in a Hardy-Little wood-Sobolev inequality.Later,Chen and Li[4]extended this result to the integral system

    The first purpose of our paper is to classify nonnegative solutions of system(1.2)with more general nonlinearities

    f

    and

    g

    .Our monotonicity conditions on

    f

    and

    g

    are similar to those in[9].However,we do not assume

    f,g

    C

    or

    α

    =

    β

    .To overcome the difficulty caused by weaker assumptions,we introduce some new ideas.We also use the method of moving spheres instead of moving planes to obtain the explicit forms of the solutions more easily.Our result,therefore,improves and uni fies both results in[7]and[9].To state our first result,we denote

    Theorem 1.1

    Let 0

    <α,β<n

    and

    f,g

    C

    ([0

    ,

    ∞)×[0

    ,

    ∞))be two nonnegative functions such that

    for some

    c

    ,c

    ,μ>

    0 and

    x

    ∈R.Moreover,

    for all

    x

    ∈R.

    Remark 1.2

    The assumption that

    f

    (

    s,t

    )is increasing in

    t

    and

    g

    (

    s,t

    )is increasing in

    s

    is to ensure that the system is non-degenerate.This non-degeneracy assumption was proposed in[4]and was also used in[9].Without this assumption,system(1.2)may contain two unrelated equations such as

    and hence

    u,v

    may not have the same symmetric center in such a case.

    Remark 1.3

    For the simplicity of the presentation,we only consider systems of two equations in this paper.However,our method can be extended to integral systems with more equations as in[9].

    Next,we discuss the classification of nonnegative classical solutions of elliptic system(1.1).We first mention the case of a single equation.Several authors have contributed to a classification result stated that every nonnegative classical solution to the critical semilinear elliptic equation

    must assume the form

    Some analogous results were established for system(1.1).Using the classical moving plane method,Guo and Liu[8]classified all nonnegative solutions of(1.1)when

    α

    =

    β

    =2 and

    f,g

    satisfy some monotonicity conditions.Later,a fractional counterpart result was derived by Li and Ma[21]using the direct method of moving planes.More precisely,Li and Ma assumed that(

    u,v

    )is a nonnegative solution of(1.1)and?0

    <α,β<

    2,

    f

    (

    s,r

    )≡

    f

    (

    r

    ),

    g

    (

    r,t

    )≡

    g

    (

    r

    ),

    Theorem 1.4

    Assume that

    f

    and

    g

    satisfy all assumptions of Theorem 1.1 and one of the following conditions holds:

    Assume that(

    u,v

    )is a nonnegative nontrivial classical solution of system(1.1).Then

    As a consequence of Theorem 1.4,we consider a situation where we can deduce the explicit forms of

    f

    and

    g

    .

    (i)

    f

    (

    s,t

    )is nondecreasing in

    s

    and increasing in

    t

    ,(ii)

    g

    (

    s,t

    )is increasing in

    s

    and nondecreasing in

    t

    ,(iii)For every

    i

    =1

    ,

    2

    ,...,m

    ,there exist

    p

    ,p

    ≥0,(

    n

    ?

    α

    )

    p

    +(

    n

    ?

    β

    )

    p

    =

    n

    +

    α

    such that

    f

    (

    s,t

    )

    /

    (

    s

    t

    )is nonincreasing in each variable,(iv)For every

    i

    =1

    ,

    2

    ,...,m

    ,there exist

    q

    ,q

    ≥0,(

    n

    ?

    α

    )

    q

    +(

    n

    ?

    β

    )

    q

    =

    n

    +

    β

    such that

    g

    (

    s,t

    )

    /

    (

    s

    t

    )is nonincreasing in each variable.Assume that(

    u,v

    )∈

    C

    (R)×

    C

    (R)is a nonnegative nontrivial solution of system(1.2).Then

    for some

    c

    ,c

    ,μ>

    0 and

    x

    ∈R.Moreover,for all(

    s,t

    )∈[0

    ,

    max

    u

    ]×[0

    ,

    max

    v

    ],where

    C

    ,C

    >

    0 satisfy

    The same conclusion also holds for every nonnegative nontrivial classical solution(

    u,v

    )of system(1.1)if we further assume that(B1),(B2),(B3)are satis fied.

    Remark 1.6

    Theorem 1.5 extends[7,Theorem 4]to the case

    α

    /=

    β

    .Some special cases of the last statement of Theorem 1.5 were previously proved in[8](when

    α

    =

    β

    =2)and[21](when 0

    <α,β<

    2).

    In particular,Theorem 1.5 can be applied to the system

    We can state the following corollary of Theorem 1.5,which improves[5,22,29].

    Assume that(

    u,v

    )is a nonnegative nontrivial classical solution of system(1.7).Then

    and(

    u,v

    )assumes the form

    The remainder of this paper is organized as follows:in Section 2,we use the method of moving spheres to prove Theorem 1.1.In Section 3,we establish the equivalence between system(1.1)and system(1.2),then Theorem 1.4 follows immediately.The last section is devoted to the proof of Theorem 1.5,which is concerned with a special case,where

    f

    and

    g

    can be explicitly derived.Throughout this paper,we denote by

    B

    (

    x

    )the ball of radius

    R>

    0 with center

    x

    ∈R.For brevity,we will write

    B

    =

    B

    (0).We also use

    C

    to denote various positive constants whose values may change from place to place.

    2 Classification of Nonnegative Solutions to the Integral System

    To prove Theorem 1.1,we employ the method of moving spheres in integral forms.It is different from the moving plane method used by other authors we mentioned in the introduction section.The method of moving spheres was introduced by Li and Zhu[30].Lately,Li and Zhang[31]and Li[32]improved Li and Zhu’s two calculus key lemmas.An advantage of this method is that it can immediately yield the explicit form of solutions to elliptic equations satisfying certain conformal invariance and the nonexistence to elliptic equations with subcritical exponent.Hence it is not necessary to prove the symmetry of solutions beforehand as in the method of moving planes.

    Since we do not assume that

    f,g

    are differentiable,we cannot use the mean value theorem to obtain integral estimates as in[4,9].Our new idea is to exploit the following inequality in our later estimation:

    Lemma 2.1

    Assume that

    f

    satis fies(A1).Then for all

    t

    >t

    >

    0 and

    s>

    0,we have

    Similarly,for all

    t>

    0 and

    s

    >s

    >

    0,we have

    In what follows,let(

    u,v

    )∈

    C

    (R)×

    C

    (R)be a nonnegative nontrivial solution of system(1.2).Then,it follows that

    u

    and

    v

    are positive.For any

    x

    ∈Rand

    λ>

    0,we denote by

    the inversion of

    x

    ∈R{

    x

    }about the sphere

    ?B

    (

    x

    ).Then,we de fine the Kelvin transform of

    u

    and

    v

    with respect to

    ?B

    (

    x

    )by

    We also de fine

    We will use the method of moving spheres in integral forms to prove the following proposition:

    Proposition 2.2

    For any

    x

    ∈R,the set

    is not empty.Moreover,if

    λ

    :=supΓ

    <

    ∞,then

    U

    =

    V

    =0 in

    B

    (

    x

    ){

    x

    }.Since system(1.2)is invariant by translations,it suffices to prove Proposition 2.2 for

    x

    =0.For the sake of simplicity,we will drop the subscript

    x

    in the notations when

    x

    =0.That is,we will write

    We first remark that(

    u

    ,v

    )satis fies,for all

    x

    ∈R{0},

    Indeed,using the first equation in(1.2),we have

    for any

    x

    ∈R{0},where we have used the following identities in the last line:

    The second equation in(2.1)can be obtained in the same way.

    Next,for each

    λ>

    0,we denote

    We prove key integral estimates which will be used in the proof of Proposition 2.2.

    Lemma 2.3

    If 0

    <λ<λ

    ,then there exists

    C>

    0,which depends on

    λ

    but is independent of

    λ

    ,such that

    Proof

    Let any

    x

    B

    {0}.From the first equation in(1.2),we have

    Similarly,from the first equation in(2.1),we obtain

    Combining the above two formula,we derive

    Combining this with(2.2)and(2.3),we obtain

    Using Lemma 2.1,we have

    If

    u

    (

    y

    )

    <u

    (

    y

    ),then from the above inequality,we have

    Therefore,in both cases,we have,for any

    y

    B

    {0},

    From(2.4),(2.3)and(2.5),we deduce

    The second inequality can be derived in a similar way.

    Proof of Proposition 2.2

    As mentioned before,we only need to prove the proposition for

    x

    =0.

    Step 1

    (Start dilating the sphere

    ?B

    from near

    λ

    =0)In this step,we prove that Γ/=?,that is,for

    λ>

    0 sufficiently small,

    Indeed,since

    u

    and

    v

    are continuous and positive,there exists

    ε

    ∈(0

    ,

    1)small enough,such that

    Step 2

    (Dilate the sphere

    ?B

    outward to the limiting position)Step 1 provides us a starting point to dilate the sphere

    ?B

    from near

    λ

    =0.Now we dilate the sphere

    ?B

    outward as long as(2.6)holds.Let

    In this step,we show that

    By contradiction,we assume

    λ

    <

    ∞and

    V

    /≡0 in

    B

    {0}.Since

    U

    ,V

    are continuous with respect to

    λ

    ,we already have

    U

    ,V

    ≥0 in

    B

    {0}.From(2.4),we have

    This implies

    U

    >

    0 in

    B

    {0}.Then using a similar reasoning,we have

    V

    >

    0 in

    B

    {0}.Next,we claim that there exists

    C>

    0 and

    η>

    0 such that

    Indeed,from(2.8)and Fatou’s lemma,we have

    Hence for

    x

    B

    {0},where

    η

    is sufficiently small,we have

    U

    (

    x

    )≥

    C

    .Similarly,for

    x

    B

    {0},where

    η

    is chosen smaller if necessary,we also have

    V

    (

    x

    )≥

    C

    .This proves(2.9).

    From(2.9),and the continuity and positivity of

    U

    and

    V

    ,we can find a constant

    C>

    0 such that

    Since

    u

    and

    v

    are uniformly continuous on an arbitrary compact set,there exists

    ρ

    ∈(0

    ,r

    )such that,for any

    λ

    ∈(

    λ

    +

    ρ

    ),

    Therefore,for any

    λ

    ∈(

    λ

    +

    ρ

    ),

    However,this contradicts the de finition of

    λ

    and(2.7)is proved.

    This completes the proof of Proposition 2.2.

    To obtain explicit forms of all nonnegative solutions of(1.2),we need the following calculus lemma:

    Lemma 2.4

    (See Appendix B in[32])Let

    n

    ≥1,

    ν

    ∈R and

    w

    C

    (R).For every

    x

    ∈Rand

    λ>

    0,we de fine

    for all

    x

    ∈R{

    x

    }.Then,we have the following:(i)If for every

    x

    ∈R,there exists

    λ

    <

    ∞such that

    (ii)If for every

    x

    ∈R,

    then

    w

    C

    for some constant

    C

    ∈R.

    Remark 2.5

    If case(i)of Lemma 2.4 happens,then a direct computation yields

    We are ready to prove the main result in this section,namely,Theorem 1.1.

    Proof of Theorem 1.1

    There are three cases.

    Case 1

    There exist

    x

    ,y

    ∈Rsuch that

    λ

    =∞and

    λ

    <

    ∞.Since

    λ

    =∞,we have,for any

    λ>

    0,

    This implies that,for any

    λ>

    0,

    Due to the arbitrariness of

    λ>

    0,we must have

    On the other hand,since

    λ

    <

    ∞,we may use Proposition 2.2 to get

    This indicates that

    The contradiction between(2.11)and(2.12)indicates that Case 1 cannot happen.

    Case 2

    For every

    x

    ∈R,the critical scale

    λ

    =∞.By Lemma 2.4(ii)and the positivity of

    u

    and

    v

    ,we have(

    u,v

    )≡(

    C

    ,C

    )for some constants

    C

    ,C

    >

    0.This is absurd since positive constant functions do not satisfy(1.2).

    Case 3

    For every

    x

    ∈R,the critical scale

    λ

    <

    ∞.

    From Proposition 2.2,we have

    Using Lemma 2.4(i)and Remark 2.5,we deduce that(

    u,v

    )must assume the form

    (see(37)in[33]).Using(2.13),we obtain

    Hence,we deduce

    Similarly,

    This completes the proof of Theorem 1.1.

    3 Classification of Nonnegative Solutions to the System of PDEs

    We exploit the ideas in[2]to establish the equivalence of systems(1.1)and(1.2).Then,we prove Theorem 1.4 in this section.

    Proposition 3.1

    Let

    f,g

    C

    ([0

    ,

    ∞)×[0

    ,

    ∞))be two nonnegative functions and assume that either assumption(B1),(B2)or(B3)of Theorem 1.4 is satis fied.Suppose that(

    u,v

    )is a nonnegative classical solution of(1.1),then(

    u,v

    )is also a nonnegative solution of(1.2),and vice versa.

    Proof

    Suppose that(

    u,v

    )is a nonnegative classical solution of(1.1).Then,(

    u,v

    )satis fies the super polyharmonic property

    where「

    t

    ?denotes the smallest integer which is not smaller than

    t

    .

    Indeed,such the property was proved in[15,Theorem 1.1]if(B1)holds,in[26,Theorem 2]if (B2)holds and in[26,Theorem1]if(B3)holds.

    If

    n

    =2,then

    m

    =0 and we can go directly to Case 2 below.Hence,in deriving form ulae(3.1)below,we may assume

    n

    ≥3.We observe that

    u

    is a nonnegative solution of the equation??

    u

    =

    u

    =

    f

    (

    u,v

    )in R.For any

    R>

    0,let

    From the maximum principle,we have

    for any

    R>

    0.For each fixed

    x

    ∈R,letting

    R

    →∞,we obtain

    Remark that

    u

    satis fies??

    u

    =

    u

    in R.Hence

    From the Liouville theorem for harmonic functions,we can deduce that

    u

    ?

    u

    C

    ≥0.That is,

    In the same way,using the fact that

    u

    is a nonnegative solution of the equation??

    u

    =

    u

    in Rfor

    i

    =1

    ,

    2

    ,...,m

    ,we deduce that

    where

    C

    ≥0.Now we set

    γ

    =

    α

    ?2

    m

    ,then

    γ

    ∈(0

    ,

    2].We consider two cases.

    Case 1

    γ

    =2In this case,

    u

    is a nonnegative solution of the equation??

    u

    =

    u

    in R.Hence we can use the above argument to obtain

    where

    C

    ≥0.

    Case 2

    γ

    ∈(0

    ,

    2)In this case,

    u

    is a nonnegative solution of the fractional equation

    For any

    R>

    0,let

    By the maximum principle for

    γ

    -superharmonic functions(see[1,14]),we deduce that

    for any

    R>

    0.For each fixed

    x

    ∈R,letting

    R

    →∞,we have

    From the Liouville theorem for

    γ

    -harmonic functions(see[25]),we can deduce that

    u

    ?

    u

    C

    ≥0.That is,

    Hence,in all cases,we have the formula(3.1)(if

    m>

    0)and(3.2).Moreover,we must have

    Indeed,if

    C

    >

    0 for some

    i

    ∈{1

    ,

    2

    ,...,m

    ?1},then

    which is a contradiction.Similarly,if

    C

    >

    0,then

    which is also absurd.

    From(3.1),(3.2)and(3.3),we deduce

    where in the last equality,we have used Fubini’s theorem and the following Selberg formula:

    for any

    α

    ∈(0

    ,n

    )such that

    α

    +

    α

    ∈(0

    ,n

    )(see[36]).

    We have proved that

    Similarly,

    where

    D

    ≥0.We claim that

    C

    =

    D

    =0.Otherwise,suppose

    C>

    0,then

    which is absurd.Hence

    C

    =

    D

    =0 and(

    u,v

    )is a nonnegative solution of(1.2).Conversely,assume that(

    u,v

    )satis fies(1.3)and(

    u,v

    )is a nonnegative solution of(1.2).We have

    That is,(

    u,v

    )is a nonnegative solution of(1.1).

    Proof of Theorem 1.4

    Theorem 1.4 is a direct consequence of Theorem 1.1 and Proposition 3.1.

    4 A Special Case

    In this section,we prove Theorem 1.5.Basically,it is a consequence of Theorem 1.1 and Proposition 3.1.

    Proof of Theorem 1.5

    Let(

    u,v

    )∈

    C

    (R)×

    C

    (R)be a nonnegative nontrivial solution of system(1.2).Then

    u,v>

    0.For each

    i

    =1

    ,

    2

    ,...,m

    ,we de fine

    Then,

    F

    ,G

    are nonincreasing in each variable.Notice that for all

    s,t

    ≥0,

    μ>

    0,

    Hence,

    f

    satis fies(A1).By a similar reasoning,we see that

    g

    satis fies(A2).Therefore,by applying Theorem 1.1,we deduce that(

    u,v

    )must have the form

    for some

    c

    ,c

    ,μ>

    0 and

    x

    ∈R.Moreover,

    for all

    x

    ∈R.Hence

    for all

    x

    ∈R.Using the assumption that all

    F

    are nonincreasing in each variable and the fact that

    u,v

    decay at in finity and attain their maximums at

    x

    ,we conclude that

    F

    (

    s,t

    )=

    C

    for all(

    s,t

    )∈[0

    ,

    max

    u

    ]×[0

    ,

    max

    v

    ],

    i

    =1

    ,

    2

    ,...,m

    ,where positive constants

    C

    satisfy

    which means

    In a similar way,we can show that

    G

    (

    s,t

    )=

    C

    for all(

    s,t

    )∈[0

    ,

    max

    u

    ]×[0

    ,

    max

    v

    ],where

    C

    >

    0 and

    Therefore,

    f

    and

    g

    have the desired forms.The first part of the theorem is proved.Now we assume that(

    u,v

    )is a nonnegative nontrivial classical solution of system(1.1)and(B1),(B2),(B3)are satis fied.In this situation,we may use Proposition 3.1 to deduce that(

    u,v

    )is a nonnegative solution of(1.2).Then,we can derive the same conclusion as above.

    国产成人一区二区在线| av在线播放精品| 国产美女午夜福利| 80岁老熟妇乱子伦牲交| 夜夜看夜夜爽夜夜摸| 又大又黄又爽视频免费| 91精品伊人久久大香线蕉| 亚洲精品中文字幕在线视频 | 在线天堂最新版资源| 成人黄色视频免费在线看| 激情五月婷婷亚洲| 在现免费观看毛片| 天堂俺去俺来也www色官网| 精品久久久精品久久久| av福利片在线| 99热国产这里只有精品6| 久久人人爽人人爽人人片va| 精品少妇久久久久久888优播| 偷拍熟女少妇极品色| 9色porny在线观看| 啦啦啦啦在线视频资源| 久久鲁丝午夜福利片| 蜜臀久久99精品久久宅男| 亚洲内射少妇av| 2021少妇久久久久久久久久久| 狠狠精品人妻久久久久久综合| 久久久久久久久久成人| 深夜a级毛片| 人人澡人人妻人| 99热全是精品| 99国产精品免费福利视频| 久久热精品热| 久久影院123| 久久精品夜色国产| 人妻一区二区av| 亚洲精品久久久久久婷婷小说| 国国产精品蜜臀av免费| 国产黄色视频一区二区在线观看| 欧美97在线视频| 大话2 男鬼变身卡| 黑人猛操日本美女一级片| 亚洲欧美中文字幕日韩二区| 91精品一卡2卡3卡4卡| 男女边摸边吃奶| 男女边吃奶边做爰视频| 亚洲欧美一区二区三区国产| 尾随美女入室| 国产精品无大码| 亚洲情色 制服丝袜| 免费在线观看成人毛片| 日本黄色日本黄色录像| 日本vs欧美在线观看视频 | 80岁老熟妇乱子伦牲交| 日韩av不卡免费在线播放| 亚洲内射少妇av| 亚洲欧美中文字幕日韩二区| 久久亚洲国产成人精品v| 汤姆久久久久久久影院中文字幕| 日本av手机在线免费观看| 国产无遮挡羞羞视频在线观看| 国产伦理片在线播放av一区| 最黄视频免费看| 久久 成人 亚洲| 午夜精品国产一区二区电影| 看十八女毛片水多多多| 亚洲国产精品专区欧美| av国产久精品久网站免费入址| 亚洲国产精品国产精品| 纵有疾风起免费观看全集完整版| 777米奇影视久久| 99久国产av精品国产电影| 国产成人精品一,二区| 国产成人精品久久久久久| 欧美精品国产亚洲| 麻豆精品久久久久久蜜桃| a级片在线免费高清观看视频| 成人毛片a级毛片在线播放| 国产国拍精品亚洲av在线观看| 国产老妇伦熟女老妇高清| 男人添女人高潮全过程视频| 国产精品国产三级专区第一集| 亚洲欧洲精品一区二区精品久久久 | 日韩av在线免费看完整版不卡| 黑人猛操日本美女一级片| 少妇熟女欧美另类| 国产精品.久久久| 亚洲怡红院男人天堂| 一区二区三区免费毛片| 成年女人在线观看亚洲视频| 一区二区三区精品91| 一级毛片久久久久久久久女| 狠狠精品人妻久久久久久综合| 黄色日韩在线| 大片电影免费在线观看免费| 性色av一级| 日韩,欧美,国产一区二区三区| 3wmmmm亚洲av在线观看| 免费观看的影片在线观看| 国产一区有黄有色的免费视频| 成年美女黄网站色视频大全免费 | 国产 精品1| 午夜免费男女啪啪视频观看| 3wmmmm亚洲av在线观看| 亚洲av免费高清在线观看| 秋霞伦理黄片| av免费观看日本| 男男h啪啪无遮挡| 久久精品国产鲁丝片午夜精品| av.在线天堂| 国产男女内射视频| 婷婷色av中文字幕| 高清午夜精品一区二区三区| 国产亚洲午夜精品一区二区久久| 香蕉精品网在线| 国产在线视频一区二区| 免费不卡的大黄色大毛片视频在线观看| 老司机亚洲免费影院| 久久这里有精品视频免费| 久久久午夜欧美精品| 青青草视频在线视频观看| 美女视频免费永久观看网站| 在线天堂最新版资源| 精品久久久久久久久av| 丝袜在线中文字幕| 亚洲电影在线观看av| 有码 亚洲区| 国产视频内射| 成人亚洲欧美一区二区av| 99热网站在线观看| 麻豆精品久久久久久蜜桃| 国产成人一区二区在线| 久久久亚洲精品成人影院| 五月伊人婷婷丁香| 国产成人一区二区在线| 成人亚洲欧美一区二区av| 精品一区二区免费观看| av卡一久久| 特大巨黑吊av在线直播| 五月开心婷婷网| 观看av在线不卡| 精品少妇久久久久久888优播| 麻豆乱淫一区二区| 人妻 亚洲 视频| 日韩人妻高清精品专区| 成人特级av手机在线观看| 韩国av在线不卡| 18+在线观看网站| 国产精品成人在线| 人人妻人人添人人爽欧美一区卜| 国产美女午夜福利| 夜夜爽夜夜爽视频| freevideosex欧美| 久久ye,这里只有精品| 黄色视频在线播放观看不卡| 在线观看一区二区三区激情| 成人亚洲精品一区在线观看| 久久99精品国语久久久| 亚州av有码| 毛片一级片免费看久久久久| 下体分泌物呈黄色| av黄色大香蕉| 免费看不卡的av| 亚洲欧美精品自产自拍| 视频区图区小说| 99九九线精品视频在线观看视频| 热99国产精品久久久久久7| 亚洲国产成人一精品久久久| 国产午夜精品一二区理论片| 国产成人精品久久久久久| 七月丁香在线播放| 最近中文字幕高清免费大全6| 亚洲av免费高清在线观看| 国产乱人偷精品视频| 色94色欧美一区二区| 成人国产麻豆网| 一二三四中文在线观看免费高清| 久久青草综合色| 又爽又黄a免费视频| 两个人的视频大全免费| 亚洲色图综合在线观看| 久热这里只有精品99| 日韩av不卡免费在线播放| 91在线精品国自产拍蜜月| av在线老鸭窝| 国产一区二区在线观看日韩| 少妇 在线观看| 国产在线免费精品| 亚洲精品国产色婷婷电影| 午夜精品国产一区二区电影| 亚洲精品视频女| 国产高清有码在线观看视频| 欧美一级a爱片免费观看看| 中文欧美无线码| 欧美日韩国产mv在线观看视频| 80岁老熟妇乱子伦牲交| 97超视频在线观看视频| 三上悠亚av全集在线观看 | 能在线免费看毛片的网站| 国产午夜精品一二区理论片| 97超视频在线观看视频| 精品99又大又爽又粗少妇毛片| 亚洲第一区二区三区不卡| 久久影院123| 涩涩av久久男人的天堂| 久久国产乱子免费精品| 国产黄色视频一区二区在线观看| 肉色欧美久久久久久久蜜桃| 国产成人免费无遮挡视频| 又黄又爽又刺激的免费视频.| 久久久久久久久久成人| 久久精品国产亚洲av天美| 欧美97在线视频| 欧美日韩综合久久久久久| 久久精品国产自在天天线| 日本猛色少妇xxxxx猛交久久| 亚洲精品国产av成人精品| 久久久久精品性色| 国产在线一区二区三区精| 国产一区二区三区综合在线观看 | 成年女人在线观看亚洲视频| 少妇人妻 视频| 欧美精品亚洲一区二区| 免费观看在线日韩| 黄色毛片三级朝国网站 | 色视频在线一区二区三区| 成人美女网站在线观看视频| 日本vs欧美在线观看视频 | 视频区图区小说| 久久久久国产精品人妻一区二区| 亚洲电影在线观看av| 日本av手机在线免费观看| 男女无遮挡免费网站观看| 精品国产乱码久久久久久小说| 精品人妻熟女av久视频| 日本-黄色视频高清免费观看| 日本爱情动作片www.在线观看| 大又大粗又爽又黄少妇毛片口| 观看av在线不卡| 精品人妻熟女av久视频| 寂寞人妻少妇视频99o| 久久国产亚洲av麻豆专区| 亚洲丝袜综合中文字幕| 日韩大片免费观看网站| av线在线观看网站| 美女主播在线视频| 性色av一级| 两个人的视频大全免费| 亚洲成人手机| 国产成人freesex在线| 国产精品免费大片| 亚洲第一av免费看| 日韩大片免费观看网站| 精品亚洲乱码少妇综合久久| 日韩中字成人| 男人狂女人下面高潮的视频| 欧美亚洲 丝袜 人妻 在线| 午夜福利影视在线免费观看| 夫妻性生交免费视频一级片| 午夜免费鲁丝| 91精品一卡2卡3卡4卡| 国产精品人妻久久久影院| 欧美成人精品欧美一级黄| 中文天堂在线官网| 免费观看的影片在线观看| 少妇高潮的动态图| 亚洲精品久久午夜乱码| 国产又色又爽无遮挡免| 夫妻午夜视频| 久久狼人影院| 五月玫瑰六月丁香| 又黄又爽又刺激的免费视频.| 欧美bdsm另类| 国产精品久久久久久久久免| 免费高清在线观看视频在线观看| 久久精品夜色国产| 久久免费观看电影| a 毛片基地| 插逼视频在线观看| 午夜老司机福利剧场| 欧美日本中文国产一区发布| 欧美性感艳星| 中国美白少妇内射xxxbb| 欧美精品国产亚洲| 精品久久久噜噜| 最新中文字幕久久久久| 国产精品蜜桃在线观看| 欧美日韩在线观看h| 亚洲欧美一区二区三区国产| 伊人亚洲综合成人网| 婷婷色综合www| 九草在线视频观看| 久久6这里有精品| 亚洲精华国产精华液的使用体验| 亚洲精品国产成人久久av| 少妇精品久久久久久久| 丰满人妻一区二区三区视频av| 亚洲精品国产av蜜桃| 国产极品天堂在线| 国产乱来视频区| 男的添女的下面高潮视频| 亚洲va在线va天堂va国产| 久久久久久久久久久免费av| 午夜福利视频精品| 国产精品.久久久| 校园人妻丝袜中文字幕| kizo精华| 日韩强制内射视频| kizo精华| 国产日韩一区二区三区精品不卡 | 欧美激情极品国产一区二区三区 | 97在线视频观看| 亚洲第一av免费看| 亚洲av福利一区| 国产乱人偷精品视频| 日韩伦理黄色片| 欧美3d第一页| 国产一区二区三区av在线| 免费在线观看成人毛片| av在线观看视频网站免费| 国内精品宾馆在线| 内射极品少妇av片p| 五月玫瑰六月丁香| 国产成人精品一,二区| 日日啪夜夜撸| 我要看黄色一级片免费的| 女人久久www免费人成看片| 视频中文字幕在线观看| 中文资源天堂在线| 在线观看美女被高潮喷水网站| 97超碰精品成人国产| √禁漫天堂资源中文www| 青春草视频在线免费观看| 黑人高潮一二区| 日日啪夜夜爽| 18禁裸乳无遮挡动漫免费视频| 国产乱人偷精品视频| 国内揄拍国产精品人妻在线| 纯流量卡能插随身wifi吗| 精华霜和精华液先用哪个| 亚洲色图综合在线观看| 高清视频免费观看一区二区| 日韩成人av中文字幕在线观看| 国产毛片在线视频| 日本av手机在线免费观看| 麻豆成人av视频| 噜噜噜噜噜久久久久久91| 国产伦精品一区二区三区四那| 日韩大片免费观看网站| 在线观看一区二区三区激情| 一级片'在线观看视频| 在线观看一区二区三区激情| 2018国产大陆天天弄谢| 人妻 亚洲 视频| √禁漫天堂资源中文www| 亚洲丝袜综合中文字幕| 精品一区在线观看国产| 亚洲无线观看免费| 免费观看性生交大片5| 亚洲在久久综合| 亚洲国产精品一区三区| 国产精品99久久久久久久久| 欧美性感艳星| 日韩,欧美,国产一区二区三区| 黄色怎么调成土黄色| 精品人妻熟女毛片av久久网站| 偷拍熟女少妇极品色| 久久av网站| 青青草视频在线视频观看| 高清视频免费观看一区二区| 国产av国产精品国产| 欧美老熟妇乱子伦牲交| 视频中文字幕在线观看| 女性生殖器流出的白浆| 欧美日韩国产mv在线观看视频| 亚洲成人av在线免费| 美女内射精品一级片tv| 国产av精品麻豆| 国语对白做爰xxxⅹ性视频网站| 精品国产一区二区三区久久久樱花| 一区二区三区免费毛片| 日本-黄色视频高清免费观看| 国内精品宾馆在线| 22中文网久久字幕| 热99国产精品久久久久久7| 女性生殖器流出的白浆| 久久久精品94久久精品| 久久99热6这里只有精品| 久久鲁丝午夜福利片| 久久久久视频综合| 97在线人人人人妻| 亚洲精品乱久久久久久| 秋霞伦理黄片| 偷拍熟女少妇极品色| 精品少妇黑人巨大在线播放| 国产av国产精品国产| 看十八女毛片水多多多| 精品久久久精品久久久| 成人毛片60女人毛片免费| 精品一区二区三区视频在线| 日日啪夜夜撸| 18禁动态无遮挡网站| 欧美bdsm另类| 国产亚洲av片在线观看秒播厂| 国产精品国产三级国产av玫瑰| 免费少妇av软件| 午夜久久久在线观看| 久久毛片免费看一区二区三区| 久久午夜综合久久蜜桃| 久久精品国产亚洲av涩爱| 啦啦啦中文免费视频观看日本| 五月开心婷婷网| 欧美日韩国产mv在线观看视频| 久久人妻熟女aⅴ| 下体分泌物呈黄色| 久久99蜜桃精品久久| 成人二区视频| 亚洲伊人久久精品综合| 在线观看一区二区三区激情| 国产亚洲最大av| 久久久久久久久久成人| 亚洲成人手机| 成人毛片60女人毛片免费| 久久精品夜色国产| 日本午夜av视频| 久久久久久人妻| 欧美日韩精品成人综合77777| 亚洲图色成人| 一级片'在线观看视频| 中文字幕久久专区| 久久久久人妻精品一区果冻| 国产成人精品福利久久| 一区二区三区乱码不卡18| 两个人的视频大全免费| 国产亚洲一区二区精品| 国内揄拍国产精品人妻在线| 成人美女网站在线观看视频| 国产精品一区二区在线不卡| 成年人免费黄色播放视频 | 人人妻人人爽人人添夜夜欢视频 | 欧美+日韩+精品| 午夜福利视频精品| 高清黄色对白视频在线免费看 | 久久99蜜桃精品久久| 国产欧美日韩一区二区三区在线 | 人妻人人澡人人爽人人| 22中文网久久字幕| 久热久热在线精品观看| 精品久久久久久电影网| h视频一区二区三区| 国产精品女同一区二区软件| 成人免费观看视频高清| 亚洲av免费高清在线观看| 亚洲av中文av极速乱| 国产精品熟女久久久久浪| 亚洲第一区二区三区不卡| 最近的中文字幕免费完整| 日本色播在线视频| 精品99又大又爽又粗少妇毛片| 高清视频免费观看一区二区| 国产成人免费无遮挡视频| 肉色欧美久久久久久久蜜桃| 国产中年淑女户外野战色| 蜜臀久久99精品久久宅男| 99热全是精品| 视频区图区小说| 成人美女网站在线观看视频| 偷拍熟女少妇极品色| 亚洲av二区三区四区| 春色校园在线视频观看| 国产永久视频网站| 国产精品久久久久久久久免| 97超视频在线观看视频| 国产精品不卡视频一区二区| 毛片一级片免费看久久久久| 边亲边吃奶的免费视频| 国产一级毛片在线| 我的女老师完整版在线观看| 18+在线观看网站| 国产成人免费无遮挡视频| 制服丝袜香蕉在线| 在线观看www视频免费| 九九久久精品国产亚洲av麻豆| 成人综合一区亚洲| 精品少妇久久久久久888优播| 人体艺术视频欧美日本| 秋霞在线观看毛片| 草草在线视频免费看| 精品久久久噜噜| 偷拍熟女少妇极品色| 久久久久久久久久人人人人人人| av女优亚洲男人天堂| 少妇人妻一区二区三区视频| tube8黄色片| 亚洲av电影在线观看一区二区三区| 大香蕉久久网| av女优亚洲男人天堂| 亚洲精品日韩av片在线观看| 欧美精品高潮呻吟av久久| 狂野欧美激情性xxxx在线观看| 国产欧美亚洲国产| 国内精品宾馆在线| 国产真实伦视频高清在线观看| 精品亚洲乱码少妇综合久久| 精品一区在线观看国产| 黄色日韩在线| 午夜激情福利司机影院| 国内揄拍国产精品人妻在线| 国产欧美日韩精品一区二区| 久久青草综合色| 寂寞人妻少妇视频99o| 另类精品久久| 97超视频在线观看视频| 高清视频免费观看一区二区| 国产精品久久久久成人av| 自拍偷自拍亚洲精品老妇| 99久久人妻综合| 男女边吃奶边做爰视频| 久久久久久久久久久免费av| 亚洲人与动物交配视频| 日本wwww免费看| 夜夜爽夜夜爽视频| 免费观看性生交大片5| 大话2 男鬼变身卡| 国产精品蜜桃在线观看| 高清av免费在线| 黄色配什么色好看| 精品一区二区三区视频在线| 欧美bdsm另类| 久热这里只有精品99| 少妇猛男粗大的猛烈进出视频| 久久久久久久久久久久大奶| 高清毛片免费看| 夫妻午夜视频| 夫妻性生交免费视频一级片| 国产精品国产三级国产专区5o| 九九久久精品国产亚洲av麻豆| 赤兔流量卡办理| 美女内射精品一级片tv| 亚洲精品日韩在线中文字幕| 涩涩av久久男人的天堂| 亚洲情色 制服丝袜| 欧美三级亚洲精品| 91精品国产九色| 久久久国产一区二区| 国产在线免费精品| 51国产日韩欧美| 亚洲av成人精品一二三区| av专区在线播放| 国国产精品蜜臀av免费| 亚洲成色77777| 亚洲精品成人av观看孕妇| 精品一区二区免费观看| 熟女av电影| 99久久精品国产国产毛片| 日本色播在线视频| 国产淫语在线视频| 热re99久久国产66热| 亚洲av国产av综合av卡| 老女人水多毛片| 色视频在线一区二区三区| 高清黄色对白视频在线免费看 | 国产亚洲91精品色在线| 国产伦理片在线播放av一区| 亚洲av免费高清在线观看| av福利片在线| 国产av一区二区精品久久| 欧美日韩国产mv在线观看视频| 久久99蜜桃精品久久| 日韩视频在线欧美| 男男h啪啪无遮挡| 日产精品乱码卡一卡2卡三| 国产色爽女视频免费观看| 精品少妇久久久久久888优播| 天天操日日干夜夜撸| av线在线观看网站| 亚洲情色 制服丝袜| 三级国产精品欧美在线观看| 亚洲av不卡在线观看| 亚洲精品国产成人久久av| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久久久免| 国产精品欧美亚洲77777| 国产高清不卡午夜福利| 欧美xxxx性猛交bbbb| 精品久久久久久电影网| 麻豆成人av视频| 亚洲国产色片| 日本vs欧美在线观看视频 | 春色校园在线视频观看| 69精品国产乱码久久久| 人妻 亚洲 视频| 亚洲综合精品二区| 五月伊人婷婷丁香| 国产又色又爽无遮挡免| 2021少妇久久久久久久久久久| 99热国产这里只有精品6| 日韩在线高清观看一区二区三区| 亚洲四区av| 免费播放大片免费观看视频在线观看| kizo精华| 成年人午夜在线观看视频| 国产伦精品一区二区三区视频9| kizo精华| 成年人午夜在线观看视频| 极品人妻少妇av视频| 国产成人午夜福利电影在线观看| 最近手机中文字幕大全| 日本色播在线视频| 另类亚洲欧美激情| 国内精品宾馆在线| 草草在线视频免费看| 99re6热这里在线精品视频| 日韩 亚洲 欧美在线| 各种免费的搞黄视频| 国产黄片美女视频|