• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability

    2022-01-10 14:51:24JianshengYAO姚建生YingkuiZHAO趙英奎DifaYE葉地發(fā)YiLI李毅LihuiCHAI柴立暉andJichengSUN孫繼承
    Plasma Science and Technology 2021年12期
    關(guān)鍵詞:李毅

    Jiansheng YAO (姚建生) , Yingkui ZHAO (趙英奎), Difa YE (葉地發(fā)),Yi LI (李毅), Lihui CHAI (柴立暉) and Jicheng SUN (孫繼承)

    1Institute of Applied Physics and Computational Mathematics,Beijing 100088,People’s Republic of China

    2 CAS Key Lab of Geospace Environment,School of Earth and Space Sciences,University of Science and Technology of China, Hefei 230026, People’s Republic of China

    3 Key Laboratory of Earth and Planetary Physics,Institute of Geology and Geophysics,Chinese Academy of Sciences, Beijing 100029, People’s Republic of China

    4 Key Laboratory of Polar Science,Ministry of Natural Resources,Shanghai 200020,People’s Republic of China

    5 MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, People’s Republic of China

    Abstract Most protons in the solar wind belong to one of two different populations, the less dense beam protons and the denser core protons.The beam protons, with a velocity of (1–2) VA (VA is the local Alfvén speed),always drift relative to the core protons;this kind of distribution is unstable and stimulates several kinds of wave mode.In this study, using a 2D hybrid simulation model,we find that the original right-handed elliptically polarized Alfvén waves become linearly polarized, and eventually become right-handed and circularly polarized.Given that linearly polarized waves are a superposition of left-handed and right-handed waves,cyclotron resonance in the right-handed/left-handed component heats beam/core protons perpendicularly.The resonance between beam protons and right-handed polarized waves is stronger when the beam relative density is lower, resulting in more dramatic perpendicular heating of beam protons,whereas the situation is reversed when the beam relative density is larger.

    Keywords: proton/proton instability, hybrid simulation, Alfvén waves

    1.Introduction

    In situmeasurements of the solar wind, especially for fast solar wind with a typical flow speedvSW>600 km s?1,have shown that the distribution of solar-wind protons is very different from a Maxwellian distribution [1–6].Two significantly different components populate proton distributions:the less-dense proton population (always referred to as the beam population)drifts with a velocity of(1–2)VA(VAis the local Alfvén speed) relative to the more dense population(called the core population) and parallel to the ambient magnetic fieldB0.Recently, the successful launch of contemporary inner heliospheric missions, i.e., NASA’s Parker Solar Probe,and ESA’s Solar Orbiter,has sparked a research boom on the topic of the fast solar wind [7–9].Using linear theory, previous studies [10–14] have proved that two types of wave mode are unstable in the ion-beam system: magnetosonic instability with a maximum growth rate along the ambient magnetic field and the Alfvén mode that propagates obliquely toB0.Further studies by Daughton and Gary [12]have shown that, compared with the magnetosonic wave, the Alfvén mode has a larger growth rate and a lower threshold at a sufficiently large beam density and a sufficiently small core plasma beta (the ratio of thermal pressure to magnetic pressure).

    According to their differences in ion type, electromagnetic ion–ion instabilities can be roughly classified into electromagnetic alpha–proton [15, 16], heavy-ion–proton[17],and electromagnetic proton–proton instabilities[18–22].An investigation into the electromagnetic alpha–proton instability showed that during nonlinear evolution, the wavenumber,frequency,and propagation angle of the oblique Alfvén mode all drift to smaller values.A study of heavy-ion–proton instability [17] revealed that the velocity threshold of the right-handed polarized ion–ion resonant instability decreases with a decrease in the gyrofrequency of the beam ions.

    Research [22] into proton–proton beam instability has shown that wave parallel wavenumbers and frequencies may grow during evolution, and that protons and heavy ions are heated perpendicularly [19, 22].Furthermore, a previous study[21]found that when the proton beam relative density is high enough,the frequencies of the oblique Alfvén mode can exceed the proton gyrofrequency.Since Alfvén waves generated by electromagnetic proton–proton instability may be closely related to solar-wind heating, many researchers [19,23–27] have been devoted to studying the heating of core protons and heavy ions.In this study, we find an interesting phenomenon: beam perpendicular heating is stronger when the relative beam density is higher, while core perpendicular heating is stronger when the relative beam density is lower.Further investigation has revealed that perpendicular heating in these two situations corresponds to different polarized wave modes.

    In this paper, a 2D hybrid simulation model [28–30] is applied in order to investigate the perpendicular heating of protons by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability.This paper consists of four sections: the simulation model is described in section 2, the simulation results are illustrated in section 3,and the summary and discussion are presented in section 4.

    2.Simulation model

    A 2D hybrid simulation model is applied in this paper.In the hybrid simulation model, ions are treated as macroparticles,while electrons are treated as a massless fluid and follow the motion of ions.The simulation is performed in thex-yplane.According to observations in the solar wind [1–6], doublepeak-distributed protons consist of two components: a core population marked with the subscript ‘c’ and a less dense beam component drifting along the ambient magnetic field marked with the subscript‘b’.In the simulation,the direction of the drift velocity is along the ambient magnetic fieldB0and all along thex-axis.Initially, the core protons satisfy a Maxwellian distribution and the beam protons drift relative to the core protons with a velocityUbc=1.55VA.Previous studies have proved that electromagnetic ion–ion instability is dominant in the region with smallβcand reasonable beam velocities.Thus,in this study,the initial plasma beta for core and beam protons is set toβc=βb= 0.01and the plasma beta of electrons isβe= 0.01.Two runs with different beam relative densitiesnb/neare reported in this paper, wherene=nb+nc:run 1 usesnb/ne=0.15and run 2 usesnb/ne=0.4.These two scenarios depict situations with small and large beam relative densities, respectively.

    In the simulation, the unit of length is the proton inertial length,which is defined asdi=c/ωp,wherecandωpare the speed of light and the proton plasma frequency, respectively.The unit of time is the reciprocal of the proton gyrofrequency.Therefore, the velocity is normalized todiΩp,which is equivalent to the Alfvén speedVA.The total number of grid cells isnx×ny=256 ×256and the size of each cell is 0.8di×0.8di.To guarantee the stability of the simulation,the time step is set toΔt=0.025and the electron resistive length is set toTo reduce numerical disturbance, the average proton number in each cell is 100.The periodic boundary condition is applied in this simulation.The resolutions of the wavenumber and the wave frequency are 3.927 (c/ωp)?1and 3.14,respectively.

    3.Simulation results

    Figures 1(a)and(b)correspond to the temperature evolutions of runs 1 and 2, respectively.Figures 1(c) and (d) show the evolutions of the beam drift velocity(displayed with red lines)and the core proton drift velocity(displayed with blue lines)for runs 1 and 2.The parallel and perpendicular temperatures are calculated following this procedure: first, we calculate the parallel temperatureand the perpendicular temperaturefor the ion speciesj(i.e., core protons and beam protons) in every grid cell (the bracket〈〉denotes an average over one grid cell),whereandkBis the Boltzmann constant; the temperatures are then averaged over all grids.Using this method, the effect of the bulk velocity at each location on the temperature can be eliminated.The beam velocity is the average velocity of the protons over all the grid cells.

    Figure 1.(a)Temperature evolutions of the beam and core protons for run 1.(b)Temperature evolutions of the beam and core protons for run 2.Parallel and perpendicular temperatures are denoted by the subscripts ‘‖’ and ‘⊥’, respectively.The temperatures of the beam and core protons are denoted by the subscripts‘b’and‘c’.T0 is the initial temperature.(c)The evolution of the drift velocities of the beam(displayed with red lines)and core protons(displayed with blue lines)for run 1.(d)The evolution of the drift velocities of the beam and core protons for run 2.The black lines represent the relative drift velocities between the core and beam protons.

    Figure 2.The evolution of the power of the disturbing magnetic fieldsδB2/ B02 (represented by solid lines),δBz/B02 (represented by dotted lines), and δBx 2 , y/B02 (represented by dashed lines, whereδB x 2 , y= δB x 2+δBy2 ) for (a) run 1 with a 15% beam relative density, and (b) run 2 with a 40% beam relative density.

    Figure 3.The contours of the characteristics of the k x ?ky diagram for run 1,as obtained from a fast Fourier transform (FFT)ofδBz at(a)Ω pt =80,(b)Ω p t=280,and(c)Ω p t=960,respectively.The wavevectors k=(k x, ky,0)of the dominant wave(the wave mode with the maximum power) for these three figures are (a) k=(1.05, 1.35, 0) , (b) k=(1.12, 1.08, 0) , and (c) k=( 1 .38, 1.02, 0) , respectively.

    Figure 4.The contours of the characteristics of the k x ?ky diagram for run 2 obtained from the fast Fourier transform (FFT) ofδBz at(a)Ω pt =40,(b)Ω p t=150,and(c)Ω p t=960.The wavevectors k=(k x, ky,0)of the dominant wave(the wave mode with the maximum amplitude) for these three figures are (a) k=(0.95, 1.12, 0) , (b) k=(1.02, 1.05, 0) , and (c) k=(1.52, 0.93, 0) , respectively.

    Figure 5.Hodograms in the planeδB x , y ?δBz for run 1 for the intervals (a) t Ωp =40 ?50,(b) t Ωp=280 ?295,and (c) t Ωp=960?975.The excited waves have a right-handed elliptical polarization and then become linearly polarized;eventually,they adopt a right-handed circular polarization.Here, δBx ,y= ( ? δ Bxk y + δB y k x ) /‘+’ and ‘-’ represent the start and end points, respectively.

    As shown in figure 1,protons are primarily heated in the direction perpendicular to the background magnetic field at velocities between Ωpt≈200 ?500and the parallel temperatures of the beam and core protons decrease during Ωpt≈200 ?300and gradually rise after that.As shown in figure 1(b), the perpendicular temperatures of the core and beam protons increase at velocities between Ωpt≈100?400.It is worth noting that the perpendicular heating of beam protons is stronger than that of core protons in figure 1(a),but that the perpendicular heating of core protons is stronger in figure 1(b).This intriguing phenomenon will be studied further in the following sections.It should be emphasized that while this research focuses on the evolution of the perpendicular temperature, the complicated evolution of the parallel temperature is a fascinating problem that warrants additional examination in future work.

    As proved by previous studies[19, 22],the perpendicular heating of protons is closely related to cyclotron resonance with oblique Alfvén waves excited by electromagnetic proton–proton instability.This resonant interaction between waves and protons can be described quantitatively by the resonant factor[9, 16], which is defnied asζ±=(ω?k x Uj±nΩp)/k x vjth∣∣(n=0, 1, 2...) (where the superscripts+ and – correspond to the resonances of the right- and left-handed polarized waves, respectively.Ujandvjth∣∣are the drift and parallel thermal velocities of particle speciesj,respectively).When the cyclotron resonant factor satisfies the condition∣ ∣ζ<±3,cyclotron resonance can be considered to have occurred between waves and particles,and the smaller the value of∣ζ±∣,the stronger the resonant interaction between waves and protons.Since the calculation of∣ ∣ζ±involves waves with different polarizations, we need to study the polarization of excited waves before the calculation.

    A previous study [19] has demonstrated that Alfvén waves produced by electromagnetic proton–proton instability are linearly polarized during evolution.This can be represented by the evolution of the powers ofandAs illustrated in figure 2, the power of the outof-plane componentδBz2/B02is much larger than that of the in-plane componentduring Ωpt≈250 ?400for run 1 (Ωpt≈150 ?300for run 2).This indicates that the excited Alfvén waves have a nearly linear polarization during this period.After that,the power ofδBz2/B02decreases rapidly and approaches that ofThis indicates that the excited Alfvén waves become circularly polarized at this stage.

    The evolution of the hodogram can be used to visually represent the polarization of excited waves.For waves propagating obliquely relative to the magnetic field in our simulation,the polarization of waves should be viewed in the direction of the wavevector.Considering that our simulation is performed in the ?x yplane, we can directly get the wavevectork=(kx,ky,0)of the dominant wave (the wave mode with the maximum power) via a 2D fast Fourier transform(FFT)of the magnetic field.After that,the magnetic field is projected onto the plane perpendicular tok.Assuming that the wavevectorkdoes not change over a short period,the polarization of waves can be viewed in the planeδBx,y?δBz,where

    The contours of the characteristics of thekx?kydiagram for run 1 obtained from the FFT at different moments is presented in figure 3.Three time periods are selected in order to study the wave polarization beforeδBz2/B02increases(tΩp=80 ?90and 40–50 for run 1 and run 2,respectively),whenδBz2/B02reaches saturation (tΩp=280 ?295and 150–165 for run 1 and run 2,respectively),and afterδBz2/B02decreases in figure 2(tΩp=960 ?975for run 1 and run 2),respectively.The start times of these three durations are marked with vertical dashed lines in blue,green,and purple in figures 1 and 2,respectively.The wavevectorsk=(kx,ky, 0)of the dominant wave (the wave mode with the maximum power) that correspond to these three durations are =k(1.05, 1.35, 0) ,k=(1.12, 1.08, 0) ,andk=(1.38, 1.02, 0) ,respectively.Similarly, as illustrated in figure 4, we obtained the contour of characteristics of thekx?kydiagram for run 2.

    The wavevectorsk=(kx,ky,0)of the dominant wave in figures 4(a)–(c) arek=(0.95, 1.12, 0) ,k=(1.02, 1.05, 0) , andk=(1.52, 0.93, 0) , respectively.By substituting a wavevector into equation (1), we can map the fluctuating magnetic field onto the plane perpendicular tok,and obtain the hodogram in the planeδBx,y?δBz.

    Figures 5(a)–(c) show the hodograms in the planeδBx,y?δBzfor run 1 attΩp=80 ?90,tΩp=280 ?295,andtΩp=960 ?975,respectively.As shown in figure 5,the amplitude ofδBzis greater than that ofδBx,yduringtΩp=80 ?90,indicating that the excited waves have roughly right-handed elliptical polarization.DuringtΩp=280 ?295, the amplitude ofδBzis much greater than that ofδBx,y,meaning that the excited waves become linearly polarized.Linearly polarized waves can be seen as the superposition of left-handed and right-handed polarized waves.As presented in figure 5(c), waves change to a righthanded circular polarization duringtΩp=960 ?975.The polarization of the waves presented in figure 5 is compatible with what is seen in figure 2.Similarly,figures 6(a)–(c)show the evolution of the vectorδBfor run 2 in the planeδBx,y?δBzattΩp=40 ?50,tΩp=150 ?165,andtΩp=960 ?975,respectively.The original right-handed circular waves evolve to a linear polarization, and eventually to a right-hand circular polarization.In conclusion,regardless of the beam’s relative density, initial elliptical right-handed waves gradually become linearly polarized, and ultimately take on a right-handed circular polarization.The change in polarization may be caused by changes in temperature or drift velocities; however, this interesting phenomenon is beyond the scope of this paper and warrants further investigation in future work.

    Figure 6.Hodograms in the planeδB x , y ?δBz for run 2 for the intervals (a) t Ωp =40 ?50,(b) t Ωp=150 ?165,and (c) t Ωp=960?975.The excited waves have a right-handed elliptical polarization and then become linearly polarized;eventually,they adopt a right-handed circular polarization.Here, δBx ,y=‘+’ and ‘-’ represent the start and end points, respectively.

    Figure 7.(a) Evolution of the parallel wavenumber kx for run 1, (b) evolution of the parallel wavenumber kx for run 2.Both figures are derived via FFT.

    Figure 8.(a) The power ofδBz in the ω?kx plane for run 1,(b) the power ofδBz in the ω?kx plane for run 2.Both figures are obtained via FFT.

    Waves become linearly polarized when the perpendicular temperature of protons rises dramatically.This indicates that proton heating is related to the interaction between protons and left/right-handed waves.In the following section,we will study this interaction using the resonant factor.The resonant factor∣ζ±∣, defined asζ±=(ω?k x Uj±nΩp)/k x vjth∣∣,can quantify the resonant interaction between waves and protons.The wave frequency involved,ω,the parallel wavenumberkx,the drift velocityUj,and the parallel thermal velocityvjth∣∣can be determined via following process.

    Firstly,we obtainkxat a specific time via the evolution ofkx(shown in figure 7),and then find the correspondingωvia thekx?ωrelation (shown in figure 8); the drift velocityUjcan be obtained from figures 1(c)–(d), the parallel thermal velocity is calculated via the parallel temperature shown in figures 1(a) and (b), andwherevth0is the initial thermal velocity andvth0=0.1vA.These parameters at the moment of Ωpt=300for run 1(Ωpt=250 for run 2) are presented in table 1.Using these parameters,we can quantify the cyclotron resonant factor∣ζ±∣for the beam and core protons in runs 1 and 2,respectively.It should be noted that the values of the Landau resonance factorand the second-order resonance factor

    Table 1.Different parameters for run 1 at t =300 Ω?p1 and run 2 att=250 Ω?p1a.

    vthc∣∣andvthc⊥are the parallel and perpendicular thermal velocities of the core protons, respectively;vthb∣∣andvthb⊥are the parallel and perpendicular thermal velocities of the beam protons, respectively.vb∣∣andvc∣∣are the drift velocities of the beam and core protons, respectively.are greater than three;this indicates that these two resonances do not contribute to proton heating.Therefore, in this paper, the resonance factor∣ζ±∣jdefaults to the first-order cyclotron resonance factor.

    Table 2.Values of the cyclotron resonant factor for beam and core protons for run 1 at t =300 Ω?p1 and run 2 at t =250 Ω?p1.

    Substituting these parameters intok x vjth∣∣,we get the ranges of∣ζ±∣ for run 1 and run 2.As shown in the second row of table 2, the cyclotron resonance factor∣ξ+∣is much smaller than∣ξ?∣ for beam protons, indicating that the wave-mode cyclotron resonance with beam protons has righthanded polarization.For core protons,as can be seen in the third row of table 2,∣ξ+∣is much larger than∣ξ?∣, meaning that the wave-mode cyclotron resonance with core protons has left-handed polarization.In addition,the value of∣ξ+∣ for beam protons is smaller than that of∣ξ?∣ for core protons, indicating that the cyclotron resonance between beam protons and right-handed waves is greater in run 1.Therefore,the perpendicular heating of beam protons is more pronounced than that of core protons,which agrees with what was presented in figure 1(a).The situation is different in the case of a larger beam relative density(run 2).As illustrated by the fourth and fifth rows of table 2,the value of∣ξ?∣ for core protons is smaller than that of∣ξ+∣ for beam protons.This implies that the cyclotron resonance between core protons and left-handed waves is stronger.As a result, the perpendicular heating of core protons is greater than that of beam protons,which is consistent with what is shown in figure 1(b).In conclusion, beam (core) protons cyclotron resonate with righthanded (left-handed) polarized waves.The resonance between beam protons and right-hand polarized waves is greater, as the relative density of the beam is less, hence the perpendicular heating of beam protons is stronger.In a larger beam relative density,the reverse condition occurs:the resonance between core protons and left-handed polarized waves is greater, resulting in greater perpendicular heating of core protons.

    4.Summary and conclusions

    In this paper, using a 2D hybrid simulation model, we investigated the temperature evolution of core and beam protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability.We demonstrated that initial right-handed elliptically polarized waves gradually become linearly polarized, and eventually take on right-handed circular polarization.Considering that linearly polarized waves are a superposition of left-handed and righthanded polarized waves,the perpendicular heating of protons is caused by cyclotron resonance with left/right-handed waves.Using cyclotron resonant factor, we have proved that left-handed(right-handed polarized)waves resonate with core(beam) protons.When the beam relative density is low, the cyclotron resonance between beam protons and right-handed polarized waves is stronger, resulting in more significant perpendicular heating of beam protons; however, when the beam relative density is large, the condition is reversed.In addition, we found that the wavenumbers and frequencies of the excited waves grew during the evolution.

    The change of polarization of the excited waves during the evolution is an interesting phenomenon;it may be closely related to changes in temperature anisotropy or proton drift velocities,and merits further investigation in a future work.In addition, the complicated evolution of the parallel temperature of beam and core protons is an intriguing phenomenon that deserves further investigation in our future research.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.11822401, 41674177 and 41874208).

    Data statement

    The simulation data will be preserved on a long-term storage system and will be made available upon request to the corresponding author.

    ORCID iDs

    猜你喜歡
    李毅
    單循環(huán)制賽棋
    Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
    超早期微創(chuàng)傷性顱內(nèi)血腫清除術(shù)治療高齡腦出血的臨床療效研究
    The Iditarod
    Collective excitations and quantum size effects on the surfaces of Pb(111)films: An experimental study*
    Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer?
    “網(wǎng)紅”李毅的足球人生
    北廣人物(2020年47期)2020-12-09 06:24:10
    Hunter—Gatherers
    Advantages and Disadvantages of Studying Abroad
    李毅:很多事超出主教練掌控 我是當(dāng)?shù)之?dāng)媽
    人妻系列 视频| 欧美97在线视频| 国产无遮挡羞羞视频在线观看| 亚洲精品国产色婷婷电影| 色吧在线观看| 国产黄色免费在线视频| 成人毛片60女人毛片免费| www.av在线官网国产| 久热这里只有精品99| 丝袜在线中文字幕| 韩国av在线不卡| 日本欧美国产在线视频| 好男人视频免费观看在线| 97在线视频观看| 久久人人爽人人爽人人片va| 成人国产av品久久久| 综合色丁香网| 黑人高潮一二区| 美女国产视频在线观看| 日韩不卡一区二区三区视频在线| 久久免费观看电影| 在线看a的网站| 九九在线视频观看精品| 亚洲在久久综合| 午夜视频国产福利| 国产日韩欧美亚洲二区| 亚洲精品一区蜜桃| 免费黄网站久久成人精品| 精品午夜福利在线看| 亚洲精华国产精华液的使用体验| 男女无遮挡免费网站观看| 国产日韩欧美亚洲二区| av线在线观看网站| 久久久久久久大尺度免费视频| 久久精品夜色国产| 日韩 亚洲 欧美在线| 乱系列少妇在线播放| 女性被躁到高潮视频| 简卡轻食公司| 久久国内精品自在自线图片| 天美传媒精品一区二区| 我要看日韩黄色一级片| 国产精品三级大全| 中文精品一卡2卡3卡4更新| 亚洲自偷自拍三级| 99久久中文字幕三级久久日本| 黄片无遮挡物在线观看| 欧美精品一区二区免费开放| 全区人妻精品视频| 欧美区成人在线视频| 黄色日韩在线| 最近中文字幕2019免费版| 久久久国产精品麻豆| 看十八女毛片水多多多| 亚洲精华国产精华液的使用体验| 午夜免费观看性视频| 久久久国产欧美日韩av| 一个人免费看片子| 精品亚洲乱码少妇综合久久| 美女视频免费永久观看网站| 极品教师在线视频| 日韩一区二区三区影片| 狂野欧美激情性bbbbbb| 欧美日韩av久久| 亚洲精品国产av成人精品| 久久久久久久精品精品| 嫩草影院新地址| 久久精品久久精品一区二区三区| 国产精品一区二区在线不卡| 自拍欧美九色日韩亚洲蝌蚪91 | 成人无遮挡网站| 久久午夜福利片| 久久精品久久精品一区二区三区| 久久午夜综合久久蜜桃| 成人特级av手机在线观看| 男女边吃奶边做爰视频| 美女国产视频在线观看| 国产成人免费观看mmmm| 日韩制服骚丝袜av| www.色视频.com| 日本色播在线视频| 亚洲美女黄色视频免费看| 天天躁夜夜躁狠狠久久av| 国产永久视频网站| 全区人妻精品视频| 国产成人精品久久久久久| 99视频精品全部免费 在线| 少妇被粗大的猛进出69影院 | 另类亚洲欧美激情| 亚洲第一av免费看| 精品一区二区三卡| 观看免费一级毛片| 免费人成在线观看视频色| 国产精品不卡视频一区二区| 午夜视频国产福利| 国产又色又爽无遮挡免| 男人添女人高潮全过程视频| 精品视频人人做人人爽| 成年女人在线观看亚洲视频| av专区在线播放| 午夜免费观看性视频| 午夜视频国产福利| 国产毛片在线视频| 熟女av电影| 在线播放无遮挡| 国产伦在线观看视频一区| 免费大片黄手机在线观看| 黄色日韩在线| 插逼视频在线观看| 中文天堂在线官网| 日本与韩国留学比较| 又大又黄又爽视频免费| 我的女老师完整版在线观看| 97超视频在线观看视频| 97在线视频观看| 免费大片18禁| 综合色丁香网| 久久97久久精品| 精品卡一卡二卡四卡免费| 国产免费视频播放在线视频| 亚洲婷婷狠狠爱综合网| 精品久久久精品久久久| 国内精品宾馆在线| 青春草国产在线视频| 高清毛片免费看| 伦理电影大哥的女人| 亚洲精华国产精华液的使用体验| 人妻一区二区av| 一个人看视频在线观看www免费| 精品人妻熟女毛片av久久网站| 不卡视频在线观看欧美| 黄色一级大片看看| 久久久久久久久久人人人人人人| 国产成人精品久久久久久| 精品人妻偷拍中文字幕| 这个男人来自地球电影免费观看 | 精品国产国语对白av| 美女福利国产在线| 日日爽夜夜爽网站| 国产精品久久久久久av不卡| 18禁在线无遮挡免费观看视频| 啦啦啦视频在线资源免费观看| 中文字幕精品免费在线观看视频 | 免费观看在线日韩| 寂寞人妻少妇视频99o| 男女边摸边吃奶| 日日啪夜夜撸| 亚洲av中文av极速乱| 国产精品.久久久| 人人妻人人看人人澡| 久久久a久久爽久久v久久| 99久久精品一区二区三区| 91精品一卡2卡3卡4卡| 欧美激情极品国产一区二区三区 | 国模一区二区三区四区视频| 国产精品一区www在线观看| 久久久久久久大尺度免费视频| 黑人巨大精品欧美一区二区蜜桃 | 久久久午夜欧美精品| 久久99蜜桃精品久久| 免费播放大片免费观看视频在线观看| 国产精品国产三级国产av玫瑰| 夫妻午夜视频| 校园人妻丝袜中文字幕| 亚洲欧美中文字幕日韩二区| 亚洲av免费高清在线观看| av国产久精品久网站免费入址| 国产精品久久久久久精品电影小说| 简卡轻食公司| 如何舔出高潮| 国产色婷婷99| kizo精华| 久久国产精品大桥未久av | 成人漫画全彩无遮挡| 一级毛片我不卡| 下体分泌物呈黄色| 国产无遮挡羞羞视频在线观看| 亚洲av在线观看美女高潮| 日韩欧美一区视频在线观看 | 日韩中文字幕视频在线看片| 欧美少妇被猛烈插入视频| 91久久精品国产一区二区成人| 精品卡一卡二卡四卡免费| 亚洲人与动物交配视频| 国产欧美日韩一区二区三区在线 | 啦啦啦啦在线视频资源| 极品少妇高潮喷水抽搐| 青春草视频在线免费观看| 18+在线观看网站| 成人免费观看视频高清| 久久人妻熟女aⅴ| 久久99精品国语久久久| 草草在线视频免费看| 国产精品国产三级国产av玫瑰| 欧美另类一区| 天堂8中文在线网| 国产在视频线精品| 在线观看www视频免费| 国产亚洲av片在线观看秒播厂| 成人综合一区亚洲| 99国产精品免费福利视频| 黄色日韩在线| 男人舔奶头视频| 3wmmmm亚洲av在线观看| 欧美精品国产亚洲| 精品卡一卡二卡四卡免费| 人妻系列 视频| 老熟女久久久| 97超碰精品成人国产| 女人久久www免费人成看片| av播播在线观看一区| 亚洲国产欧美在线一区| 国产高清有码在线观看视频| 麻豆成人午夜福利视频| 黑人巨大精品欧美一区二区蜜桃 | 最黄视频免费看| 国产成人精品婷婷| 嫩草影院入口| 女性生殖器流出的白浆| 亚洲欧美一区二区三区黑人 | 在线看a的网站| 免费人妻精品一区二区三区视频| 极品人妻少妇av视频| 伦理电影免费视频| 99久久精品国产国产毛片| 国产精品久久久久久精品古装| 99热这里只有是精品50| 国产在线免费精品| 在线观看av片永久免费下载| 3wmmmm亚洲av在线观看| 欧美少妇被猛烈插入视频| 午夜91福利影院| 欧美3d第一页| 国产日韩欧美在线精品| 伊人久久精品亚洲午夜| 纵有疾风起免费观看全集完整版| 人人妻人人澡人人看| 国产日韩一区二区三区精品不卡 | 欧美精品一区二区免费开放| 国产精品人妻久久久影院| 天美传媒精品一区二区| 国产淫片久久久久久久久| 99热全是精品| 大又大粗又爽又黄少妇毛片口| 女性生殖器流出的白浆| 婷婷色麻豆天堂久久| 亚洲内射少妇av| 国产成人免费无遮挡视频| 狂野欧美白嫩少妇大欣赏| 观看免费一级毛片| 18+在线观看网站| 我的老师免费观看完整版| 18禁裸乳无遮挡动漫免费视频| 日日爽夜夜爽网站| 一级黄片播放器| 黄色欧美视频在线观看| av有码第一页| 一级,二级,三级黄色视频| 中国三级夫妇交换| 91精品伊人久久大香线蕉| 国产精品一二三区在线看| 蜜桃久久精品国产亚洲av| 蜜桃在线观看..| 九九在线视频观看精品| 黄片无遮挡物在线观看| 国产亚洲午夜精品一区二区久久| 久久6这里有精品| 久久人人爽人人片av| 亚洲av成人精品一区久久| 国产伦在线观看视频一区| a级毛片在线看网站| 国产精品国产三级国产av玫瑰| 18禁在线播放成人免费| 亚洲人与动物交配视频| 国产日韩欧美亚洲二区| 99国产精品免费福利视频| 日本黄大片高清| 亚洲伊人久久精品综合| 嫩草影院新地址| 狂野欧美白嫩少妇大欣赏| 亚洲第一av免费看| 亚洲av二区三区四区| 少妇被粗大猛烈的视频| 偷拍熟女少妇极品色| 免费黄色在线免费观看| 精品视频人人做人人爽| 欧美日韩一区二区视频在线观看视频在线| 日韩中字成人| 99九九线精品视频在线观看视频| 国产亚洲精品久久久com| 91成人精品电影| 国产精品一区二区三区四区免费观看| 交换朋友夫妻互换小说| 少妇人妻 视频| 久久99热这里只频精品6学生| 秋霞在线观看毛片| 国产又色又爽无遮挡免| 国产有黄有色有爽视频| 日本午夜av视频| 美女xxoo啪啪120秒动态图| 久久国内精品自在自线图片| 亚洲精品乱码久久久v下载方式| 亚洲久久久国产精品| 天天躁夜夜躁狠狠久久av| 国产亚洲欧美精品永久| 免费观看的影片在线观看| 亚洲不卡免费看| 亚洲国产日韩一区二区| 久久99蜜桃精品久久| 噜噜噜噜噜久久久久久91| 曰老女人黄片| 日韩精品免费视频一区二区三区 | 久久久久久久久大av| 国产精品女同一区二区软件| 国产中年淑女户外野战色| 国产精品国产av在线观看| 伊人亚洲综合成人网| 精品久久国产蜜桃| 国产精品嫩草影院av在线观看| 伊人久久国产一区二区| 久久久久久久久久久免费av| 国产午夜精品久久久久久一区二区三区| 亚洲精品国产成人久久av| 少妇 在线观看| 国产又色又爽无遮挡免| 久久99精品国语久久久| 我要看日韩黄色一级片| 妹子高潮喷水视频| 欧美高清成人免费视频www| 国产黄色免费在线视频| 亚洲精品乱久久久久久| 王馨瑶露胸无遮挡在线观看| 亚洲精品456在线播放app| 国产成人一区二区在线| 街头女战士在线观看网站| 国产91av在线免费观看| 亚洲国产最新在线播放| 国产成人精品无人区| 亚洲欧美一区二区三区国产| 午夜av观看不卡| 极品少妇高潮喷水抽搐| av黄色大香蕉| 精品酒店卫生间| 日本色播在线视频| 观看美女的网站| 麻豆精品久久久久久蜜桃| 欧美人与善性xxx| 五月伊人婷婷丁香| 久久综合国产亚洲精品| 欧美3d第一页| 看免费成人av毛片| 午夜av观看不卡| 啦啦啦中文免费视频观看日本| 国产精品蜜桃在线观看| 十八禁网站网址无遮挡 | 我要看黄色一级片免费的| 免费黄网站久久成人精品| 亚洲成人av在线免费| 五月玫瑰六月丁香| 欧美 亚洲 国产 日韩一| 91成人精品电影| 天堂中文最新版在线下载| 91久久精品国产一区二区三区| 亚洲欧美日韩另类电影网站| 另类亚洲欧美激情| 婷婷色麻豆天堂久久| 青青草视频在线视频观看| 丝袜在线中文字幕| h日本视频在线播放| 草草在线视频免费看| 一级毛片我不卡| 国产淫语在线视频| 中文天堂在线官网| 亚洲国产精品一区三区| 国产日韩欧美视频二区| 人人妻人人爽人人添夜夜欢视频 | av一本久久久久| 99热6这里只有精品| h视频一区二区三区| 国产精品偷伦视频观看了| 国产精品久久久久久av不卡| av线在线观看网站| 天堂中文最新版在线下载| 免费久久久久久久精品成人欧美视频 | 日本wwww免费看| 中文字幕精品免费在线观看视频 | 亚洲国产av新网站| 国产亚洲精品久久久com| 国产av一区二区精品久久| 国产精品成人在线| 国产高清国产精品国产三级| 国产视频内射| 欧美老熟妇乱子伦牲交| 3wmmmm亚洲av在线观看| 一级毛片我不卡| 一级爰片在线观看| 亚洲精品久久久久久婷婷小说| 日韩成人av中文字幕在线观看| 久久久久久久久久久丰满| 寂寞人妻少妇视频99o| 久久久久人妻精品一区果冻| 自线自在国产av| 国产免费一级a男人的天堂| 亚洲精品国产成人久久av| 人妻系列 视频| 欧美最新免费一区二区三区| 国产亚洲午夜精品一区二区久久| 国产成人aa在线观看| 亚洲中文av在线| 一级片'在线观看视频| 日韩 亚洲 欧美在线| 国产精品一区二区三区四区免费观看| 97超视频在线观看视频| 天堂俺去俺来也www色官网| 亚洲成人av在线免费| 97在线视频观看| 欧美成人午夜免费资源| 天堂中文最新版在线下载| 18禁在线播放成人免费| 狠狠精品人妻久久久久久综合| 欧美三级亚洲精品| 9色porny在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产三级专区第一集| 六月丁香七月| 国产伦精品一区二区三区四那| 少妇丰满av| 精品人妻熟女av久视频| 成年人免费黄色播放视频 | 一本久久精品| 国产伦理片在线播放av一区| 一本色道久久久久久精品综合| 色视频www国产| 免费观看av网站的网址| 嫩草影院新地址| 日韩视频在线欧美| 日本午夜av视频| 成年人午夜在线观看视频| 国产在线视频一区二区| 亚洲av福利一区| 女的被弄到高潮叫床怎么办| 免费观看av网站的网址| 中国国产av一级| 中文在线观看免费www的网站| 如日韩欧美国产精品一区二区三区 | 国产精品一区二区在线观看99| 久久久国产一区二区| 如何舔出高潮| 久久久久久久久久久久大奶| 美女福利国产在线| 国产精品人妻久久久久久| 我的女老师完整版在线观看| 日韩 亚洲 欧美在线| 女性生殖器流出的白浆| 色哟哟·www| 国内精品宾馆在线| 午夜影院在线不卡| 午夜av观看不卡| av卡一久久| 国产av一区二区精品久久| 五月伊人婷婷丁香| 成人国产麻豆网| a 毛片基地| 国产av精品麻豆| 在线观看美女被高潮喷水网站| 午夜影院在线不卡| 久久精品久久久久久噜噜老黄| av女优亚洲男人天堂| h日本视频在线播放| 中国国产av一级| 男女无遮挡免费网站观看| 看非洲黑人一级黄片| 亚洲精品第二区| 免费观看av网站的网址| 久久97久久精品| 免费看不卡的av| 国产白丝娇喘喷水9色精品| 视频区图区小说| 99热6这里只有精品| 久久精品国产亚洲av涩爱| 99久久精品热视频| 国产视频内射| 国产一区二区三区综合在线观看 | 在线精品无人区一区二区三| 街头女战士在线观看网站| 亚洲国产精品一区三区| 国产爽快片一区二区三区| 欧美精品人与动牲交sv欧美| 亚洲国产精品一区三区| 超碰97精品在线观看| 黄色一级大片看看| 欧美国产精品一级二级三级 | 亚洲精品456在线播放app| 免费少妇av软件| av.在线天堂| 777米奇影视久久| 亚洲高清免费不卡视频| 精品人妻熟女av久视频| 成年女人在线观看亚洲视频| 亚洲一区二区三区欧美精品| 我要看日韩黄色一级片| 超碰97精品在线观看| 国产黄片美女视频| av福利片在线| 91精品国产九色| 精品国产露脸久久av麻豆| 免费不卡的大黄色大毛片视频在线观看| 美女福利国产在线| 在线播放无遮挡| 国内揄拍国产精品人妻在线| 最近手机中文字幕大全| 精品亚洲乱码少妇综合久久| 日韩人妻高清精品专区| 久久 成人 亚洲| 乱码一卡2卡4卡精品| 寂寞人妻少妇视频99o| 亚洲欧洲日产国产| 秋霞在线观看毛片| 国产免费福利视频在线观看| 男女国产视频网站| 蜜桃久久精品国产亚洲av| 老司机影院毛片| 女人精品久久久久毛片| 中文字幕精品免费在线观看视频 | 国产成人一区二区在线| 国产极品天堂在线| 国产精品女同一区二区软件| 九九爱精品视频在线观看| 欧美激情极品国产一区二区三区 | 国产精品国产av在线观看| 亚洲美女视频黄频| 午夜老司机福利剧场| 亚洲av成人精品一区久久| 国产极品天堂在线| 精品卡一卡二卡四卡免费| 免费黄网站久久成人精品| 久久久久久久久久人人人人人人| 爱豆传媒免费全集在线观看| 国产精品熟女久久久久浪| 国产在线一区二区三区精| 深夜a级毛片| 国产精品久久久久久av不卡| 少妇精品久久久久久久| 久久久午夜欧美精品| 精品一区在线观看国产| 国产日韩欧美在线精品| 婷婷色麻豆天堂久久| 一二三四中文在线观看免费高清| 精品亚洲成国产av| 26uuu在线亚洲综合色| 亚洲av免费高清在线观看| 少妇被粗大的猛进出69影院 | 欧美xxⅹ黑人| 国产亚洲最大av| 国产爽快片一区二区三区| 婷婷色麻豆天堂久久| 在线观看免费高清a一片| 日韩一区二区视频免费看| 免费不卡的大黄色大毛片视频在线观看| 国产片特级美女逼逼视频| 另类亚洲欧美激情| 日本黄大片高清| 五月伊人婷婷丁香| 久久午夜福利片| www.av在线官网国产| 国产精品三级大全| 免费少妇av软件| av福利片在线| 欧美成人精品欧美一级黄| 亚洲第一区二区三区不卡| 高清av免费在线| 国产淫语在线视频| 久久毛片免费看一区二区三区| 亚洲美女黄色视频免费看| 丰满饥渴人妻一区二区三| 国产精品久久久久久久电影| 一区二区三区乱码不卡18| 高清视频免费观看一区二区| 欧美性感艳星| 亚洲三级黄色毛片| 欧美日韩精品成人综合77777| 三级国产精品片| 国产一区二区三区综合在线观看 | 国产精品三级大全| 久久久久精品性色| 伦理电影大哥的女人| 男男h啪啪无遮挡| 免费人成在线观看视频色| 亚洲精品日韩av片在线观看| 男男h啪啪无遮挡| 伦理电影大哥的女人| 一级a做视频免费观看| 美女视频免费永久观看网站| 亚洲精品乱码久久久久久按摩| 高清欧美精品videossex| 中文字幕人妻丝袜制服| 国产综合精华液| 日本91视频免费播放| 成人国产av品久久久| 老司机亚洲免费影院| 人妻一区二区av| 一级毛片久久久久久久久女| a级一级毛片免费在线观看| 国产高清国产精品国产三级| 日本91视频免费播放| 18禁裸乳无遮挡动漫免费视频| 热re99久久精品国产66热6| 国产男女超爽视频在线观看| 中文字幕精品免费在线观看视频 | 国产免费一级a男人的天堂| 国产精品免费大片| 97在线人人人人妻| 久久99精品国语久久久| 91精品国产九色| 国产精品偷伦视频观看了|