• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes

    2022-08-01 05:59:24YiLi李毅MeiGe葛梅MeiyuWang王美玉YouhuaZhu朱友華andXinglongGuo郭興龍
    Chinese Physics B 2022年7期
    關(guān)鍵詞:李毅美玉

    Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友華), and Xinglong Guo(郭興龍)

    School of Information Science and Technology&Tongke School of Microelectronics,Nantong University,Nantong 226019,China

    Keywords: surface plasmon,AlGaN-based light emitting diodes,F(xiàn)DTD,K-P method

    1. Introduction

    AlGaN-based light emitting diodes (LEDs) as the deep ultraviolet (DUV) light sources have attracted great attention due to their potential applications in water purification,optical catalysis and other fields.[1]Although great progress has been made in the research of AlGaN-based DUV LEDs,[2]the luminous efficiency is still lower than that of GaN-based visible LEDs.[3]One of the limiting factors to improve the luminous efficiency of DUV-LEDs is the poor light extraction efficiency(LEE).Different from GaN material,the crystal-field split-off hole(CH)band of AlGaN alloy will become the topmost valence subband with the increase of Al-content,[4]which will lead to the transverse-magnetic (TM) dominated emission.[5]The TM polarization denotes that the emission polarization is perpendicular to thec-plane. Forc-plane AlGaN-based LEDs,TM polarized emission is difficult to extract from the top or bottom surface. In addition,due to the low conductivity of p-AlGaN,the p-GaN contact layer is often employed in AlGaNbased DUV-LEDs, which will lead to strong absorption and reduce the LEE of the device.[6]

    In order to improve the performance of DUV LEDs,structural design strategies are often used, such as ultrathin GaN/AlN multiple quantum well (MQW) structure[7]and lateral-polarity structure.[8]Moreover, an alternative method is to adopt the surface plasmon (SP) coupled LED structure, which can enhance both the internal quantum efficiency(IQE) and LEE.[9]For example, Heet al.reported that the IQE and LEE of DUV LED with Al nanoparticles (NPs) on SiO2dielectric interlayer were increased by 230% and 13%,respectively.[10]Interestingly, Zhanget al. reported that the enhancement ratio of transverse-electric(TE)mode was larger than that of TM mode through local SP (LSP) coupling,[11]which will help to improve the luminous efficiency ofc-plane LED devices. The TE polarization denotes that the polarization is parallel to thec-plane. The corresponding mechanism was considered that the LSP–QW coupling results in the conversion of some TM emission to TE emission. However, detailed theoretical analysis is lacking in the literature.

    In this study,we focus on the effect of SP coupling on the polarization characteristics of DUV LEDs by numerical calculation.Firstly,considering the valence band mixing effects and the scattering relaxation, the TE/TM polarized spontaneous emission (SE) rate into the SP mode are calculated by 6×6 K-P method.[12]The corresponding band structure is obtained by self-consistent solution of Schr¨odinger–Poisson equations.Then,the scattering process of radiating dipole with TE mode or TM mode in the metal nanostructures is investigated by the three-dimensional(3D)finite-difference time-domain(FDTD)simulation. Thus,the effect of the radiative recombination by SP–QW coupling and the scattering by metal nanostructures on the TE/TM polarized emissions can be described, respectively. Through these simulation results, the influence of SP coupling behavior on the optical anisotropy of AlGaN-based LEDs can be better understood.

    2. Theory

    When an electron-hole pair in the AlGaN QW is located within the SP fringing field penetration depth, the radiative recombination energy can be transferred into the SP mode instead of into the free space.[13]The corresponding SE rate into the SP mode can be expressed as[12]

    Here,kspandL2are the real part of wave vector and the inplane area, respectively. As taking account to ohmic loss of metal materials,the DOS of SPP mode will be broadened.[14]The modified DOS can be expressed as

    For TE polarized emission, the momentum matrix element|E·pσnm|2in formula(1)can be written as[12]

    Meanwhile,for TM polarized emission,the momentum matrix element is

    Fig.1. Schematic illustration of simulated structure.

    Fig. 2. The real part ε1 (a) and imaginary part ε2 (b) of the dielectric constants of Al0.5Ga0.5N,Al and Al2O3.

    3. Results and discussion

    3.1. DOS and normalized electric field of SPP mode

    Figure 3 shows the schematic diagram of the Al0.5Ga0.5N/Al/Al2O3slab structure and the dispersion relation of SPP modes with different Al thickness. The dispersion relation of the SPP mode is calculated by performing a parameter sweep over the wave vectorkspand looking for frequencies with strong resonances. In the calculation, the two-dimensional(2D)FDTD simulation is used. The dimension of the simulation range is 2 μm×1 nm for thezandxdirections. The PML boundary condition is set in thezdirection and the Bloch boundary condition is set in thexdirection.Ten randomly oriented dipoles are set in the simulation region.In Figs.3(b)and 3(c),two SPP modes from the AlGaN/Al and Al/Al2O3interfaces can be observed. In the regime of small wave vectorsksp, the dispersion curves from the AlGaN/Al interface are close to the light lines, and the waves can extend into the dielectric space. Therefore, SPPs are known as Sommerfeld–Zenneck waves in this regime.[17]In the regime of large wave vectors, the SPP mode from the AlGaN/Al interface approaches the SP“resonance”energy(ESP≈4.6 eV)asymptotically. For the thinner Al layer, the dispersion curve deviates slightly farther from the resonance energy due to the strong interaction of SPP modes in the two interfaces. In fact,when the thickness of Al is 50 nm,the dispersion curve almost coincides with that of semi infinite thickness Al film. The dotted lines in Figs.3(b)–3(d)are the SPP dispersion relation of AlGaN/Al/air structure,which is calculated by the formula[13]

    Hereε1,ε2,andε3are the permittivity of AlGaN,Al,and air,respectively.tis the thickness of Al film. It can be seen from the figure that the calculated results are basically consistent with the FDTD fitting result. That is to say, the influence of 3nm-thick Al2O3on the dispersion relation of SPP can be ignored.It should be noted that since the imaginary part of wave vectorkis difficult to obtain from FDTD simulation, we use the dispersion relation calculated by formula(6)when calculating the modified DOS of SPP mode. Figure 4 shows the modified DOS of SPP modes from the AlGaN/Al interface.For the Al0.5Ga0.5N/Al/Al2O3slab with different Al thickness,the modified DOS of SPP mode has a maximum value at 4.4–4.48 eV. The energy corresponding to the peak DOS of SPP mode is lower than the SP resonance energy,which can be attributed to the larger imaginary part of the wave vector at the SP resonance. In addition,compared with other Al film thickness,the peak DOS of 50 nm thick Al film is relatively large.

    Fig.3. (a)Schematic diagram of the Al0.5Ga0.5N/Al/Al2O3 slab structure and the dispersion relation of SPP modes with(b)16 nm Al film,(c)50 nm Al film,and(d)infinite thickness Al film.

    Fig. 4. The modified DOS from the AlGaN/Al interface for the Al0.5Ga0.5N/Al/Al2O3 slab with different Al thickness.

    Figure 5 shows the normalized electric field(Ex,Ez)with infinite thickness Al film, 50 nm Al film, 30 nm Al film, and 16 nm Al film from 2D FDTD simulation. The dimension of the simulation range is 1 μm×2 μm for thezandxdirections. The PML boundary conditions are set in the both directions. In order to eliminate the influence of“magnetic dipole”light source on detecting the electric field of SPP mode,a high absorption material is used to separate the light source from the monitor in the simulation. Only 4 nm gap are left to pass through the excited SPP mode from the AlGaN-Al interface.In Fig. 5(a), the normalized electric field solved analytically is also shown. The corresponding un-normalized electric field from the AlGaN–Al interface is calculated by the following formula:[18]

    Here,the subscripts M and D denote Al and AlGaN materials,respectively. From Fig.5(a),it can be seen that the FDTD fitting result is basically consistent with the analytical solution result. In addition, the SPP evanescent field decays exponentially. It can be seen from the figure that the evanescent field on the AlGaN side is almost 0 at a distance of 50 nm from the metal aluminum. The short SP coupling distance will become the difficulty in the practical preparation of SP coupled LED devices. With the decrease of Al layer thickness,the field intensity on AlGaN side decreases obviously due to the coupling of SPP modes from the two interfaces of Al layer. At the same time,the influence of the light source on the detected field distribution is more significant, so that the evanescent field on the AlGaN side of the structure with Al thickness of 16 nm will not be exponentially reduced to 0,as shown in Fig.5(d).Moreover,as Al thickness is decreased to 16 nm,it is also observed that theExcomponent of the normalized electric field on the AlGaN side is greater than theEzcomponent, which means that the SE rate of TE polarization will be greater than that of TM polarization.

    Fig.5. The normalized electric field with(a)infinite thickness Al film,(b)50 nm Al film,(c)30 nm Al film,and(d)16 nm Al film.

    3.2. SE rate into SPP mode

    By using the DOS and normalized electric field obtained above,the TE/TM polarized SE rate into the SPP mode is calculated. Here,the radiation dipole is considered to come from a quantum well structure composed of a 2 nm Al0.35Ga0.65N well layer and an 8 nm Al0.5Ga0.5N barrier layer. The band structure is calculated by the 6×6 K-P method. The sheet carrier density is set as 8×1012cm-2.Figure 6 shows the TE/TM polarized spontaneous emission spectra from the SP–QW coupling. The thickness of Al is set to be infinite. The spacingdbetween QW and Al is set to be 15 nm and 25 nm. Compared with the case without SP coupling,the SE rate into SPP mode is significantly improved regardless of TE polarized emission or TM polarized emission. However, the degree of polarization (DOP) decreased from-14% without SPP coupling to-44% (d=15 nm) and-42% (d=25 nm). The DOP is defined asρ=(ITE-ITM)/(ITE+ITM).ITEandITMare the integrated intensity of the TE-polarized and TM-polarized SE rate into SPP mode or free space.

    Fig. 6. TE/TM polarized spontaneous emission spectra from the SP–QW coupling. The thickness of Al is set to infinite. The spacing d between QW and Al is set to be 15 nm and 25 nm. The spontaneous emission spectrum without SP coupling is also shown.

    Fig.7.(a)TE/TM polarized spontaneous emission spectra from SP coupling with Al thickness of 16 nm, 30 nm, and 50 nm; (b) the TE/TM polarization total SE rate(Rsp)into SPP mode as a function of Al thickness. The Rsp into free space without SP coupling is also shown in(b).

    3.3. Transmittance for Al NP structure

    It is shown above that the DOP of SP coupled LED varies with Al thickness. However,due to the anisotropic extraction behavior of polarized light,[19]the actual DOP will be different from the above calculation results. Figure 8(a)shows the transmission spectra of an Al NP placed on the Al0.5Ga0.5N layer. The structure diagram of the simulation is shown in Fig.1. It can be obviously observed that the transmittance of TE-polarized light is much larger than that of TM-polarized light,which will lead to greater DOP.Compared with the case without SP coupling, the ratio of transmittance between TE polarization and TM polarization through SP coupling is significantly improved. Figure 8(b)shows the transmittance as a function of Al thickness atλ=285 nm. When the thickness of Al is less than 20 nm, the transmittance of TM polarization decreases significantly faster than that of TE polarization with the increase of Al thickness. When the thickness of Al is greater than 20 nm, the transmittance of both TE/TM polarizations basically remains unchanged with the increase of Al thickness. With the increase of Al thickness from 0 nm to 70 nm,the ratio of transmittance between TE polarized emission and TM polarized emission increases from 1.2 to 7.8. It should be noted that the position of radiation dipole can significantly affect the calculated TE/TM polarized light transmission ratio. For example, when the dipole moves from directly below Al NP to the edge, the ratio for the 30 nm Al NP structure decreases from 7.5 to 1.82. Nevertheless,the ratio of average transmittance of TE/TM polarized light can still reach 3.06. As a result, the DOP of SP coupled LED can be expected to be improved in the actual applications,as reported in Ref.[11].

    Fig. 8. (a) The transmission spectra of an Al NP placed on the Al0.5Ga0.5N layer; (b) the transmittance as a function of Al thickness at λ =285 nm.

    4. Conclusion

    In summary,the optical anisotropy of SP coupled LED is studied by 6×6 K-P method and FDTD simulation. Through SP coupling, the energy of the radiation dipole can be transferred to the SPP mode,which can be expected to improve the radiation recombination rate of LED devices. However, the dipole-SP coupling has different effects on TE/TM polarized emission. For the Al0.5Ga0.5N/Al/Al2O3slab structure,when the thickness of Al is less than 16 nm,the TE-polarized SE rate into SPP mode is significantly higher than that of TM mode due to the largerExcomponent of the normalized electric field on the AlGaN side. At the same time, when Al thickness is greater than 24 nm,TM polarized emission becomes the dominant emission, and the average total SE rate is greater than that without SP coupling. For the Al NPs structure,the extraction behavior of TE/TM polarized light is obviously different.Compared with the structure without Al,the decrease of transmittance of TM polarized light is much greater than that of TE polarized light. Thus, the ratio of transmittance between TE polarization and TM polarization for the 30 nm Al NP structure can be increased by 1.55 times atλ=285 nm.In practical application,the reasonable design of SP coupled LED device can significantly improve the DOP and luminous efficiency.

    Acknowledgements

    This work was supported by the National Nature Science Foundation of China (Grant Nos. 62004109, 61874168, and 62074086),Jiangsu Provincial Double-Innovation Doctor Program,Development of antibacterial multifunctional PVC facing new material technology(Grant No.21ZH626).

    猜你喜歡
    李毅美玉
    A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability
    The Iditarod
    Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer?
    Hunter—Gatherers
    Advantages and Disadvantages of Studying Abroad
    鄭美玉二三事
    海峽姐妹(2019年2期)2019-03-23 02:54:46
    伊源美玉—中國翠
    寶藏(2017年11期)2018-01-03 06:46:12
    國際標(biāo)準(zhǔn)攻堅克難“S試件”美玉漸成
    聚天下良友 琢百世美玉
    天工(2015年3期)2015-12-21 12:23:40
    美玉如華敬仰天地
    中國三峽(2014年4期)2014-04-25 08:45:52
    日本欧美国产在线视频| 19禁男女啪啪无遮挡网站| 亚洲国产看品久久| 性少妇av在线| 国产欧美日韩一区二区三区在线| 亚洲一区二区三区欧美精品| 日本爱情动作片www.在线观看| 日韩一区二区视频免费看| 亚洲免费av在线视频| 国产精品蜜桃在线观看| 亚洲av中文av极速乱| 一级黄片播放器| 亚洲欧美一区二区三区黑人| 亚洲人成电影观看| 色播在线永久视频| 熟女av电影| 在线观看三级黄色| 久久久久久人妻| 超色免费av| 亚洲四区av| 久久国产精品大桥未久av| 国产高清国产精品国产三级| 丝袜喷水一区| 国产国语露脸激情在线看| 高清欧美精品videossex| 亚洲国产日韩一区二区| 亚洲欧洲日产国产| 极品少妇高潮喷水抽搐| 久久久久精品久久久久真实原创| 99国产综合亚洲精品| 男女无遮挡免费网站观看| 亚洲四区av| 精品午夜福利在线看| 一级毛片黄色毛片免费观看视频| 黄片播放在线免费| 欧美老熟妇乱子伦牲交| 少妇的丰满在线观看| 另类精品久久| 永久免费av网站大全| 亚洲婷婷狠狠爱综合网| 欧美老熟妇乱子伦牲交| 夫妻午夜视频| 欧美人与善性xxx| 1024香蕉在线观看| 韩国av在线不卡| 亚洲国产欧美在线一区| 国产成人精品福利久久| 女人被躁到高潮嗷嗷叫费观| 女性被躁到高潮视频| 国产免费现黄频在线看| 中文字幕精品免费在线观看视频| 超碰成人久久| 亚洲精品美女久久av网站| 亚洲成人手机| 51午夜福利影视在线观看| 亚洲欧美精品综合一区二区三区| 日本色播在线视频| 丁香六月天网| 中文字幕最新亚洲高清| 亚洲av日韩精品久久久久久密 | 天堂俺去俺来也www色官网| 日本午夜av视频| 天天躁狠狠躁夜夜躁狠狠躁| 激情五月婷婷亚洲| 亚洲中文av在线| 在线 av 中文字幕| 国产一区二区三区av在线| 免费黄频网站在线观看国产| 久久ye,这里只有精品| 日韩熟女老妇一区二区性免费视频| 一本大道久久a久久精品| 国产精品国产三级专区第一集| 熟妇人妻不卡中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 欧美黑人欧美精品刺激| 又黄又粗又硬又大视频| 大香蕉久久成人网| 男女午夜视频在线观看| 国产高清国产精品国产三级| 精品国产一区二区三区久久久樱花| 侵犯人妻中文字幕一二三四区| 国产麻豆69| 国产av一区二区精品久久| 毛片一级片免费看久久久久| 男的添女的下面高潮视频| 国产精品蜜桃在线观看| 一边亲一边摸免费视频| 看免费成人av毛片| 久久久久精品性色| 视频区图区小说| 国产av一区二区精品久久| 99久久99久久久精品蜜桃| 色精品久久人妻99蜜桃| 亚洲美女搞黄在线观看| 欧美精品av麻豆av| 欧美日韩亚洲综合一区二区三区_| 老司机在亚洲福利影院| 亚洲国产av新网站| 亚洲第一青青草原| 中文字幕av电影在线播放| 日韩人妻精品一区2区三区| 久久久久久人妻| 亚洲国产欧美在线一区| 人妻一区二区av| 色播在线永久视频| 麻豆av在线久日| 女人被躁到高潮嗷嗷叫费观| 2018国产大陆天天弄谢| 午夜福利乱码中文字幕| 在线观看免费高清a一片| 汤姆久久久久久久影院中文字幕| 国产精品麻豆人妻色哟哟久久| 久久热在线av| 国产高清不卡午夜福利| 午夜av观看不卡| 搡老乐熟女国产| 精品免费久久久久久久清纯 | 丰满饥渴人妻一区二区三| 国产97色在线日韩免费| 高清视频免费观看一区二区| 99精国产麻豆久久婷婷| 在线看a的网站| av视频免费观看在线观看| 天天影视国产精品| 黄网站色视频无遮挡免费观看| 亚洲精品在线美女| xxx大片免费视频| 国产精品一区二区在线观看99| 女人被躁到高潮嗷嗷叫费观| 美女中出高潮动态图| 中文字幕人妻丝袜一区二区 | 精品第一国产精品| 中文欧美无线码| 亚洲国产精品999| 丝袜脚勾引网站| 桃花免费在线播放| 欧美黄色片欧美黄色片| 国产日韩欧美视频二区| 亚洲国产av新网站| 精品国产乱码久久久久久小说| 欧美精品av麻豆av| 少妇猛男粗大的猛烈进出视频| 超碰成人久久| 久久人人97超碰香蕉20202| 亚洲av在线观看美女高潮| 久久久久久久大尺度免费视频| 最近的中文字幕免费完整| 亚洲国产精品成人久久小说| 99久国产av精品国产电影| 婷婷色综合www| 亚洲成人一二三区av| 激情五月婷婷亚洲| netflix在线观看网站| 哪个播放器可以免费观看大片| 亚洲欧美成人精品一区二区| 精品少妇一区二区三区视频日本电影 | 在线精品无人区一区二区三| 老司机影院毛片| 晚上一个人看的免费电影| 色视频在线一区二区三区| 国产黄频视频在线观看| 亚洲成人国产一区在线观看 | 欧美中文综合在线视频| 丝袜美腿诱惑在线| 丝袜喷水一区| 国产精品嫩草影院av在线观看| 少妇的丰满在线观看| 国产成人精品久久久久久| 日本91视频免费播放| 一区二区三区乱码不卡18| 亚洲一级一片aⅴ在线观看| 你懂的网址亚洲精品在线观看| 国产亚洲精品第一综合不卡| 日韩欧美精品免费久久| 成人国语在线视频| 亚洲第一区二区三区不卡| 国产亚洲av片在线观看秒播厂| 欧美乱码精品一区二区三区| 日韩制服骚丝袜av| 国产男女超爽视频在线观看| 18禁观看日本| 日本av手机在线免费观看| 欧美精品一区二区免费开放| 亚洲,欧美,日韩| 婷婷色av中文字幕| 亚洲精品av麻豆狂野| 国产国语露脸激情在线看| 天天添夜夜摸| 国产xxxxx性猛交| 黄色视频在线播放观看不卡| 男女高潮啪啪啪动态图| 久久性视频一级片| 啦啦啦 在线观看视频| 老熟女久久久| 欧美 亚洲 国产 日韩一| 日韩av免费高清视频| 色精品久久人妻99蜜桃| 久久精品国产亚洲av涩爱| 女的被弄到高潮叫床怎么办| 国产高清国产精品国产三级| 国产熟女午夜一区二区三区| 国产男女超爽视频在线观看| 精品国产一区二区三区四区第35| 狂野欧美激情性bbbbbb| 精品一区二区三区av网在线观看 | 国产精品国产三级国产专区5o| 黄色怎么调成土黄色| 国产精品国产三级国产专区5o| 亚洲视频免费观看视频| 国产在线免费精品| 欧美激情高清一区二区三区 | 丁香六月欧美| 欧美乱码精品一区二区三区| 啦啦啦在线免费观看视频4| 少妇的丰满在线观看| 两性夫妻黄色片| 最近中文字幕2019免费版| 久久毛片免费看一区二区三区| 18禁观看日本| 国产精品嫩草影院av在线观看| 久久久久久久久免费视频了| 99久久精品国产亚洲精品| 一级,二级,三级黄色视频| 五月开心婷婷网| 在线观看一区二区三区激情| 欧美日本中文国产一区发布| 日韩人妻精品一区2区三区| 欧美日韩福利视频一区二区| 最新在线观看一区二区三区 | 国产欧美亚洲国产| 大陆偷拍与自拍| 黄频高清免费视频| 一本一本久久a久久精品综合妖精| 女人被躁到高潮嗷嗷叫费观| 老司机影院成人| 亚洲国产欧美日韩在线播放| 免费日韩欧美在线观看| 亚洲 欧美一区二区三区| 爱豆传媒免费全集在线观看| 国产极品天堂在线| 亚洲av电影在线进入| 1024香蕉在线观看| 无遮挡黄片免费观看| 亚洲精品国产区一区二| 老司机深夜福利视频在线观看 | 女的被弄到高潮叫床怎么办| 男人爽女人下面视频在线观看| 啦啦啦中文免费视频观看日本| 久久久久视频综合| 91aial.com中文字幕在线观看| 一级毛片黄色毛片免费观看视频| 亚洲国产精品999| 天天影视国产精品| 欧美亚洲日本最大视频资源| 午夜免费鲁丝| 一区在线观看完整版| 国产福利在线免费观看视频| 国产亚洲av片在线观看秒播厂| 国产精品久久久久成人av| 最黄视频免费看| 亚洲精品视频女| 国产熟女欧美一区二区| 亚洲男人天堂网一区| 欧美97在线视频| 国产深夜福利视频在线观看| 一边摸一边做爽爽视频免费| av电影中文网址| 免费观看性生交大片5| 亚洲国产中文字幕在线视频| 日韩制服骚丝袜av| 国产精品成人在线| 男的添女的下面高潮视频| 久久国产精品大桥未久av| 男女床上黄色一级片免费看| 青春草视频在线免费观看| 乱人伦中国视频| 国产亚洲一区二区精品| 免费日韩欧美在线观看| netflix在线观看网站| av在线播放精品| 激情五月婷婷亚洲| 国产精品人妻久久久影院| 亚洲欧洲国产日韩| 国产精品成人在线| 亚洲国产欧美一区二区综合| 成人亚洲欧美一区二区av| 国产一区二区三区综合在线观看| 国产午夜精品一二区理论片| 亚洲欧美色中文字幕在线| 老熟女久久久| 女人被躁到高潮嗷嗷叫费观| 日韩中文字幕欧美一区二区 | 欧美日韩视频高清一区二区三区二| 亚洲国产欧美在线一区| 免费在线观看黄色视频的| 久久性视频一级片| 亚洲一区二区三区欧美精品| 国产成人精品久久二区二区91 | 丝袜人妻中文字幕| 伊人亚洲综合成人网| 欧美日韩一区二区视频在线观看视频在线| 成人免费观看视频高清| 亚洲精品美女久久av网站| 熟女av电影| 一区二区日韩欧美中文字幕| 国产免费又黄又爽又色| 男女午夜视频在线观看| 自线自在国产av| 三上悠亚av全集在线观看| 飞空精品影院首页| 悠悠久久av| 女人被躁到高潮嗷嗷叫费观| 美女视频免费永久观看网站| 国产乱来视频区| 最近的中文字幕免费完整| 水蜜桃什么品种好| 美女国产高潮福利片在线看| 国产精品久久久久成人av| 婷婷色综合www| 中文字幕精品免费在线观看视频| av国产久精品久网站免费入址| 精品少妇内射三级| 亚洲婷婷狠狠爱综合网| 美女福利国产在线| 欧美黑人欧美精品刺激| 亚洲,欧美,日韩| 久久久久精品人妻al黑| 日韩,欧美,国产一区二区三区| 尾随美女入室| 亚洲久久久国产精品| 国产在线视频一区二区| 一级毛片 在线播放| 在线免费观看不下载黄p国产| videos熟女内射| 国产毛片在线视频| 中文天堂在线官网| 国产麻豆69| 日日摸夜夜添夜夜爱| 嫩草影视91久久| 国产一区有黄有色的免费视频| 国产日韩欧美在线精品| 久热这里只有精品99| 国产又色又爽无遮挡免| 另类亚洲欧美激情| 久久精品国产亚洲av涩爱| 亚洲精品美女久久av网站| 美女高潮到喷水免费观看| 成人亚洲欧美一区二区av| 黄频高清免费视频| a级毛片在线看网站| 一区二区三区精品91| 成人黄色视频免费在线看| 亚洲欧洲国产日韩| 97人妻天天添夜夜摸| 美女高潮到喷水免费观看| 街头女战士在线观看网站| 在线观看国产h片| 亚洲一区中文字幕在线| 国产又爽黄色视频| 免费观看人在逋| 色吧在线观看| 嫩草影院入口| 久热这里只有精品99| 捣出白浆h1v1| 中文字幕人妻丝袜制服| 国产黄色免费在线视频| 欧美人与性动交α欧美精品济南到| 精品一区二区三区四区五区乱码 | 久久狼人影院| 欧美人与善性xxx| 欧美日韩综合久久久久久| 满18在线观看网站| 日韩人妻精品一区2区三区| 日本色播在线视频| 成人国产av品久久久| 蜜桃在线观看..| 成年人免费黄色播放视频| 一级毛片黄色毛片免费观看视频| a级毛片在线看网站| 欧美日韩成人在线一区二区| av国产精品久久久久影院| 国产日韩欧美在线精品| 国产一区二区三区av在线| 国产老妇伦熟女老妇高清| 午夜免费男女啪啪视频观看| 久久狼人影院| 午夜老司机福利片| 婷婷色av中文字幕| 在线观看免费视频网站a站| 亚洲国产av影院在线观看| 欧美 日韩 精品 国产| 伊人亚洲综合成人网| 无限看片的www在线观看| 久久久久精品人妻al黑| √禁漫天堂资源中文www| 精品人妻一区二区三区麻豆| 欧美日韩视频精品一区| 久久久久国产精品人妻一区二区| 欧美激情高清一区二区三区 | 免费少妇av软件| 成人国语在线视频| 亚洲精品中文字幕在线视频| 成年美女黄网站色视频大全免费| 色播在线永久视频| 亚洲成av片中文字幕在线观看| 亚洲av中文av极速乱| 国产精品国产av在线观看| 亚洲精品美女久久久久99蜜臀 | 熟妇人妻不卡中文字幕| 久久久精品免费免费高清| 岛国毛片在线播放| 午夜福利网站1000一区二区三区| 国产精品一国产av| 爱豆传媒免费全集在线观看| 精品少妇久久久久久888优播| 亚洲欧美一区二区三区久久| 久久韩国三级中文字幕| 国产亚洲av高清不卡| tube8黄色片| 国产一区二区三区综合在线观看| 国产精品久久久久久人妻精品电影 | 久久ye,这里只有精品| 欧美 亚洲 国产 日韩一| 999久久久国产精品视频| 国产又色又爽无遮挡免| 欧美日韩一区二区视频在线观看视频在线| 黄片无遮挡物在线观看| 国产激情久久老熟女| 亚洲综合精品二区| 丝袜在线中文字幕| 另类亚洲欧美激情| 亚洲欧美一区二区三区黑人| 晚上一个人看的免费电影| 国产成人午夜福利电影在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产 一区精品| 国产亚洲午夜精品一区二区久久| 亚洲综合精品二区| 天天操日日干夜夜撸| 国产伦理片在线播放av一区| 美女脱内裤让男人舔精品视频| 一级毛片黄色毛片免费观看视频| 亚洲激情五月婷婷啪啪| 最新在线观看一区二区三区 | 亚洲伊人色综图| 国产日韩欧美在线精品| 久久久亚洲精品成人影院| 高清欧美精品videossex| 伦理电影大哥的女人| 9色porny在线观看| 久久久欧美国产精品| 亚洲熟女精品中文字幕| 制服人妻中文乱码| 狂野欧美激情性bbbbbb| 久久狼人影院| 精品免费久久久久久久清纯 | 校园人妻丝袜中文字幕| 亚洲精品第二区| 国产淫语在线视频| 亚洲av日韩在线播放| 国产97色在线日韩免费| 亚洲婷婷狠狠爱综合网| 午夜精品国产一区二区电影| 亚洲男人天堂网一区| 欧美亚洲 丝袜 人妻 在线| 亚洲欧洲日产国产| 一本大道久久a久久精品| 男人舔女人的私密视频| a级片在线免费高清观看视频| 亚洲欧美精品自产自拍| 亚洲av男天堂| 丝袜美足系列| 999久久久国产精品视频| 中文字幕人妻丝袜一区二区 | 校园人妻丝袜中文字幕| 侵犯人妻中文字幕一二三四区| 日韩电影二区| 男的添女的下面高潮视频| 一区二区三区乱码不卡18| 岛国毛片在线播放| 国产成人啪精品午夜网站| 纯流量卡能插随身wifi吗| 亚洲七黄色美女视频| 天堂8中文在线网| 国产乱人偷精品视频| 高清黄色对白视频在线免费看| 精品第一国产精品| 亚洲少妇的诱惑av| 欧美精品一区二区免费开放| 亚洲欧洲精品一区二区精品久久久 | 成人黄色视频免费在线看| 午夜免费鲁丝| 欧美成人精品欧美一级黄| 老汉色av国产亚洲站长工具| 日本午夜av视频| 亚洲色图综合在线观看| 国产欧美日韩一区二区三区在线| 亚洲在久久综合| 亚洲欧洲国产日韩| 一本久久精品| avwww免费| 这个男人来自地球电影免费观看 | 国产精品蜜桃在线观看| 久久女婷五月综合色啪小说| 久久久久人妻精品一区果冻| 一区福利在线观看| 伦理电影免费视频| 男人添女人高潮全过程视频| 日本wwww免费看| 麻豆精品久久久久久蜜桃| 国产免费福利视频在线观看| 中文字幕av电影在线播放| 久久久精品免费免费高清| 色婷婷av一区二区三区视频| 在线观看www视频免费| 大话2 男鬼变身卡| 天天躁日日躁夜夜躁夜夜| 少妇被粗大的猛进出69影院| 一区在线观看完整版| 亚洲综合精品二区| 欧美变态另类bdsm刘玥| 免费观看a级毛片全部| 热re99久久国产66热| 日韩 欧美 亚洲 中文字幕| 一级,二级,三级黄色视频| 日本爱情动作片www.在线观看| 国产乱人偷精品视频| 国产精品久久久久久人妻精品电影 | 一区二区日韩欧美中文字幕| 青草久久国产| 精品久久久精品久久久| 日韩欧美一区视频在线观看| 国产一区二区三区av在线| 王馨瑶露胸无遮挡在线观看| 久久精品熟女亚洲av麻豆精品| 国产精品成人在线| 99九九在线精品视频| 80岁老熟妇乱子伦牲交| 日本午夜av视频| av不卡在线播放| 国产毛片在线视频| 亚洲av男天堂| 青春草国产在线视频| 亚洲人成77777在线视频| 亚洲欧洲日产国产| 中文字幕制服av| 亚洲七黄色美女视频| 久久久久久久精品精品| 人人妻,人人澡人人爽秒播 | 久久久精品区二区三区| 亚洲av电影在线进入| 精品一区在线观看国产| 悠悠久久av| 91精品三级在线观看| 操美女的视频在线观看| 一边摸一边做爽爽视频免费| 亚洲成人av在线免费| 亚洲国产精品一区三区| 男女午夜视频在线观看| 在线观看免费日韩欧美大片| 亚洲欧美清纯卡通| 91精品三级在线观看| 一级片'在线观看视频| 飞空精品影院首页| 永久免费av网站大全| 91精品伊人久久大香线蕉| 久久久欧美国产精品| 免费不卡黄色视频| 国产精品免费视频内射| 老司机影院毛片| 黄片播放在线免费| 美女中出高潮动态图| 国产国语露脸激情在线看| 久久人人爽人人片av| 黄频高清免费视频| 亚洲 欧美一区二区三区| 考比视频在线观看| 桃花免费在线播放| 晚上一个人看的免费电影| 一级,二级,三级黄色视频| 丰满少妇做爰视频| 午夜福利,免费看| 国产男人的电影天堂91| 日韩制服丝袜自拍偷拍| 91国产中文字幕| 9热在线视频观看99| 午夜福利在线免费观看网站| 人人澡人人妻人| 久久婷婷青草| 爱豆传媒免费全集在线观看| 熟妇人妻不卡中文字幕| 国产精品偷伦视频观看了| 亚洲精品日本国产第一区| 夫妻性生交免费视频一级片| 黄色怎么调成土黄色| 热99久久久久精品小说推荐| 亚洲国产欧美在线一区| 国产乱人偷精品视频| av福利片在线| 亚洲精品第二区| 久久久久久免费高清国产稀缺| 人成视频在线观看免费观看| 好男人视频免费观看在线| 亚洲精品美女久久av网站| 精品一区在线观看国产| 亚洲国产看品久久| 爱豆传媒免费全集在线观看| 人人妻,人人澡人人爽秒播 | 国产野战对白在线观看| 国产国语露脸激情在线看| 老汉色∧v一级毛片| 亚洲精品久久久久久婷婷小说| av女优亚洲男人天堂| 免费高清在线观看日韩| 久久韩国三级中文字幕|