• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electromagnetic wave absorption properties of Ba(CoTi)xFe12?2xO19@BiFeO3 in hundreds of megahertz band

    2022-08-31 09:55:36ZhiBiaoXu徐志彪ZhaoHuiQi齊照輝GuoWuWang王國武ChangLiu劉暢JingHaoCui崔晶浩WenLiangLi李文梁andTaoWang王濤
    Chinese Physics B 2022年8期
    關(guān)鍵詞:劉暢王濤王國

    Zhi-Biao Xu(徐志彪) Zhao-Hui Qi(齊照輝) Guo-Wu Wang(王國武) Chang Liu(劉暢)Jing-Hao Cui(崔晶浩) Wen-Liang Li(李文梁) and Tao Wang(王濤)

    1Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,Lanzhou 730000,China

    2The Institute of Effectiveness Evaluation of Flying Vehicle,Beijing 100089,China

    Keywords: microwave absorption,M-type ferrite,high permeability,impedance matching

    1. Introduction

    Nowadays, the rapid development of microwave technology and the widespread popularity of electronic communication equipment have brought convenience to human life.[1]The leakage from EM waves has also introduced excessive pollution to the environment, which threatens the physical and mental health of human.[2]Various EM wave absorption materials with excellent properties have been developed to eliminate the adverse effects of excessive EM radiation on human life.[3–6]These materials include dielectric materials[7–11]such as carbon materials,[12,13]nonmagnetic sulfides,[14]conjugated polymers[15]and magnetic materials such as ferrites,[16–19]magnetic metals,[20–22]and rare earth alloys.[23,24]However, most studies have mainly focused on EM wave absorption materials in the gigahertz range,whereas studies on absorption materials working in the hundreds of megahertz range are relatively rare.[25–27]This means that serious problems of EM pollution in the hundreds of megahertz band have not been well solved.[28]In this frequency range,effective absorption is difficult due to the long wavelength and insufficient dielectric or magnetic loss.[29–31]It is a serious challenge for researchers to explore materials with excellent absorption properties in the hundreds of megahertz bands.

    Ferrite materials have attracted much attention of researchers as good EM wave absorption materials.[32]Among them, M-type barium ferrites (BaFe12O19) have been deeply investigated as an absorption material working in the gigahertz range because they have suitable permittivity, high stability, low density, and low cost.[33]However, the high resonance frequency and low permeability of M-type ferrites are not conducive to their absorption properties in the hundreds of megahertz band.[34]Related reports have indicated that co–substitution of trivalent iron ions in M-type ferrites by divalent(Co2+,Mn2+,Zn2+,Ni2+)and tetravalent(Ti4+,Sn4+,Zr4+,Ir4+)cations is a proven method for increasing the permeability and decreasing the resonance frequency.[35]Among these,Co2+–Ti4+co-substitution is considered as the most effective method for adjusting the absorption properties because that the substitution of Co2+and Ti4+for Fe3+in barium ferrite can not only dramatically increase the permeability but also increase the magnetic loss in range of hundreds of megahertz.[36]

    In this work,Ba(CoTi)xFe12?2xO19with high permeability in hundreds of megahertz was obtained by substituting Fe3+distributed in five different lattice sites in BaFe12O19with Co2+and Ti4+. The permittivity was optimized by the BiFeO3dielectric phase formed by doping with Bi2O3, thus obtaining superb impedance matching. The EM wave absorption properties for Ba(CoTi)xFe12?2xO19@BiFeO3were studied in detail and its EM wave absorption mechanism was deeply discussed in hundreds of megahertz range.

    2. Experiment

    2.1. Fabrication

    The target Ba(CoTi)xFe12?2xO19ferrite ceramics withx= 0.9, 1.0, 1.1, 1.2, 1.3, and 1.4 were prepared by the conventional solid-state reaction method. Analytical grade BaCO3(AR grade,≥99%),Co2O3(AR grade,≥99%),TiO2(AR grade,≥99%), and Fe2O3(AR grade,≥99%), were mixed and ball milled in a planetary ball mill for 12 h. Then,the powders after ball milled were desiccated and pre-sintered at 1100?C for 6 h in a tube furnace under the air atmosphere.The pre-sintered powders were secondly ball milled for 12 h with 5 wt%Bi2O3in the same mill grinder. After drying,the powders were granulated by using 10.0 wt%polyvinyl alcohol(PVA)adhesive. Finally,the granulated particles were pressed at 1000 MPa for 10 min to form ring samples with an inner diameter of 3.04 mm,an outer diameter of 7 mm,and a thickness of 2–3 mm. The ring samples were sintered in the same furnace at 935?C for 6 h to form bulk samples.

    2.2. Characterization

    The crystal structure of the bulk samples was characterized by x-ray diffraction (XRD) with a Cu-Kαradiation source. The surface morphologies of bulk samples were characterized by using a scanning electron microscopy(SEM).The hysteresis loops of the bulk samples at room temperature were measured by using a vibrating sample magnetometer(VSM)to characterize the static magnetic properties of the material.The EM parameters of the bulk samples were measured at room temperature in a frequency range from 1 MHz to 1 GHz by using an impedance analyzer.

    3. Results and discussion

    3.1. Structural characterization

    The XRD patterns of Ba(CoTi)xFe12?2xO19bulk samples with variousx(x=0.9, 1.1, 1.2, 1.3, and 1.4) are shown in Fig. 1(a). The results indicate that the crystal structure does not change significantly with the variation of Co2+–Ti4+content. The standard PDF cards and the crystal face index of the diffraction peaks are shown in Fig.1(b). It can be clearly seen that the XRD patterns of bulk samples with various Co2+–Ti4+content show diffraction peaks that belong to two different phases. Some strong diffraction peaks are the M-type barium ferrite Ba(CoTi)xFe12?2xO19with hexagonal ferrite structure (PDF#39-1433), and the other diffraction peaks marked with red symbols are the BiFeO3with a typical rhombohedral perovskite structure (PDF#20-0169). Except for the two phases,no other impurity phases are detected in the XRD patterns of all bulk samples. This indicates that the addition of Bi2O3does not affect the formation of Ba(CoTi)xFe12?2xO19phase,[37]and the Bi2O3just combines with Fe3+to form Bi–Fe compound(BiFeO3).[38]Then, the BiFeO3enters into the interstice between the Ba(CoTi)xFe12?2xO19particles.[39]

    The lattice parameters of the bulk samples change with the substitution of Fe3+by Co2+–Ti4+. Among them, lattice constantsaandcof the bulk samples are calculated using different diffraction peaks in the XRD patterns. The formula is as follows:

    Fig.1. (a)XRD patterns of the bulk samples with various x(x=0.9,1.0,1.1,1.2,1.3,1.4). (b)The standard cards and the crystal face index of the diffraction peaks. (c)Lattice constants a and c for the bulk samples with various x. (d)Cell volume V for the bulk samples.

    Figure 1(c)shows the variation of lattice constantsaandcas a function of Co–Ti contentx.It can be seen that there is a slight and steady increase of the lattice constantawith Co–Ti substitution from 0.5891 nm to 0.5895 nm. The lattice constantschas an overall decreasing trend with increasingx. The cell volumeValso has an overall decreasing trend,asxis changed from 0.9 to 1.4, and the result is in good agreement with researches conducted by Liet al.[45]

    3.2. Morphological properties

    Figures 2(a)–2(f) show the cross-sectional SEM images of bulk samples with various Co2+–Ti4+content. The SEM images show that the particle size of Ba(CoTi)xFe12?2xO19@BiFeO3does not change significantly with the increase of Co2+–Ti4+content. The particle size is approximately 500 nm–2 μm in all bulk samples. The small particle size can be attributed to the liquid phase effect induced by the addition of excess Bi2O3during the sintering process.[40,41]Figure 2(g) shows the local magnified view of the cross section for the bulk sample, where the part marked by the yellow dotted line is Ba(CoTi)xFe12?2xO19particles and the part marked by the blue dotted is BiFeO3.It can be seen that the Ba(CoTi)xFe12?2xO19particles are coated by the BiFeO3formed during the sintering process.Figures 2(h)–2(i) show the elemental mapping images of Ba(CoTi)xFe12?2xO19@BiFeO3bulk samples. The elements Ba, Fe, Co, and Ti are distributed uniformly inside the bulk samples. The element Bi is observed mainly at the surface of Ba(CoTi)xFe12?2xO19particles. It is further proved that BiFeO3is coated on the surface of Ba(CoTi)xFe12?2xO19particles.

    Fig.2. (a)–(f)The SEM images of Ba(CoTi)xFe12?2xO19@BiFeO3: (a)x=0.9,(b)x=1.0,(c)x=1.1,(d)x=1.2,(e)x=1.3,and(f)x=1.4. (g)The local magnified view of the cross section for the bulk sample. (h)–(i)The elemental mapping images of Ba(CoTi)xFe12?2xO19@BiFeO3.

    3.3. Static magnetic properties

    The hysteresis loops of the Ba(CoTi)xFe12?2xO19@BiFeO3bulk samples with variousxare shown in Fig.3(a).The results show that bulk samples exhibit typical soft-magnetic properties with the variation ofxvalues. The variation of saturation magnetization (Ms) and coercivity (Hc) with differentxare shown in Fig. 3(b).Msdecreases slightly with the increase ofx.Hcdecreases rapidly with increasingxfrom 0.9 to 1.1.Asxcontinues to increase,Hcalso decreases slowly. The static magnetic properties of Ba(CoTi)xFe12?2xO19@BiFeO3mainly depend on the magnetic phase Ba(CoTi)xFe12?2xO19.In the basic structure of Ba(CoTi)xFe12?2xO19, Co2+ions first preferentially occupy the 2aand 2blattice sites and Ti4+ions occupy 2aand 4f2lattice sites.[42]The ions at the 2aand 2blattice sites have an upward spin direction,while the ions at the 4f2lattice sites have a downward spin direction.[43]Msis determined by the magnetic moment of each metal cation and the amount of magnetic ions in each lattice site.[44]Therefore, asxincreases from 0.9 to 1.4,Msof the Ba(CoTi)xFe12?2xO19@BiFeO3bulk sample decreases slightly. In addition, based on the S–W theory,Hc≈2K1/μ0Ms.[45]When the value ofxis low, Co2+–Ti4+ions first preferentially occupy the 2a,2b,and 4f2.This causes the magnetocrystalline anisotropy constant (K1) value to decrease rapidly, thenHcdecreases rapidly. Asxcontinues to increase, more Co2+–Ti4+ions occupy the 2aand 4f1sites,which leads to a slight decrease inK1value and a corresponding slow decrease inHc.

    Fig.3. (a)Magnetic hysteresis loops of Ba(CoTi)xFe12?2xO19@BiFeO3 with various x values. (b)Effects of Co2+–Ti4+ content on Ms and Hc of Ba(CoTi)xFe12?2xO19@BiFeO3.

    3.4. Complex permittivity and permeability

    The dependence of complex permittivity and permeability on frequency of Ba(CoTi)xFe12?2xO19@BiFeO3with variousxare shown in Fig.4.The real parts(ε′)of the permittivity of all samples at 1 MHz–1 GHz are about 20,while the imaginary parts(ε′′)are almost 0.For the samples withx=0.9,1.0,1.1,1.2,1.3,and 1.4,the real parts(μ′)of the permeability at 1 MHz can reach 2.51, 3.53, 15.46, 20.86, 16.38, and 13.49,while the imaginary parts(μ′′)exhibit obvious peak between 100 MHz and 1 GHz for the samples withx=1.1, 1.2, and 1.3. The above measurement results show that the substitution of Co2+–Ti4+does not have a significant effect on the permittivity of Ba(CoTi)xFe12?2xO19@BiFeO3, while it has a significant effect on the permeability.[46]Theμ′firstly increases and then decreases with the increase ofx. Notably, the highestμ′of Ba(CoTi)xFe12?2xO19@BiFeO3is about 20.86 whenx=1.2,which is almost equal toε′.

    Fig. 4. (a) and (b) The complex permittivity of Ba(CoTi)xFe12?2xO19@BiFeO3 with various x, (c) and (d) the complex permeability of Ba(CoTi)xFe12?2xO19@BiFeO3 with various x.

    The complex permeability of Ba(CoTi)xFe12?2xO19@ BiFeO3mainly depends on two types of moment dynamics. One is the domain wall motion, and the other is the spin rotation. To further study the contribution of these two mechanisms to the complex permeability, the measured complex permeability spectrum is fitted by the domain wall motion and spin rotation mechanism

    whereχdis the static susceptibility provided by the domain wall motion mechanism,ωdis the angular frequency of the domain wall resonance,βrepresents the damping factor of the domain wall motion mechanism,χsis the static susceptibility of the spin rotation mechanism,ωsis the angular frequency of the natural resonance,αrepresents the damping factor of the spin rotation mechanism,andωis the angular frequency of the applied magnetic field(ω=2π f).

    Fig. 5. Theoretical imaginary and real part of the permeability dispersion spectra, and the comparison of theoretical and measured complex permeability dispersion spectra;(a)–(c)x=0.9,(d)–(f)x=1.0,(g)–(i)x=1.1,(j)–(l)x=1.2,(m)–(o)x=1.3,(p)–(r)x=1.4.

    Firstly, the above mentioned parameters can be obtained to simulate the measured imaginary part of the permeability spectrum by using Eq. (3). The simulation results are shown in Figs. 5(a), 5(d), 5(g), 5(j), 5(m), and 5(p). These parameters were then substituted into Eq.(2)to obtain the real part of the permeability spectrum, as shown in Figs.5(b), 5(e), 5(h),5(k), 5(n), and 5(q). The measured and simulated curves are shown in Figs.5(c),5(f),5(i),5(l),5(o),and 5(r),respectively.The good overlap between the fitted and measured permeability amply proves that the magnetization process includes domain wall motion and spin rotation mechanisms. According to the fitted results, the spin rotation component significantly affects the permeability dispersion spectra compared to the domain wall movement component.

    3.5. EM wave absorption properties

    The EM wave absorption properties of Ba(CoTi)xFe12?2xO19@BiFeO3can be characterized by itsRL–fcurves. Based on the transmission line theory,theRL–fcurves with a certain thickness can be calculated from the complex permeability and permittivity by the following equation:[47]

    whereZinis the input impedance,Z0is the impedance in free space,μrandεrare the complex permeability and permittivity, respectively,fis the frequency of the EM wave,tis the thickness of the absorber,andcis the velocity of light in free space.

    Figures 6(a)–6(f) show the thickness dependence of theRL–fcurves for the Ba(CoTi)xFe12?2xO19@BiFeO3with variousx. As shown in Figs. 6(a) and 6(b), the samples withx= 0.9 and 1.0 display poor EM wave absorption properties with the minimum value of reflection loss (RLmin)above?10 dB when thickness is from 2.0 mm to 4.0 mm.As shown in Fig. 6(c), whenxincreases to 1.1, theRLminreaches?34.43 dB at 955 MHz and the effective bandwidth is 120 MHz (880 MHz–1 GHz) for a thickness of 3.5 mm.The sample withx=1.2 exhibits extremely good EM wave absorption properties, as shown in Fig. 6(d). ItsRLmincan reach?30.42 dB at 617 MHz and the corresponding effective bandwidth reaches 563 MHz in the range of 437 MHz–1 GHz when the thickness is 3.5 mm. The sample withx=1.3 also shows excellent EM wave absorption properties. ItsRLminreaches?40.63 dB at 910 MHz and the effective bandwidth is 190 MHz (810 MHz–1 GHz) for a thickness of 4 mm, as shown in Fig. 6(e). For the sample withx= 1.4, the EM wave absorption properties are slightly decreased. TheRLminreaches?25.41 dB at 990 MHz and the effective bandwidth is 22 MHz(978 MHz–1 GHz)for a thickness of 3 mm,as shown in Fig.6(f).

    It is well known that good impedance matching properties are the necessary condition for excellent EM wave absorption properties.[48,49]Figures 7(a)–7(f) show the relative input impedances (|Zin/Z0|) versus frequency of Ba(CoTi)xFe12?2xO19@BiFeO3with a thickness of 2–4 mm.It can be clearly seen that the value of|Zin/Z0| increases with frequency for samples withx=0.9 and 1.0,but is much smaller than 1.0 in the megahertz band. Therefore, their EM wave absorption properties are poor due to the impedance mismatch and the low permeability. For samples withx=1.1,1.2, 1.3 and 1.4, the impedance matching properties are improved due to increased permeability,the|Zin/Z0|value firstly increases and then decreases with frequency,and approach 1.0 at relatively high frequency bands(400 MHz–1 GHz), which means that these samples may obtain better microwave absorption properties in high frequency bands.

    Fig.6. Thickness-dependent RL–f curves of Ba(CoTi)xFe12?2xO19@BiFeO3 absorbers; (a)x=0.9,(b)x=1.0,(c)x=1.1,(d)x=1.2,(e)x=1.3,and(f)x=1.4.

    Fig.7. The dependence of the relative input impedance|Zin/Z0|on the frequency for Ba(CoTi)xFe12?2xO19@BiFeO3;(a)x=0.9,(b)x=1.0,(c)x=1.1,(d)x=1.2,(e)x=1.3,(f)x=1.4.

    3.6. EM wave absorption mechanism

    It can be seen from Fig.6(d)that theRLpeak frequency of the sample withx=1.2 moves from 661 MHz to 596 MHz and the intensity firstly increases then decreases with the absorber thickness increases from 2.5 mm to 4.0 mm.This phenomenon can be explained by the interface cancelation model.[50,51]According to the interface cancelation model

    the total energy absorption by the absorber includes the part of interface cancelation and the part of internal loss

    the calculation results are shown in Figs.8(a)–8(d),where the blue solid lines represent the total energy(Etotal)absorbed by the absorbers, the red solid lines represent the attenuated energy(Eloss)of the EM waves inside the absorber,and the solid green lines represent the cancelation energy(E′loss)of reflected waves at the front and back interfaces, and the symbol lines represent theRL–fcurves. It can be seen that the red solid lines are much higher than the green solid lines in the effective absorption frequency band (RL ≤?10 dB). This means that the absorption of EM waves by the absorber mainly originates from the high loss inside the absorber. The internal loss mainly comes from the magnetic loss caused by the natural resonance.[54]As shown in Fig. 8(a), when the thickness of the absorber is 2.5 mm,Elossaccounts for 56%–77% of the incident wave energy, the bandwidth is 514 MHz. TheElossincreases with the increasing thickness of the absorber. When the thickness of the absorber reaches 4 mm,Elossaccounts for 63%–85%of the incident wave energy,and the bandwidth reaches 585 MHz. This indicates that high internal loss can increase the bandwidth of the absorber.

    For absorber with a thickness of 3.5 mm,Elossincreases with frequency,and the maximum value at 1 GHz is about 83%(?7.70 dB)of the energy of the incident wave,which does not match with the frequency and intensity of theRLpeak. It indicates that strong absorption peaks cannot be achieved by only internal loss.E′lossfirstly increases and then decreases with frequency,the maximum value ofE′lossmoves to lower frequency with the increase of absorber thickness. TheRL–fcurves exhibit the same trend with the variation of frequency and thickness. This further indicates that theRLpeaks are attributed to interface cancelation. The interface cancelation enhances the absorption properties and generates sharp absorption peaks(?30.42 dB).From above discussions,it can be concluded that the excellent wave absorption properties are based on the combination of high loss inside the absorber and the interface cancelation. The frequency and intensity ofRLpeak are mainly determined by the interface cancelation, and the internal loss plays a crucial role in expanding the bandwidth.

    Fig. 8. The total energy loss (blue lines), internal energy loss (red lines), interface cancelation energy loss (green lines) and RL–f curves(symbol lines)of the absorber with various thickness(a)2.5 mm,(b)3.0 mm,(c)3.5 mm,(d)4.0 mm.

    4. Conclusion

    Herein,the Ba(CoTi)xFe12?2xO19@BiFeO3EM wave absorption material with different Co2+?Ti4+content is successfully prepared, and its low?frequency EM wave absorption properties are investigated. The experimental results show that Ba(CoTi)xFe12?2xO19@BiFeO3exhibits excellent wave absorption properties at different Co2+–Ti4+content.The best comprehensive property is obtained forx= 1.2,in which case, the absorber has the highest permeability,internal loss and the best impedance matching properties,

    where theRLminand effective bandwidth are?30.43 dB,617 MHz,respectively.The investigation on absorption mechanism shows that the strong EM wave absorption properties of Ba(CoTi)xFe12?2xO19@BiFeO3are mainly originated from the internal loss caused by natural resonance,and the interface cancelation of the reflected waves from the front and back interfaces further improves the absorption intensity and generates aRLpeak.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 11574122) and the Joint Fund of Equipment Pre-Research and Ministry of Education, China(Grant No.6141A02033242).

    猜你喜歡
    劉暢王濤王國
    綿師學(xué)人
    ——王濤
    Transition to chaos in lid–driven square cavity flow?
    地下王國
    逃離鼠王國
    建立新王國
    NBA特刊(2018年21期)2018-11-24 02:47:48
    王濤作品
    春來啦
    STABILITY OF VISCOUS SHOCK WAVES FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES E QUATIONS WITH DENSITY-DEPENDENT VISCOSITY?
    珍視自我
    夏天咋來的
    在线观看免费高清a一片| 好看av亚洲va欧美ⅴa在| 巨乳人妻的诱惑在线观看| 日本wwww免费看| 一区二区三区国产精品乱码| 99久久国产精品久久久| 夜夜爽天天搞| 电影成人av| av网站免费在线观看视频| 日韩视频一区二区在线观看| 成人亚洲精品一区在线观看| 日本黄色日本黄色录像| 久久精品国产亚洲av高清一级| 亚洲精品成人av观看孕妇| 老汉色∧v一级毛片| 涩涩av久久男人的天堂| 欧美黄色片欧美黄色片| 国产亚洲精品久久久久5区| 一个人观看的视频www高清免费观看 | 又黄又粗又硬又大视频| 免费日韩欧美在线观看| 国产精品一区二区精品视频观看| 黄色成人免费大全| 亚洲一区二区三区色噜噜 | 久久香蕉国产精品| 午夜福利在线免费观看网站| 满18在线观看网站| 久久久久九九精品影院| 操出白浆在线播放| 丰满人妻熟妇乱又伦精品不卡| a级毛片黄视频| 欧美av亚洲av综合av国产av| 男女下面插进去视频免费观看| 国产单亲对白刺激| 欧美人与性动交α欧美软件| 国产又色又爽无遮挡免费看| 亚洲一码二码三码区别大吗| 高清在线国产一区| 妹子高潮喷水视频| 亚洲精品粉嫩美女一区| 免费在线观看黄色视频的| 久久青草综合色| 国产一区二区三区视频了| 国产精品免费一区二区三区在线| 又大又爽又粗| 亚洲精品久久午夜乱码| 韩国精品一区二区三区| 欧美日韩乱码在线| 中文字幕色久视频| 欧美日韩精品网址| 欧美黄色片欧美黄色片| 免费在线观看黄色视频的| 久久 成人 亚洲| 手机成人av网站| 久久人人97超碰香蕉20202| 日韩成人在线观看一区二区三区| 男女下面进入的视频免费午夜 | www国产在线视频色| 夫妻午夜视频| 窝窝影院91人妻| 免费日韩欧美在线观看| 欧美日韩黄片免| 亚洲自拍偷在线| 国产蜜桃级精品一区二区三区| 中文字幕人妻丝袜一区二区| 99精国产麻豆久久婷婷| 中国美女看黄片| 欧美丝袜亚洲另类 | 欧美成人午夜精品| 女生性感内裤真人,穿戴方法视频| 午夜精品久久久久久毛片777| 一级毛片女人18水好多| 婷婷精品国产亚洲av在线| 成在线人永久免费视频| 欧美成人免费av一区二区三区| 老司机亚洲免费影院| 在线观看一区二区三区激情| 一级,二级,三级黄色视频| 免费av中文字幕在线| 又紧又爽又黄一区二区| 男女床上黄色一级片免费看| 麻豆国产av国片精品| 亚洲色图综合在线观看| 国产野战对白在线观看| 久久精品91无色码中文字幕| 夜夜躁狠狠躁天天躁| 欧美亚洲日本最大视频资源| 天天添夜夜摸| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品国产区一区二| 亚洲狠狠婷婷综合久久图片| 美女扒开内裤让男人捅视频| 国产亚洲av高清不卡| 18禁国产床啪视频网站| 免费在线观看黄色视频的| 午夜日韩欧美国产| av欧美777| 午夜福利在线观看吧| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品久久久久久毛片| 日韩欧美三级三区| 一进一出抽搐动态| 女性被躁到高潮视频| 亚洲片人在线观看| av福利片在线| 热99国产精品久久久久久7| 亚洲精品久久成人aⅴ小说| 18美女黄网站色大片免费观看| 久久午夜综合久久蜜桃| 久久欧美精品欧美久久欧美| 免费人成视频x8x8入口观看| 免费在线观看日本一区| 在线观看一区二区三区激情| 中文欧美无线码| 亚洲精品av麻豆狂野| 午夜免费成人在线视频| av超薄肉色丝袜交足视频| 午夜久久久在线观看| www日本在线高清视频| 9色porny在线观看| 男女午夜视频在线观看| 丝袜人妻中文字幕| 亚洲午夜理论影院| 午夜福利一区二区在线看| 嫁个100分男人电影在线观看| 夜夜躁狠狠躁天天躁| 欧美+亚洲+日韩+国产| 99国产综合亚洲精品| 婷婷丁香在线五月| 国产精品亚洲一级av第二区| 亚洲av成人av| 精品欧美一区二区三区在线| 丝袜在线中文字幕| 久久久久久久午夜电影 | av欧美777| 亚洲人成电影观看| 日日爽夜夜爽网站| 久热这里只有精品99| 两性夫妻黄色片| 中文字幕高清在线视频| 80岁老熟妇乱子伦牲交| 久久九九热精品免费| 一级毛片高清免费大全| 精品一品国产午夜福利视频| 久久性视频一级片| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机午夜十八禁免费视频| 又黄又爽又免费观看的视频| 日韩三级视频一区二区三区| 国产单亲对白刺激| 亚洲国产欧美日韩在线播放| 国产精品av久久久久免费| 成熟少妇高潮喷水视频| 国产高清视频在线播放一区| 电影成人av| 日韩大尺度精品在线看网址 | 叶爱在线成人免费视频播放| 国产在线精品亚洲第一网站| 欧美av亚洲av综合av国产av| 一区二区三区精品91| 麻豆一二三区av精品| 国产精品久久久av美女十八| 午夜免费激情av| 一级毛片高清免费大全| 亚洲精品一二三| 美女 人体艺术 gogo| 欧美日韩瑟瑟在线播放| 亚洲第一青青草原| 中文字幕色久视频| 午夜精品国产一区二区电影| 午夜福利在线观看吧| 日日摸夜夜添夜夜添小说| 国产成人系列免费观看| 中文字幕人妻熟女乱码| 欧美日韩av久久| 一二三四社区在线视频社区8| 免费不卡黄色视频| 精品国产超薄肉色丝袜足j| 成在线人永久免费视频| 日韩大尺度精品在线看网址 | 久久精品国产亚洲av高清一级| 国产日韩一区二区三区精品不卡| 国产精品久久久av美女十八| 在线观看免费午夜福利视频| 亚洲精品成人av观看孕妇| 视频区欧美日本亚洲| 欧美日韩亚洲国产一区二区在线观看| 国产深夜福利视频在线观看| 中文欧美无线码| 国产伦一二天堂av在线观看| 一进一出好大好爽视频| 大码成人一级视频| 男人舔女人的私密视频| 亚洲精华国产精华精| 免费一级毛片在线播放高清视频 | 久久亚洲真实| 黑人操中国人逼视频| 另类亚洲欧美激情| 中文字幕色久视频| 嫩草影视91久久| 精品福利永久在线观看| 午夜91福利影院| 免费av毛片视频| 久久这里只有精品19| 国产精品1区2区在线观看.| 国产三级黄色录像| 丰满迷人的少妇在线观看| 亚洲精品在线观看二区| 后天国语完整版免费观看| 亚洲va日本ⅴa欧美va伊人久久| 男女床上黄色一级片免费看| 色尼玛亚洲综合影院| 大型黄色视频在线免费观看| 两性夫妻黄色片| 欧美 亚洲 国产 日韩一| 午夜福利,免费看| 久久久国产成人精品二区 | 夜夜夜夜夜久久久久| 亚洲五月色婷婷综合| 午夜福利在线免费观看网站| 一级毛片女人18水好多| 亚洲激情在线av| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区mp4| 久久精品人人爽人人爽视色| 精品久久久久久久久久免费视频 | 黄色片一级片一级黄色片| 亚洲欧美精品综合一区二区三区| 中文字幕人妻丝袜制服| 久久国产亚洲av麻豆专区| 一区二区日韩欧美中文字幕| 少妇的丰满在线观看| 精品一区二区三区视频在线观看免费 | 久久这里只有精品19| 黑人巨大精品欧美一区二区mp4| 99国产综合亚洲精品| 久久久久久久久免费视频了| 国产蜜桃级精品一区二区三区| 亚洲欧美激情综合另类| 精品一区二区三区视频在线观看免费 | e午夜精品久久久久久久| 精品少妇一区二区三区视频日本电影| 最近最新中文字幕大全免费视频| 好看av亚洲va欧美ⅴa在| 国产精品二区激情视频| 亚洲精品国产色婷婷电影| 亚洲精品一区av在线观看| 91国产中文字幕| 老司机亚洲免费影院| 国产精品日韩av在线免费观看 | 国产亚洲精品久久久久久毛片| 91av网站免费观看| 9191精品国产免费久久| 黄色视频不卡| 91老司机精品| 欧美午夜高清在线| 亚洲第一欧美日韩一区二区三区| 国产精品影院久久| 一进一出抽搐动态| 12—13女人毛片做爰片一| 一级片免费观看大全| 久久精品国产综合久久久| 日韩欧美三级三区| av天堂久久9| 搡老岳熟女国产| 三级毛片av免费| 日韩中文字幕欧美一区二区| 在线观看午夜福利视频| 国产乱人伦免费视频| 国产三级黄色录像| 高清在线国产一区| 两个人免费观看高清视频| 国产亚洲欧美98| 亚洲精品中文字幕在线视频| 日韩高清综合在线| 亚洲精品一卡2卡三卡4卡5卡| 国产av精品麻豆| 制服人妻中文乱码| 国产精品久久久人人做人人爽| 女人被狂操c到高潮| 一级黄色大片毛片| 久久天躁狠狠躁夜夜2o2o| 国产精品久久久久成人av| 国产精品二区激情视频| 搡老乐熟女国产| 国产一区在线观看成人免费| 亚洲人成伊人成综合网2020| 三上悠亚av全集在线观看| 18禁裸乳无遮挡免费网站照片 | 欧洲精品卡2卡3卡4卡5卡区| 久久狼人影院| 欧美成人免费av一区二区三区| 精品人妻1区二区| 别揉我奶头~嗯~啊~动态视频| 亚洲精品成人av观看孕妇| 久久99一区二区三区| 真人做人爱边吃奶动态| 亚洲精品粉嫩美女一区| 国产精品电影一区二区三区| 深夜精品福利| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久av美女十八| 可以免费在线观看a视频的电影网站| 午夜精品国产一区二区电影| 免费在线观看黄色视频的| 精品国产超薄肉色丝袜足j| 中亚洲国语对白在线视频| 欧美日韩瑟瑟在线播放| 久久99一区二区三区| 亚洲国产欧美网| 长腿黑丝高跟| 可以在线观看毛片的网站| 欧美激情 高清一区二区三区| 法律面前人人平等表现在哪些方面| 欧美av亚洲av综合av国产av| 狂野欧美激情性xxxx| 黑人巨大精品欧美一区二区蜜桃| 18禁黄网站禁片午夜丰满| 999精品在线视频| 99riav亚洲国产免费| 水蜜桃什么品种好| 中亚洲国语对白在线视频| 亚洲午夜精品一区,二区,三区| 国内毛片毛片毛片毛片毛片| 高清欧美精品videossex| 免费高清在线观看日韩| 亚洲国产欧美网| 国产午夜精品久久久久久| xxx96com| 91精品三级在线观看| 国产日韩一区二区三区精品不卡| 亚洲,欧美精品.| 亚洲精品国产一区二区精华液| 亚洲国产精品sss在线观看 | 老汉色∧v一级毛片| 久久久久九九精品影院| 亚洲熟女毛片儿| 亚洲精华国产精华精| 老司机亚洲免费影院| 性色av乱码一区二区三区2| 99久久99久久久精品蜜桃| 成年人免费黄色播放视频| 国产在线精品亚洲第一网站| 88av欧美| 国产精品电影一区二区三区| 精品乱码久久久久久99久播| 亚洲欧美日韩高清在线视频| 亚洲熟妇中文字幕五十中出 | 成人亚洲精品一区在线观看| 91在线观看av| 香蕉丝袜av| 91在线观看av| 欧美日韩亚洲综合一区二区三区_| 9191精品国产免费久久| 少妇裸体淫交视频免费看高清 | 国产一区二区在线av高清观看| 91老司机精品| 国产黄a三级三级三级人| 看免费av毛片| 五月开心婷婷网| 麻豆一二三区av精品| 国产一区二区激情短视频| 日日夜夜操网爽| 99在线人妻在线中文字幕| 夜夜躁狠狠躁天天躁| 中文字幕人妻丝袜一区二区| 一级毛片精品| 一个人免费在线观看的高清视频| 午夜福利影视在线免费观看| 在线看a的网站| 亚洲一区中文字幕在线| 电影成人av| 亚洲欧美精品综合一区二区三区| 十八禁人妻一区二区| 国产精品一区二区精品视频观看| www.www免费av| 亚洲欧美激情在线| 麻豆国产av国片精品| 国产高清视频在线播放一区| 精品无人区乱码1区二区| 人人妻,人人澡人人爽秒播| 极品人妻少妇av视频| 精品人妻1区二区| 国产97色在线日韩免费| 日韩 欧美 亚洲 中文字幕| 美女扒开内裤让男人捅视频| 欧美午夜高清在线| 日韩大尺度精品在线看网址 | 国产国语露脸激情在线看| www.自偷自拍.com| 亚洲一区高清亚洲精品| avwww免费| 国产激情久久老熟女| 欧美黑人精品巨大| xxx96com| av有码第一页| 久久精品亚洲精品国产色婷小说| 亚洲国产精品一区二区三区在线| 国产乱人伦免费视频| 1024视频免费在线观看| 欧美日韩黄片免| 欧美日韩一级在线毛片| 国产av在哪里看| 中文字幕色久视频| 午夜福利一区二区在线看| 国产高清国产精品国产三级| 宅男免费午夜| 国产精品电影一区二区三区| 99国产综合亚洲精品| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美最黄视频在线播放免费 | 9色porny在线观看| 亚洲中文av在线| 精品卡一卡二卡四卡免费| 精品国产乱码久久久久久男人| 免费在线观看视频国产中文字幕亚洲| 一级片免费观看大全| 午夜两性在线视频| 国产欧美日韩综合在线一区二区| 午夜影院日韩av| 成人三级做爰电影| 久久精品国产清高在天天线| 夜夜躁狠狠躁天天躁| 女性生殖器流出的白浆| 国产成+人综合+亚洲专区| 日日干狠狠操夜夜爽| 激情在线观看视频在线高清| 久久精品亚洲av国产电影网| 亚洲专区中文字幕在线| 久久草成人影院| 在线观看免费视频网站a站| 久久久久精品国产欧美久久久| 人人妻人人爽人人添夜夜欢视频| 精品高清国产在线一区| а√天堂www在线а√下载| 精品一品国产午夜福利视频| 久久久久久亚洲精品国产蜜桃av| 国产真人三级小视频在线观看| 国内久久婷婷六月综合欲色啪| 亚洲,欧美精品.| 欧美最黄视频在线播放免费 | 丝袜人妻中文字幕| 999精品在线视频| 美女 人体艺术 gogo| 美女大奶头视频| svipshipincom国产片| 日韩欧美三级三区| 丝袜美足系列| 日韩av在线大香蕉| 在线观看www视频免费| 久99久视频精品免费| 乱人伦中国视频| 欧美一级毛片孕妇| 国产主播在线观看一区二区| 夜夜躁狠狠躁天天躁| 淫秽高清视频在线观看| 在线十欧美十亚洲十日本专区| 亚洲五月天丁香| 999久久久精品免费观看国产| 日本一区二区免费在线视频| 免费少妇av软件| 少妇的丰满在线观看| 在线永久观看黄色视频| 亚洲 欧美一区二区三区| 亚洲人成77777在线视频| 热99国产精品久久久久久7| 一边摸一边抽搐一进一小说| 午夜精品国产一区二区电影| 91麻豆av在线| 欧美黑人欧美精品刺激| 精品久久久精品久久久| 久久精品成人免费网站| 日本免费一区二区三区高清不卡 | 欧美精品啪啪一区二区三区| 国产精品偷伦视频观看了| 男人舔女人的私密视频| 欧美成人免费av一区二区三区| 亚洲成人国产一区在线观看| 亚洲av片天天在线观看| av网站免费在线观看视频| 国产99白浆流出| av片东京热男人的天堂| 免费av毛片视频| 国产1区2区3区精品| 亚洲七黄色美女视频| 亚洲欧美激情在线| 日本vs欧美在线观看视频| 国产精品香港三级国产av潘金莲| xxxhd国产人妻xxx| 51午夜福利影视在线观看| 亚洲欧美激情在线| 免费在线观看亚洲国产| 在线观看免费视频网站a站| 人妻丰满熟妇av一区二区三区| 大陆偷拍与自拍| 亚洲精品一卡2卡三卡4卡5卡| 一级作爱视频免费观看| 搡老岳熟女国产| 欧美久久黑人一区二区| 亚洲九九香蕉| 亚洲三区欧美一区| e午夜精品久久久久久久| 国产精品久久久人人做人人爽| 啦啦啦在线免费观看视频4| 亚洲七黄色美女视频| 久久久久久免费高清国产稀缺| x7x7x7水蜜桃| 男女做爰动态图高潮gif福利片 | 岛国在线观看网站| 亚洲色图 男人天堂 中文字幕| 色在线成人网| 亚洲情色 制服丝袜| 成在线人永久免费视频| 一边摸一边做爽爽视频免费| 日本撒尿小便嘘嘘汇集6| 男女做爰动态图高潮gif福利片 | 成年版毛片免费区| 99热国产这里只有精品6| 国产成人系列免费观看| 午夜免费鲁丝| 51午夜福利影视在线观看| 国产99白浆流出| 女人被狂操c到高潮| 精品乱码久久久久久99久播| 日韩免费高清中文字幕av| 午夜免费激情av| 国产亚洲精品第一综合不卡| 精品第一国产精品| 国产精品av久久久久免费| 国产精品一区二区精品视频观看| 又大又爽又粗| 亚洲精品国产区一区二| 免费在线观看黄色视频的| 国产av在哪里看| 欧美另类亚洲清纯唯美| 亚洲激情在线av| 啦啦啦在线免费观看视频4| 国产精品自产拍在线观看55亚洲| 欧美乱色亚洲激情| 亚洲欧美一区二区三区黑人| 9热在线视频观看99| 午夜免费激情av| 18禁观看日本| 免费在线观看黄色视频的| 韩国精品一区二区三区| 免费不卡黄色视频| 亚洲精品一区av在线观看| www国产在线视频色| 亚洲国产看品久久| 国产精品 欧美亚洲| 1024香蕉在线观看| 亚洲精品久久午夜乱码| 成人免费观看视频高清| 韩国av一区二区三区四区| 18禁美女被吸乳视频| 亚洲专区国产一区二区| 亚洲五月婷婷丁香| 久久久久久人人人人人| 女人精品久久久久毛片| 亚洲国产看品久久| 国产高清videossex| 久久天堂一区二区三区四区| 精品一区二区三区av网在线观看| 亚洲av成人av| 午夜日韩欧美国产| 久久精品国产亚洲av高清一级| 国产精品98久久久久久宅男小说| 91国产中文字幕| 999久久久国产精品视频| 女人精品久久久久毛片| 国产一区在线观看成人免费| 国产av一区在线观看免费| 天堂动漫精品| 午夜91福利影院| 精品福利永久在线观看| 在线观看www视频免费| 精品一区二区三区四区五区乱码| 欧美av亚洲av综合av国产av| 国产成人啪精品午夜网站| 亚洲第一青青草原| 美女福利国产在线| 中文字幕人妻丝袜制服| 手机成人av网站| 大香蕉久久成人网| 久久人人97超碰香蕉20202| 欧美丝袜亚洲另类 | 国产熟女午夜一区二区三区| 人人妻,人人澡人人爽秒播| 色综合欧美亚洲国产小说| av视频免费观看在线观看| 淫妇啪啪啪对白视频| 国产亚洲欧美在线一区二区| 日韩免费高清中文字幕av| 母亲3免费完整高清在线观看| 日韩中文字幕欧美一区二区| 在线观看免费午夜福利视频| 国产三级在线视频| 欧美成人免费av一区二区三区| 一进一出好大好爽视频| 亚洲在线自拍视频| 午夜福利免费观看在线| 欧美国产精品va在线观看不卡| a级毛片在线看网站| 精品国产亚洲在线| 美女 人体艺术 gogo| 在线观看一区二区三区激情| 欧美中文综合在线视频| 久久精品国产亚洲av香蕉五月| 国产精品一区二区在线不卡| 91精品三级在线观看| av电影中文网址| 在线观看免费日韩欧美大片| 午夜免费成人在线视频| 法律面前人人平等表现在哪些方面| videosex国产|