• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability

    2022-01-10 14:51:24JianshengYAO姚建生YingkuiZHAO趙英奎DifaYE葉地發(fā)YiLI李毅LihuiCHAI柴立暉andJichengSUN孫繼承
    Plasma Science and Technology 2021年12期
    關(guān)鍵詞:李毅

    Jiansheng YAO (姚建生) , Yingkui ZHAO (趙英奎), Difa YE (葉地發(fā)),Yi LI (李毅), Lihui CHAI (柴立暉) and Jicheng SUN (孫繼承)

    1Institute of Applied Physics and Computational Mathematics,Beijing 100088,People’s Republic of China

    2 CAS Key Lab of Geospace Environment,School of Earth and Space Sciences,University of Science and Technology of China, Hefei 230026, People’s Republic of China

    3 Key Laboratory of Earth and Planetary Physics,Institute of Geology and Geophysics,Chinese Academy of Sciences, Beijing 100029, People’s Republic of China

    4 Key Laboratory of Polar Science,Ministry of Natural Resources,Shanghai 200020,People’s Republic of China

    5 MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, People’s Republic of China

    Abstract Most protons in the solar wind belong to one of two different populations, the less dense beam protons and the denser core protons.The beam protons, with a velocity of (1–2) VA (VA is the local Alfvén speed),always drift relative to the core protons;this kind of distribution is unstable and stimulates several kinds of wave mode.In this study, using a 2D hybrid simulation model,we find that the original right-handed elliptically polarized Alfvén waves become linearly polarized, and eventually become right-handed and circularly polarized.Given that linearly polarized waves are a superposition of left-handed and right-handed waves,cyclotron resonance in the right-handed/left-handed component heats beam/core protons perpendicularly.The resonance between beam protons and right-handed polarized waves is stronger when the beam relative density is lower, resulting in more dramatic perpendicular heating of beam protons,whereas the situation is reversed when the beam relative density is larger.

    Keywords: proton/proton instability, hybrid simulation, Alfvén waves

    1.Introduction

    In situmeasurements of the solar wind, especially for fast solar wind with a typical flow speedvSW>600 km s?1,have shown that the distribution of solar-wind protons is very different from a Maxwellian distribution [1–6].Two significantly different components populate proton distributions:the less-dense proton population (always referred to as the beam population)drifts with a velocity of(1–2)VA(VAis the local Alfvén speed) relative to the more dense population(called the core population) and parallel to the ambient magnetic fieldB0.Recently, the successful launch of contemporary inner heliospheric missions, i.e., NASA’s Parker Solar Probe,and ESA’s Solar Orbiter,has sparked a research boom on the topic of the fast solar wind [7–9].Using linear theory, previous studies [10–14] have proved that two types of wave mode are unstable in the ion-beam system: magnetosonic instability with a maximum growth rate along the ambient magnetic field and the Alfvén mode that propagates obliquely toB0.Further studies by Daughton and Gary [12]have shown that, compared with the magnetosonic wave, the Alfvén mode has a larger growth rate and a lower threshold at a sufficiently large beam density and a sufficiently small core plasma beta (the ratio of thermal pressure to magnetic pressure).

    According to their differences in ion type, electromagnetic ion–ion instabilities can be roughly classified into electromagnetic alpha–proton [15, 16], heavy-ion–proton[17],and electromagnetic proton–proton instabilities[18–22].An investigation into the electromagnetic alpha–proton instability showed that during nonlinear evolution, the wavenumber,frequency,and propagation angle of the oblique Alfvén mode all drift to smaller values.A study of heavy-ion–proton instability [17] revealed that the velocity threshold of the right-handed polarized ion–ion resonant instability decreases with a decrease in the gyrofrequency of the beam ions.

    Research [22] into proton–proton beam instability has shown that wave parallel wavenumbers and frequencies may grow during evolution, and that protons and heavy ions are heated perpendicularly [19, 22].Furthermore, a previous study[21]found that when the proton beam relative density is high enough,the frequencies of the oblique Alfvén mode can exceed the proton gyrofrequency.Since Alfvén waves generated by electromagnetic proton–proton instability may be closely related to solar-wind heating, many researchers [19,23–27] have been devoted to studying the heating of core protons and heavy ions.In this study, we find an interesting phenomenon: beam perpendicular heating is stronger when the relative beam density is higher, while core perpendicular heating is stronger when the relative beam density is lower.Further investigation has revealed that perpendicular heating in these two situations corresponds to different polarized wave modes.

    In this paper, a 2D hybrid simulation model [28–30] is applied in order to investigate the perpendicular heating of protons by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability.This paper consists of four sections: the simulation model is described in section 2, the simulation results are illustrated in section 3,and the summary and discussion are presented in section 4.

    2.Simulation model

    A 2D hybrid simulation model is applied in this paper.In the hybrid simulation model, ions are treated as macroparticles,while electrons are treated as a massless fluid and follow the motion of ions.The simulation is performed in thex-yplane.According to observations in the solar wind [1–6], doublepeak-distributed protons consist of two components: a core population marked with the subscript ‘c’ and a less dense beam component drifting along the ambient magnetic field marked with the subscript‘b’.In the simulation,the direction of the drift velocity is along the ambient magnetic fieldB0and all along thex-axis.Initially, the core protons satisfy a Maxwellian distribution and the beam protons drift relative to the core protons with a velocityUbc=1.55VA.Previous studies have proved that electromagnetic ion–ion instability is dominant in the region with smallβcand reasonable beam velocities.Thus,in this study,the initial plasma beta for core and beam protons is set toβc=βb= 0.01and the plasma beta of electrons isβe= 0.01.Two runs with different beam relative densitiesnb/neare reported in this paper, wherene=nb+nc:run 1 usesnb/ne=0.15and run 2 usesnb/ne=0.4.These two scenarios depict situations with small and large beam relative densities, respectively.

    In the simulation, the unit of length is the proton inertial length,which is defined asdi=c/ωp,wherecandωpare the speed of light and the proton plasma frequency, respectively.The unit of time is the reciprocal of the proton gyrofrequency.Therefore, the velocity is normalized todiΩp,which is equivalent to the Alfvén speedVA.The total number of grid cells isnx×ny=256 ×256and the size of each cell is 0.8di×0.8di.To guarantee the stability of the simulation,the time step is set toΔt=0.025and the electron resistive length is set toTo reduce numerical disturbance, the average proton number in each cell is 100.The periodic boundary condition is applied in this simulation.The resolutions of the wavenumber and the wave frequency are 3.927 (c/ωp)?1and 3.14,respectively.

    3.Simulation results

    Figures 1(a)and(b)correspond to the temperature evolutions of runs 1 and 2, respectively.Figures 1(c) and (d) show the evolutions of the beam drift velocity(displayed with red lines)and the core proton drift velocity(displayed with blue lines)for runs 1 and 2.The parallel and perpendicular temperatures are calculated following this procedure: first, we calculate the parallel temperatureand the perpendicular temperaturefor the ion speciesj(i.e., core protons and beam protons) in every grid cell (the bracket〈〉denotes an average over one grid cell),whereandkBis the Boltzmann constant; the temperatures are then averaged over all grids.Using this method, the effect of the bulk velocity at each location on the temperature can be eliminated.The beam velocity is the average velocity of the protons over all the grid cells.

    Figure 1.(a)Temperature evolutions of the beam and core protons for run 1.(b)Temperature evolutions of the beam and core protons for run 2.Parallel and perpendicular temperatures are denoted by the subscripts ‘‖’ and ‘⊥’, respectively.The temperatures of the beam and core protons are denoted by the subscripts‘b’and‘c’.T0 is the initial temperature.(c)The evolution of the drift velocities of the beam(displayed with red lines)and core protons(displayed with blue lines)for run 1.(d)The evolution of the drift velocities of the beam and core protons for run 2.The black lines represent the relative drift velocities between the core and beam protons.

    Figure 2.The evolution of the power of the disturbing magnetic fieldsδB2/ B02 (represented by solid lines),δBz/B02 (represented by dotted lines), and δBx 2 , y/B02 (represented by dashed lines, whereδB x 2 , y= δB x 2+δBy2 ) for (a) run 1 with a 15% beam relative density, and (b) run 2 with a 40% beam relative density.

    Figure 3.The contours of the characteristics of the k x ?ky diagram for run 1,as obtained from a fast Fourier transform (FFT)ofδBz at(a)Ω pt =80,(b)Ω p t=280,and(c)Ω p t=960,respectively.The wavevectors k=(k x, ky,0)of the dominant wave(the wave mode with the maximum power) for these three figures are (a) k=(1.05, 1.35, 0) , (b) k=(1.12, 1.08, 0) , and (c) k=( 1 .38, 1.02, 0) , respectively.

    Figure 4.The contours of the characteristics of the k x ?ky diagram for run 2 obtained from the fast Fourier transform (FFT) ofδBz at(a)Ω pt =40,(b)Ω p t=150,and(c)Ω p t=960.The wavevectors k=(k x, ky,0)of the dominant wave(the wave mode with the maximum amplitude) for these three figures are (a) k=(0.95, 1.12, 0) , (b) k=(1.02, 1.05, 0) , and (c) k=(1.52, 0.93, 0) , respectively.

    Figure 5.Hodograms in the planeδB x , y ?δBz for run 1 for the intervals (a) t Ωp =40 ?50,(b) t Ωp=280 ?295,and (c) t Ωp=960?975.The excited waves have a right-handed elliptical polarization and then become linearly polarized;eventually,they adopt a right-handed circular polarization.Here, δBx ,y= ( ? δ Bxk y + δB y k x ) /‘+’ and ‘-’ represent the start and end points, respectively.

    As shown in figure 1,protons are primarily heated in the direction perpendicular to the background magnetic field at velocities between Ωpt≈200 ?500and the parallel temperatures of the beam and core protons decrease during Ωpt≈200 ?300and gradually rise after that.As shown in figure 1(b), the perpendicular temperatures of the core and beam protons increase at velocities between Ωpt≈100?400.It is worth noting that the perpendicular heating of beam protons is stronger than that of core protons in figure 1(a),but that the perpendicular heating of core protons is stronger in figure 1(b).This intriguing phenomenon will be studied further in the following sections.It should be emphasized that while this research focuses on the evolution of the perpendicular temperature, the complicated evolution of the parallel temperature is a fascinating problem that warrants additional examination in future work.

    As proved by previous studies[19, 22],the perpendicular heating of protons is closely related to cyclotron resonance with oblique Alfvén waves excited by electromagnetic proton–proton instability.This resonant interaction between waves and protons can be described quantitatively by the resonant factor[9, 16], which is defnied asζ±=(ω?k x Uj±nΩp)/k x vjth∣∣(n=0, 1, 2...) (where the superscripts+ and – correspond to the resonances of the right- and left-handed polarized waves, respectively.Ujandvjth∣∣are the drift and parallel thermal velocities of particle speciesj,respectively).When the cyclotron resonant factor satisfies the condition∣ ∣ζ<±3,cyclotron resonance can be considered to have occurred between waves and particles,and the smaller the value of∣ζ±∣,the stronger the resonant interaction between waves and protons.Since the calculation of∣ ∣ζ±involves waves with different polarizations, we need to study the polarization of excited waves before the calculation.

    A previous study [19] has demonstrated that Alfvén waves produced by electromagnetic proton–proton instability are linearly polarized during evolution.This can be represented by the evolution of the powers ofandAs illustrated in figure 2, the power of the outof-plane componentδBz2/B02is much larger than that of the in-plane componentduring Ωpt≈250 ?400for run 1 (Ωpt≈150 ?300for run 2).This indicates that the excited Alfvén waves have a nearly linear polarization during this period.After that,the power ofδBz2/B02decreases rapidly and approaches that ofThis indicates that the excited Alfvén waves become circularly polarized at this stage.

    The evolution of the hodogram can be used to visually represent the polarization of excited waves.For waves propagating obliquely relative to the magnetic field in our simulation,the polarization of waves should be viewed in the direction of the wavevector.Considering that our simulation is performed in the ?x yplane, we can directly get the wavevectork=(kx,ky,0)of the dominant wave (the wave mode with the maximum power) via a 2D fast Fourier transform(FFT)of the magnetic field.After that,the magnetic field is projected onto the plane perpendicular tok.Assuming that the wavevectorkdoes not change over a short period,the polarization of waves can be viewed in the planeδBx,y?δBz,where

    The contours of the characteristics of thekx?kydiagram for run 1 obtained from the FFT at different moments is presented in figure 3.Three time periods are selected in order to study the wave polarization beforeδBz2/B02increases(tΩp=80 ?90and 40–50 for run 1 and run 2,respectively),whenδBz2/B02reaches saturation (tΩp=280 ?295and 150–165 for run 1 and run 2,respectively),and afterδBz2/B02decreases in figure 2(tΩp=960 ?975for run 1 and run 2),respectively.The start times of these three durations are marked with vertical dashed lines in blue,green,and purple in figures 1 and 2,respectively.The wavevectorsk=(kx,ky, 0)of the dominant wave (the wave mode with the maximum power) that correspond to these three durations are =k(1.05, 1.35, 0) ,k=(1.12, 1.08, 0) ,andk=(1.38, 1.02, 0) ,respectively.Similarly, as illustrated in figure 4, we obtained the contour of characteristics of thekx?kydiagram for run 2.

    The wavevectorsk=(kx,ky,0)of the dominant wave in figures 4(a)–(c) arek=(0.95, 1.12, 0) ,k=(1.02, 1.05, 0) , andk=(1.52, 0.93, 0) , respectively.By substituting a wavevector into equation (1), we can map the fluctuating magnetic field onto the plane perpendicular tok,and obtain the hodogram in the planeδBx,y?δBz.

    Figures 5(a)–(c) show the hodograms in the planeδBx,y?δBzfor run 1 attΩp=80 ?90,tΩp=280 ?295,andtΩp=960 ?975,respectively.As shown in figure 5,the amplitude ofδBzis greater than that ofδBx,yduringtΩp=80 ?90,indicating that the excited waves have roughly right-handed elliptical polarization.DuringtΩp=280 ?295, the amplitude ofδBzis much greater than that ofδBx,y,meaning that the excited waves become linearly polarized.Linearly polarized waves can be seen as the superposition of left-handed and right-handed polarized waves.As presented in figure 5(c), waves change to a righthanded circular polarization duringtΩp=960 ?975.The polarization of the waves presented in figure 5 is compatible with what is seen in figure 2.Similarly,figures 6(a)–(c)show the evolution of the vectorδBfor run 2 in the planeδBx,y?δBzattΩp=40 ?50,tΩp=150 ?165,andtΩp=960 ?975,respectively.The original right-handed circular waves evolve to a linear polarization, and eventually to a right-hand circular polarization.In conclusion,regardless of the beam’s relative density, initial elliptical right-handed waves gradually become linearly polarized, and ultimately take on a right-handed circular polarization.The change in polarization may be caused by changes in temperature or drift velocities; however, this interesting phenomenon is beyond the scope of this paper and warrants further investigation in future work.

    Figure 6.Hodograms in the planeδB x , y ?δBz for run 2 for the intervals (a) t Ωp =40 ?50,(b) t Ωp=150 ?165,and (c) t Ωp=960?975.The excited waves have a right-handed elliptical polarization and then become linearly polarized;eventually,they adopt a right-handed circular polarization.Here, δBx ,y=‘+’ and ‘-’ represent the start and end points, respectively.

    Figure 7.(a) Evolution of the parallel wavenumber kx for run 1, (b) evolution of the parallel wavenumber kx for run 2.Both figures are derived via FFT.

    Figure 8.(a) The power ofδBz in the ω?kx plane for run 1,(b) the power ofδBz in the ω?kx plane for run 2.Both figures are obtained via FFT.

    Waves become linearly polarized when the perpendicular temperature of protons rises dramatically.This indicates that proton heating is related to the interaction between protons and left/right-handed waves.In the following section,we will study this interaction using the resonant factor.The resonant factor∣ζ±∣, defined asζ±=(ω?k x Uj±nΩp)/k x vjth∣∣,can quantify the resonant interaction between waves and protons.The wave frequency involved,ω,the parallel wavenumberkx,the drift velocityUj,and the parallel thermal velocityvjth∣∣can be determined via following process.

    Firstly,we obtainkxat a specific time via the evolution ofkx(shown in figure 7),and then find the correspondingωvia thekx?ωrelation (shown in figure 8); the drift velocityUjcan be obtained from figures 1(c)–(d), the parallel thermal velocity is calculated via the parallel temperature shown in figures 1(a) and (b), andwherevth0is the initial thermal velocity andvth0=0.1vA.These parameters at the moment of Ωpt=300for run 1(Ωpt=250 for run 2) are presented in table 1.Using these parameters,we can quantify the cyclotron resonant factor∣ζ±∣for the beam and core protons in runs 1 and 2,respectively.It should be noted that the values of the Landau resonance factorand the second-order resonance factor

    Table 1.Different parameters for run 1 at t =300 Ω?p1 and run 2 att=250 Ω?p1a.

    vthc∣∣andvthc⊥are the parallel and perpendicular thermal velocities of the core protons, respectively;vthb∣∣andvthb⊥are the parallel and perpendicular thermal velocities of the beam protons, respectively.vb∣∣andvc∣∣are the drift velocities of the beam and core protons, respectively.are greater than three;this indicates that these two resonances do not contribute to proton heating.Therefore, in this paper, the resonance factor∣ζ±∣jdefaults to the first-order cyclotron resonance factor.

    Table 2.Values of the cyclotron resonant factor for beam and core protons for run 1 at t =300 Ω?p1 and run 2 at t =250 Ω?p1.

    Substituting these parameters intok x vjth∣∣,we get the ranges of∣ζ±∣ for run 1 and run 2.As shown in the second row of table 2, the cyclotron resonance factor∣ξ+∣is much smaller than∣ξ?∣ for beam protons, indicating that the wave-mode cyclotron resonance with beam protons has righthanded polarization.For core protons,as can be seen in the third row of table 2,∣ξ+∣is much larger than∣ξ?∣, meaning that the wave-mode cyclotron resonance with core protons has left-handed polarization.In addition,the value of∣ξ+∣ for beam protons is smaller than that of∣ξ?∣ for core protons, indicating that the cyclotron resonance between beam protons and right-handed waves is greater in run 1.Therefore,the perpendicular heating of beam protons is more pronounced than that of core protons,which agrees with what was presented in figure 1(a).The situation is different in the case of a larger beam relative density(run 2).As illustrated by the fourth and fifth rows of table 2,the value of∣ξ?∣ for core protons is smaller than that of∣ξ+∣ for beam protons.This implies that the cyclotron resonance between core protons and left-handed waves is stronger.As a result, the perpendicular heating of core protons is greater than that of beam protons,which is consistent with what is shown in figure 1(b).In conclusion, beam (core) protons cyclotron resonate with righthanded (left-handed) polarized waves.The resonance between beam protons and right-hand polarized waves is greater, as the relative density of the beam is less, hence the perpendicular heating of beam protons is stronger.In a larger beam relative density,the reverse condition occurs:the resonance between core protons and left-handed polarized waves is greater, resulting in greater perpendicular heating of core protons.

    4.Summary and conclusions

    In this paper, using a 2D hybrid simulation model, we investigated the temperature evolution of core and beam protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability.We demonstrated that initial right-handed elliptically polarized waves gradually become linearly polarized, and eventually take on right-handed circular polarization.Considering that linearly polarized waves are a superposition of left-handed and righthanded polarized waves,the perpendicular heating of protons is caused by cyclotron resonance with left/right-handed waves.Using cyclotron resonant factor, we have proved that left-handed(right-handed polarized)waves resonate with core(beam) protons.When the beam relative density is low, the cyclotron resonance between beam protons and right-handed polarized waves is stronger, resulting in more significant perpendicular heating of beam protons; however, when the beam relative density is large, the condition is reversed.In addition, we found that the wavenumbers and frequencies of the excited waves grew during the evolution.

    The change of polarization of the excited waves during the evolution is an interesting phenomenon;it may be closely related to changes in temperature anisotropy or proton drift velocities,and merits further investigation in a future work.In addition, the complicated evolution of the parallel temperature of beam and core protons is an intriguing phenomenon that deserves further investigation in our future research.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.11822401, 41674177 and 41874208).

    Data statement

    The simulation data will be preserved on a long-term storage system and will be made available upon request to the corresponding author.

    ORCID iDs

    猜你喜歡
    李毅
    單循環(huán)制賽棋
    Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
    超早期微創(chuàng)傷性顱內(nèi)血腫清除術(shù)治療高齡腦出血的臨床療效研究
    The Iditarod
    Collective excitations and quantum size effects on the surfaces of Pb(111)films: An experimental study*
    Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer?
    “網(wǎng)紅”李毅的足球人生
    北廣人物(2020年47期)2020-12-09 06:24:10
    Hunter—Gatherers
    Advantages and Disadvantages of Studying Abroad
    李毅:很多事超出主教練掌控 我是當(dāng)?shù)之?dāng)媽
    人人妻人人澡人人爽人人夜夜| 亚洲不卡免费看| 欧美精品亚洲一区二区| 天堂俺去俺来也www色官网| 91精品国产九色| 男女无遮挡免费网站观看| 欧美最新免费一区二区三区| 九九久久精品国产亚洲av麻豆| 欧美另类一区| 亚洲国产色片| 久热这里只有精品99| 国产在线视频一区二区| 久久久久久久久久人人人人人人| 啦啦啦啦在线视频资源| 免费不卡的大黄色大毛片视频在线观看| 成人国产麻豆网| 亚洲欧洲国产日韩| 一区二区av电影网| xxx大片免费视频| 99热国产这里只有精品6| 2022亚洲国产成人精品| 国产 一区精品| 如日韩欧美国产精品一区二区三区 | 国产深夜福利视频在线观看| 久久精品国产鲁丝片午夜精品| 久久久久久久亚洲中文字幕| 精品亚洲成国产av| 亚洲精品久久成人aⅴ小说 | 欧美日韩成人在线一区二区| 久久久久精品久久久久真实原创| 啦啦啦中文免费视频观看日本| 国产69精品久久久久777片| 亚洲人成网站在线观看播放| 成人手机av| 91久久精品国产一区二区三区| av女优亚洲男人天堂| 亚洲av成人精品一区久久| 99精国产麻豆久久婷婷| 亚洲国产欧美在线一区| 日韩亚洲欧美综合| 午夜视频国产福利| 成人手机av| 黄片播放在线免费| 99热6这里只有精品| h视频一区二区三区| 大话2 男鬼变身卡| 一边亲一边摸免费视频| 久久人人爽人人片av| 亚洲国产欧美日韩在线播放| 精品一品国产午夜福利视频| 久久久午夜欧美精品| 久久人人爽人人爽人人片va| 热99国产精品久久久久久7| 国产高清三级在线| 久久热精品热| 国产精品三级大全| 麻豆乱淫一区二区| 欧美激情极品国产一区二区三区 | 国产黄片视频在线免费观看| 99热这里只有是精品在线观看| av专区在线播放| a级毛片在线看网站| 亚洲欧洲日产国产| 超碰97精品在线观看| 久久av网站| 国产精品偷伦视频观看了| 久久影院123| 国产精品99久久99久久久不卡 | 国产精品免费大片| 在线免费观看不下载黄p国产| av在线老鸭窝| 国产成人精品无人区| 免费久久久久久久精品成人欧美视频 | 视频中文字幕在线观看| 国产深夜福利视频在线观看| 欧美xxⅹ黑人| 自拍欧美九色日韩亚洲蝌蚪91| 最近手机中文字幕大全| 两个人免费观看高清视频| 国产成人精品无人区| 精品久久国产蜜桃| 国产精品久久久久久久久免| 国产精品久久久久久久电影| 欧美另类一区| 中文字幕制服av| 女性生殖器流出的白浆| 777米奇影视久久| 亚洲精品日本国产第一区| 美女中出高潮动态图| 国产成人精品无人区| 黑人猛操日本美女一级片| 秋霞在线观看毛片| 亚洲,欧美,日韩| 成人黄色视频免费在线看| 91久久精品国产一区二区成人| 中文字幕亚洲精品专区| 久久人妻熟女aⅴ| 又粗又硬又长又爽又黄的视频| 中文乱码字字幕精品一区二区三区| 青春草视频在线免费观看| 伊人亚洲综合成人网| 一级毛片电影观看| 在线观看www视频免费| 精品少妇黑人巨大在线播放| 少妇人妻 视频| 国模一区二区三区四区视频| 一区二区日韩欧美中文字幕 | 观看av在线不卡| 国产av国产精品国产| 免费黄网站久久成人精品| 大陆偷拍与自拍| 99热网站在线观看| 五月天丁香电影| 一个人免费看片子| 亚洲在久久综合| 一区二区av电影网| 黄色视频在线播放观看不卡| 在线精品无人区一区二区三| 亚洲av男天堂| 亚洲人与动物交配视频| 国产成人精品福利久久| 各种免费的搞黄视频| 午夜激情av网站| 国产精品不卡视频一区二区| 欧美bdsm另类| 在线 av 中文字幕| 99re6热这里在线精品视频| 日韩伦理黄色片| 一区二区三区免费毛片| 夜夜爽夜夜爽视频| 欧美亚洲 丝袜 人妻 在线| 午夜免费鲁丝| 丁香六月天网| 母亲3免费完整高清在线观看 | 久久99精品国语久久久| 日日摸夜夜添夜夜爱| 国产乱人偷精品视频| 欧美xxⅹ黑人| xxxhd国产人妻xxx| 欧美97在线视频| 亚洲av中文av极速乱| 日韩成人av中文字幕在线观看| 中文字幕免费在线视频6| 99视频精品全部免费 在线| 国产国拍精品亚洲av在线观看| 国产乱来视频区| 精品酒店卫生间| 日韩三级伦理在线观看| 青春草国产在线视频| 亚洲国产日韩一区二区| 国产男女内射视频| 在线亚洲精品国产二区图片欧美 | 少妇 在线观看| 99国产精品免费福利视频| 一区二区av电影网| 欧美日韩av久久| 欧美人与善性xxx| 色婷婷av一区二区三区视频| av卡一久久| 嘟嘟电影网在线观看| 三上悠亚av全集在线观看| 三上悠亚av全集在线观看| 少妇的逼水好多| 插逼视频在线观看| 亚洲av.av天堂| 最后的刺客免费高清国语| 亚洲av成人精品一区久久| 久久久亚洲精品成人影院| 26uuu在线亚洲综合色| 欧美国产精品一级二级三级| 五月天丁香电影| 又黄又爽又刺激的免费视频.| 日本免费在线观看一区| 国产男人的电影天堂91| 能在线免费看毛片的网站| 秋霞在线观看毛片| 久久狼人影院| 人成视频在线观看免费观看| 日韩av免费高清视频| 在线观看免费高清a一片| a 毛片基地| 亚洲国产精品国产精品| 国产成人freesex在线| 日韩av在线免费看完整版不卡| 日韩三级伦理在线观看| 男男h啪啪无遮挡| 丝袜在线中文字幕| 欧美激情国产日韩精品一区| 22中文网久久字幕| 久久人人爽人人爽人人片va| 一区二区三区免费毛片| 狠狠精品人妻久久久久久综合| 麻豆成人av视频| 亚洲精品视频女| 欧美另类一区| 免费看av在线观看网站| 国产精品久久久久久久电影| 国产成人av激情在线播放 | 国产黄频视频在线观看| 在线 av 中文字幕| 国产男女超爽视频在线观看| 免费大片18禁| 人妻 亚洲 视频| 精品久久久久久久久亚洲| 亚洲四区av| 欧美+日韩+精品| 黑人高潮一二区| 亚洲av综合色区一区| 精品国产露脸久久av麻豆| 狂野欧美激情性xxxx在线观看| 内地一区二区视频在线| 超色免费av| 欧美日韩国产mv在线观看视频| 亚洲人成网站在线观看播放| 精品午夜福利在线看| 热re99久久精品国产66热6| 高清午夜精品一区二区三区| 啦啦啦中文免费视频观看日本| 精品一区二区三卡| 色婷婷av一区二区三区视频| 久久精品久久久久久久性| av有码第一页| 亚洲情色 制服丝袜| 久久久国产欧美日韩av| 国产一区二区在线观看日韩| 99热全是精品| 亚洲第一区二区三区不卡| 人人澡人人妻人| 国产高清三级在线| 亚洲怡红院男人天堂| 亚洲人与动物交配视频| 寂寞人妻少妇视频99o| 国精品久久久久久国模美| 久久这里有精品视频免费| 一区二区av电影网| a级毛色黄片| 精品国产露脸久久av麻豆| 免费大片18禁| 久久久欧美国产精品| 亚洲国产精品专区欧美| 在线亚洲精品国产二区图片欧美 | 纯流量卡能插随身wifi吗| 交换朋友夫妻互换小说| 日韩欧美精品免费久久| 亚洲三级黄色毛片| 欧美三级亚洲精品| 日韩av不卡免费在线播放| 日本vs欧美在线观看视频| 欧美日韩国产mv在线观看视频| 一边摸一边做爽爽视频免费| 夜夜爽夜夜爽视频| 日韩一本色道免费dvd| 免费av中文字幕在线| 国产精品国产三级国产专区5o| 久久久欧美国产精品| 国产精品秋霞免费鲁丝片| 亚洲欧美清纯卡通| 国产精品国产av在线观看| 2022亚洲国产成人精品| 日本av手机在线免费观看| 欧美成人午夜免费资源| 国产熟女欧美一区二区| 大码成人一级视频| 免费观看的影片在线观看| 国产亚洲av片在线观看秒播厂| 亚洲人成77777在线视频| 成人国产av品久久久| 插阴视频在线观看视频| 女性生殖器流出的白浆| av在线播放精品| 两个人免费观看高清视频| 一本色道久久久久久精品综合| 嘟嘟电影网在线观看| 日韩av不卡免费在线播放| 亚洲精品国产av成人精品| 国产一区二区三区综合在线观看 | 亚洲五月色婷婷综合| 亚洲第一区二区三区不卡| 久久 成人 亚洲| 国产成人午夜福利电影在线观看| √禁漫天堂资源中文www| 久久久a久久爽久久v久久| av福利片在线| 丝袜在线中文字幕| 婷婷色麻豆天堂久久| 一本一本综合久久| 亚洲欧美精品自产自拍| 美女内射精品一级片tv| 久久久久久久久久久免费av| 色视频在线一区二区三区| 久久精品熟女亚洲av麻豆精品| 精品久久久久久电影网| 欧美成人午夜免费资源| 免费播放大片免费观看视频在线观看| 美女视频免费永久观看网站| 国产黄频视频在线观看| 久久久精品区二区三区| 汤姆久久久久久久影院中文字幕| 少妇人妻精品综合一区二区| 22中文网久久字幕| 精品人妻熟女av久视频| 久久久久久久久久久久大奶| 国产 精品1| 亚洲欧美精品自产自拍| 国内精品宾馆在线| 寂寞人妻少妇视频99o| 亚洲国产最新在线播放| 看十八女毛片水多多多| 中文字幕av电影在线播放| 亚洲欧美成人精品一区二区| 男女高潮啪啪啪动态图| 精品人妻在线不人妻| 五月玫瑰六月丁香| 欧美一级a爱片免费观看看| 七月丁香在线播放| videos熟女内射| 亚洲怡红院男人天堂| 精品一区在线观看国产| 精品亚洲成a人片在线观看| 3wmmmm亚洲av在线观看| 亚洲国产成人一精品久久久| 日韩伦理黄色片| 91精品国产九色| 大香蕉久久成人网| 国产精品国产三级国产专区5o| 精品人妻偷拍中文字幕| 久久精品夜色国产| 男女边摸边吃奶| 99久国产av精品国产电影| 国产av码专区亚洲av| 精品少妇内射三级| 伦理电影大哥的女人| 亚洲欧洲精品一区二区精品久久久 | 亚洲中文av在线| 人人澡人人妻人| 熟女av电影| av一本久久久久| 精品视频人人做人人爽| 夫妻午夜视频| av视频免费观看在线观看| 啦啦啦在线观看免费高清www| 极品少妇高潮喷水抽搐| 18禁裸乳无遮挡动漫免费视频| 国产乱人偷精品视频| 国产精品秋霞免费鲁丝片| 18禁观看日本| www.色视频.com| 欧美 日韩 精品 国产| 国产精品一国产av| 国产精品蜜桃在线观看| 日韩不卡一区二区三区视频在线| 亚洲不卡免费看| 视频区图区小说| 免费黄网站久久成人精品| 日韩伦理黄色片| 亚洲国产成人一精品久久久| 精品久久久久久久久亚洲| 丝袜在线中文字幕| 国产一区二区在线观看日韩| 老熟女久久久| 十分钟在线观看高清视频www| av黄色大香蕉| 成人国语在线视频| 中文字幕久久专区| 久久久精品94久久精品| h视频一区二区三区| 精品久久久久久久久av| 国产又色又爽无遮挡免| 成人18禁高潮啪啪吃奶动态图 | 午夜激情久久久久久久| 欧美变态另类bdsm刘玥| 9色porny在线观看| 日韩,欧美,国产一区二区三区| 午夜免费鲁丝| 看十八女毛片水多多多| 人妻人人澡人人爽人人| 在线看a的网站| 亚洲av免费高清在线观看| 狠狠婷婷综合久久久久久88av| 最近手机中文字幕大全| 两个人的视频大全免费| 一级黄片播放器| 亚洲精品久久久久久婷婷小说| 青春草国产在线视频| 中文欧美无线码| 日本黄色片子视频| 日韩伦理黄色片| 亚洲精品乱码久久久v下载方式| 日本wwww免费看| 在线亚洲精品国产二区图片欧美 | 亚洲三级黄色毛片| 国产亚洲最大av| 久久久欧美国产精品| 青春草亚洲视频在线观看| 欧美老熟妇乱子伦牲交| 日韩成人av中文字幕在线观看| 亚洲精品美女久久av网站| 日日摸夜夜添夜夜爱| 色94色欧美一区二区| 能在线免费看毛片的网站| 国产精品久久久久久久电影| 欧美日韩av久久| 午夜日本视频在线| 热re99久久精品国产66热6| 一区在线观看完整版| 中文字幕亚洲精品专区| av免费在线看不卡| 一级毛片aaaaaa免费看小| 精品久久国产蜜桃| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩av在线免费看完整版不卡| 亚洲精品成人av观看孕妇| 欧美亚洲 丝袜 人妻 在线| 另类精品久久| 少妇人妻 视频| 国产亚洲精品第一综合不卡 | 99久国产av精品国产电影| 边亲边吃奶的免费视频| 久久人人爽人人片av| 亚洲美女黄色视频免费看| 欧美 日韩 精品 国产| 一区二区av电影网| 夜夜爽夜夜爽视频| 久久影院123| 成年人免费黄色播放视频| 国产成人a∨麻豆精品| 99精国产麻豆久久婷婷| a级毛片黄视频| 亚洲精品乱码久久久久久按摩| 丰满饥渴人妻一区二区三| 看非洲黑人一级黄片| 国产深夜福利视频在线观看| 欧美精品国产亚洲| 午夜免费男女啪啪视频观看| 色视频在线一区二区三区| 久久久国产精品麻豆| 丰满少妇做爰视频| 欧美三级亚洲精品| 一级毛片我不卡| 女性生殖器流出的白浆| 精品久久国产蜜桃| 久久久久久久久久久丰满| 我的老师免费观看完整版| 日韩成人av中文字幕在线观看| 国产精品麻豆人妻色哟哟久久| 欧美亚洲 丝袜 人妻 在线| 人妻少妇偷人精品九色| 男的添女的下面高潮视频| 水蜜桃什么品种好| 伊人亚洲综合成人网| 下体分泌物呈黄色| 欧美精品一区二区大全| 欧美 亚洲 国产 日韩一| 免费观看在线日韩| 春色校园在线视频观看| 熟女电影av网| 91精品国产国语对白视频| 免费看光身美女| 久久 成人 亚洲| 日韩熟女老妇一区二区性免费视频| 久久97久久精品| 秋霞伦理黄片| 久久ye,这里只有精品| 热99久久久久精品小说推荐| 亚洲国产精品一区三区| 国产不卡av网站在线观看| 丰满迷人的少妇在线观看| 精品人妻在线不人妻| 亚洲av.av天堂| 自线自在国产av| 久久久久精品久久久久真实原创| 中文字幕制服av| 婷婷色麻豆天堂久久| 在线免费观看不下载黄p国产| 中文天堂在线官网| 国内精品宾馆在线| 永久网站在线| 国产精品嫩草影院av在线观看| 欧美xxⅹ黑人| 国产精品嫩草影院av在线观看| 插逼视频在线观看| 插阴视频在线观看视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美精品人与动牲交sv欧美| 亚洲经典国产精华液单| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧洲精品一区二区精品久久久 | 亚洲av免费高清在线观看| 黄色配什么色好看| 日本爱情动作片www.在线观看| 精品少妇黑人巨大在线播放| 亚洲精品av麻豆狂野| 精品少妇内射三级| 亚洲精品第二区| av播播在线观看一区| 99热全是精品| 91国产中文字幕| 麻豆精品久久久久久蜜桃| 亚洲精品,欧美精品| 韩国高清视频一区二区三区| 91国产中文字幕| 美女视频免费永久观看网站| av福利片在线| 中文字幕亚洲精品专区| 亚洲色图 男人天堂 中文字幕 | 国产成人精品婷婷| 少妇精品久久久久久久| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产毛片av蜜桃av| 日韩中文字幕视频在线看片| 天天影视国产精品| 日韩中文字幕视频在线看片| 一级爰片在线观看| 一级片'在线观看视频| 一区二区日韩欧美中文字幕 | 人人妻人人澡人人看| 亚洲美女搞黄在线观看| 九九久久精品国产亚洲av麻豆| 日日啪夜夜爽| 国产成人免费观看mmmm| 丁香六月天网| 五月玫瑰六月丁香| h视频一区二区三区| 精品一区在线观看国产| 在线播放无遮挡| 久久久久人妻精品一区果冻| 国产精品不卡视频一区二区| 精品少妇久久久久久888优播| 成人免费观看视频高清| 插阴视频在线观看视频| 国产女主播在线喷水免费视频网站| 国产老妇伦熟女老妇高清| 91久久精品电影网| 亚洲av福利一区| 久久精品国产亚洲网站| 伊人亚洲综合成人网| 韩国高清视频一区二区三区| 少妇丰满av| 亚洲欧美一区二区三区国产| 成人毛片a级毛片在线播放| 久久久久国产精品人妻一区二区| 这个男人来自地球电影免费观看 | 亚洲精品乱码久久久v下载方式| 一区二区av电影网| 亚洲人成网站在线播| 最近最新中文字幕免费大全7| 国产色婷婷99| √禁漫天堂资源中文www| 亚洲精品久久成人aⅴ小说 | 天堂俺去俺来也www色官网| 成人黄色视频免费在线看| 蜜桃久久精品国产亚洲av| 色婷婷av一区二区三区视频| 国产一区有黄有色的免费视频| 午夜激情久久久久久久| 国产av一区二区精品久久| 人人澡人人妻人| 大香蕉久久网| av电影中文网址| 欧美xxⅹ黑人| 狂野欧美白嫩少妇大欣赏| 国产午夜精品久久久久久一区二区三区| 91精品国产九色| 少妇人妻久久综合中文| 亚洲av成人精品一区久久| 97在线视频观看| 人人妻人人爽人人添夜夜欢视频| 精品少妇久久久久久888优播| 久久精品人人爽人人爽视色| 午夜福利影视在线免费观看| av网站免费在线观看视频| 在线亚洲精品国产二区图片欧美 | 成年人免费黄色播放视频| 人妻少妇偷人精品九色| 少妇人妻久久综合中文| 麻豆成人av视频| 在线 av 中文字幕| 亚洲美女视频黄频| 国产伦理片在线播放av一区| 国产精品嫩草影院av在线观看| 26uuu在线亚洲综合色| 久久久欧美国产精品| 一本大道久久a久久精品| 欧美日韩精品成人综合77777| 一级毛片aaaaaa免费看小| 大片免费播放器 马上看| 在线观看免费日韩欧美大片 | 一级二级三级毛片免费看| 成年美女黄网站色视频大全免费 | 又粗又硬又长又爽又黄的视频| 性高湖久久久久久久久免费观看| 99热全是精品| 777米奇影视久久| 日韩熟女老妇一区二区性免费视频| 韩国av在线不卡| 国产欧美另类精品又又久久亚洲欧美| 国产成人精品福利久久| 久久精品国产亚洲网站| 国产精品人妻久久久影院| 女人久久www免费人成看片| 少妇熟女欧美另类| 大码成人一级视频| 亚洲成色77777| 啦啦啦啦在线视频资源| 有码 亚洲区| 亚洲成人av在线免费| 美女视频免费永久观看网站| 欧美另类一区| 精品熟女少妇av免费看| 中文字幕制服av| 久久影院123| 边亲边吃奶的免费视频| 97在线人人人人妻| av在线播放精品| 欧美亚洲 丝袜 人妻 在线|